jakedahn / flux-latentpop
flux-latentpop features vibrant backgrounds with grungy limited screenprinting color goodness. (Updated 8 months, 3 weeks ago)
- Public
- 3.9K runs
- Weights
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccIDfavsxj7r9srm60cj4xdtzkeprcStatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a book with the words 'Don't Panic!' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
- disable_safety_checker
{ "model": "dev", "prompt": "a book with the words 'Don't Panic!' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "a book with the words 'Don't Panic!' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style", lora_scale: 1, num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 2.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "a book with the words 'Don't Panic!' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "a book with the words \'Don\'t Panic!\' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T04:06:41.467987Z", "created_at": "2024-09-25T04:06:31.758000Z", "data_removed": false, "error": null, "id": "favsxj7r9srm60cj4xdtzkeprc", "input": { "model": "dev", "prompt": "a book with the words 'Don't Panic!' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }, "logs": "Using seed: 27193\nPrompt: a book with the words 'Don't Panic!' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.55it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.03it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.80it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.70it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.65it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.62it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.60it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.59it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.58it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.58it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.57it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.57it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.56it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.56it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.56it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.56it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.56it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.56it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.56it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.56it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.56it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.59it/s]", "metrics": { "predict_time": 8.401203221, "total_time": 9.709987 }, "output": [ "https://replicate.delivery/yhqm/Vv5FL5OZU7ZqJ15bgF0PZe9g3fzXrmoIG5DhjzDma8iR5TgTA/out-0.webp" ], "started_at": "2024-09-25T04:06:33.066784Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/favsxj7r9srm60cj4xdtzkeprc", "cancel": "https://api.replicate.com/v1/predictions/favsxj7r9srm60cj4xdtzkeprc/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 27193 Prompt: a book with the words 'Don't Panic!' written on cover, an homage to the hitchhikers guide to the galaxy, LNTP cartoon style [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.55it/s] 7%|▋ | 2/28 [00:00<00:06, 4.03it/s] 11%|█ | 3/28 [00:00<00:06, 3.80it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.70it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.65it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.62it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.60it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.59it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.58it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.58it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.57it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s] 50%|█████ | 14/28 [00:03<00:03, 3.57it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.56it/s] 61%|██████ | 17/28 [00:04<00:03, 3.56it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.56it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.56it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.56it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.56it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.56it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.56it/s] 100%|██████████| 28/28 [00:07<00:00, 3.56it/s] 100%|██████████| 28/28 [00:07<00:00, 3.59it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccIDp4edkvha49rm20cj4x6vezb84wStatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a robot, blue background, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 4:5
- output_format
- webp
- guidance_scale
- 2.35
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 20
- disable_safety_checker
{ "model": "dev", "prompt": "a robot, blue background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.35, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "a robot, blue background, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "4:5", output_format: "webp", guidance_scale: 2.35, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 20 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "a robot, blue background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.35, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "a robot, blue background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.35, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T03:50:51.129366Z", "created_at": "2024-09-25T03:50:21.474000Z", "data_removed": false, "error": null, "id": "p4edkvha49rm20cj4x6vezb84w", "input": { "model": "dev", "prompt": "a robot, blue background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.35, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }, "logs": "Using seed: 45178\nPrompt: a robot, blue background, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:05, 3.72it/s]\n 10%|█ | 2/20 [00:00<00:04, 4.21it/s]\n 15%|█▌ | 3/20 [00:00<00:04, 3.97it/s]\n 20%|██ | 4/20 [00:01<00:04, 3.87it/s]\n 25%|██▌ | 5/20 [00:01<00:03, 3.81it/s]\n 30%|███ | 6/20 [00:01<00:03, 3.78it/s]\n 35%|███▌ | 7/20 [00:01<00:03, 3.76it/s]\n 40%|████ | 8/20 [00:02<00:03, 3.75it/s]\n 45%|████▌ | 9/20 [00:02<00:02, 3.74it/s]\n 50%|█████ | 10/20 [00:02<00:02, 3.73it/s]\n 55%|█████▌ | 11/20 [00:02<00:02, 3.73it/s]\n 60%|██████ | 12/20 [00:03<00:02, 3.73it/s]\n 65%|██████▌ | 13/20 [00:03<00:01, 3.72it/s]\n 70%|███████ | 14/20 [00:03<00:01, 3.73it/s]\n 75%|███████▌ | 15/20 [00:03<00:01, 3.72it/s]\n 80%|████████ | 16/20 [00:04<00:01, 3.72it/s]\n 85%|████████▌ | 17/20 [00:04<00:00, 3.72it/s]\n 90%|█████████ | 18/20 [00:04<00:00, 3.72it/s]\n 95%|█████████▌| 19/20 [00:05<00:00, 3.72it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.72it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.76it/s]", "metrics": { "predict_time": 5.85348959, "total_time": 29.655366 }, "output": [ "https://replicate.delivery/yhqm/BuMthXA6fQ3CIKSqJpbtqxefm3U9IQFMDIa5Lfu9DtuqpOBOB/out-0.webp" ], "started_at": "2024-09-25T03:50:45.275876Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/p4edkvha49rm20cj4x6vezb84w", "cancel": "https://api.replicate.com/v1/predictions/p4edkvha49rm20cj4x6vezb84w/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 45178 Prompt: a robot, blue background, LNTP illustration style [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:05, 3.72it/s] 10%|█ | 2/20 [00:00<00:04, 4.21it/s] 15%|█▌ | 3/20 [00:00<00:04, 3.97it/s] 20%|██ | 4/20 [00:01<00:04, 3.87it/s] 25%|██▌ | 5/20 [00:01<00:03, 3.81it/s] 30%|███ | 6/20 [00:01<00:03, 3.78it/s] 35%|███▌ | 7/20 [00:01<00:03, 3.76it/s] 40%|████ | 8/20 [00:02<00:03, 3.75it/s] 45%|████▌ | 9/20 [00:02<00:02, 3.74it/s] 50%|█████ | 10/20 [00:02<00:02, 3.73it/s] 55%|█████▌ | 11/20 [00:02<00:02, 3.73it/s] 60%|██████ | 12/20 [00:03<00:02, 3.73it/s] 65%|██████▌ | 13/20 [00:03<00:01, 3.72it/s] 70%|███████ | 14/20 [00:03<00:01, 3.73it/s] 75%|███████▌ | 15/20 [00:03<00:01, 3.72it/s] 80%|████████ | 16/20 [00:04<00:01, 3.72it/s] 85%|████████▌ | 17/20 [00:04<00:00, 3.72it/s] 90%|█████████ | 18/20 [00:04<00:00, 3.72it/s] 95%|█████████▌| 19/20 [00:05<00:00, 3.72it/s] 100%|██████████| 20/20 [00:05<00:00, 3.72it/s] 100%|██████████| 20/20 [00:05<00:00, 3.76it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccIDgq7e2nfg0srm20cj4wvvw4dn40StatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- two cats doing research, blue background, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2.35
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 20
- disable_safety_checker
{ "model": "dev", "prompt": "two cats doing research, blue background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.35, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "two cats doing research, blue background, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2.35, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 20 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "two cats doing research, blue background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.35, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "two cats doing research, blue background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.35, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T03:27:45.085511Z", "created_at": "2024-09-25T03:27:10.342000Z", "data_removed": false, "error": null, "id": "gq7e2nfg0srm20cj4wvvw4dn40", "input": { "model": "dev", "prompt": "two cats doing research, blue background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.35, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }, "logs": "Using seed: 14281\nPrompt: two cats doing research, blue background, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 9.85s\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:05, 3.53it/s]\n 10%|█ | 2/20 [00:00<00:04, 3.99it/s]\n 15%|█▌ | 3/20 [00:00<00:04, 3.77it/s]\n 20%|██ | 4/20 [00:01<00:04, 3.67it/s]\n 25%|██▌ | 5/20 [00:01<00:04, 3.62it/s]\n 30%|███ | 6/20 [00:01<00:03, 3.59it/s]\n 35%|███▌ | 7/20 [00:01<00:03, 3.57it/s]\n 40%|████ | 8/20 [00:02<00:03, 3.56it/s]\n 45%|████▌ | 9/20 [00:02<00:03, 3.55it/s]\n 50%|█████ | 10/20 [00:02<00:02, 3.54it/s]\n 55%|█████▌ | 11/20 [00:03<00:02, 3.54it/s]\n 60%|██████ | 12/20 [00:03<00:02, 3.54it/s]\n 65%|██████▌ | 13/20 [00:03<00:01, 3.53it/s]\n 70%|███████ | 14/20 [00:03<00:01, 3.53it/s]\n 75%|███████▌ | 15/20 [00:04<00:01, 3.53it/s]\n 80%|████████ | 16/20 [00:04<00:01, 3.53it/s]\n 85%|████████▌ | 17/20 [00:04<00:00, 3.53it/s]\n 90%|█████████ | 18/20 [00:05<00:00, 3.53it/s]\n 95%|█████████▌| 19/20 [00:05<00:00, 3.53it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.53it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.56it/s]", "metrics": { "predict_time": 15.991911446, "total_time": 34.743511 }, "output": [ "https://replicate.delivery/yhqm/l6N0OFfgFuXSF69OpZUo4mnoaGMCq5HNn7FPzFxSPfawUTgTA/out-0.webp" ], "started_at": "2024-09-25T03:27:29.093599Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gq7e2nfg0srm20cj4wvvw4dn40", "cancel": "https://api.replicate.com/v1/predictions/gq7e2nfg0srm20cj4wvvw4dn40/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 14281 Prompt: two cats doing research, blue background, LNTP illustration style [!] txt2img mode Using dev model Loaded LoRAs in 9.85s 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:05, 3.53it/s] 10%|█ | 2/20 [00:00<00:04, 3.99it/s] 15%|█▌ | 3/20 [00:00<00:04, 3.77it/s] 20%|██ | 4/20 [00:01<00:04, 3.67it/s] 25%|██▌ | 5/20 [00:01<00:04, 3.62it/s] 30%|███ | 6/20 [00:01<00:03, 3.59it/s] 35%|███▌ | 7/20 [00:01<00:03, 3.57it/s] 40%|████ | 8/20 [00:02<00:03, 3.56it/s] 45%|████▌ | 9/20 [00:02<00:03, 3.55it/s] 50%|█████ | 10/20 [00:02<00:02, 3.54it/s] 55%|█████▌ | 11/20 [00:03<00:02, 3.54it/s] 60%|██████ | 12/20 [00:03<00:02, 3.54it/s] 65%|██████▌ | 13/20 [00:03<00:01, 3.53it/s] 70%|███████ | 14/20 [00:03<00:01, 3.53it/s] 75%|███████▌ | 15/20 [00:04<00:01, 3.53it/s] 80%|████████ | 16/20 [00:04<00:01, 3.53it/s] 85%|████████▌ | 17/20 [00:04<00:00, 3.53it/s] 90%|█████████ | 18/20 [00:05<00:00, 3.53it/s] 95%|█████████▌| 19/20 [00:05<00:00, 3.53it/s] 100%|██████████| 20/20 [00:05<00:00, 3.53it/s] 100%|██████████| 20/20 [00:05<00:00, 3.56it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccIDd478b4ryanrm20cj4wra52wqzmStatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a t-shirt featuring a cat, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 20
- disable_safety_checker
{ "model": "dev", "prompt": "a t-shirt featuring a cat, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "a t-shirt featuring a cat, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2.5, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 20 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "a t-shirt featuring a cat, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "a t-shirt featuring a cat, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T03:20:07.104511Z", "created_at": "2024-09-25T03:18:37.909000Z", "data_removed": false, "error": null, "id": "d478b4ryanrm20cj4wra52wqzm", "input": { "model": "dev", "prompt": "a t-shirt featuring a cat, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }, "logs": "Using seed: 60689\nPrompt: a t-shirt featuring a cat, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 83.03s\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:05, 3.54it/s]\n 10%|█ | 2/20 [00:00<00:04, 4.00it/s]\n 15%|█▌ | 3/20 [00:00<00:04, 3.78it/s]\n 20%|██ | 4/20 [00:01<00:04, 3.68it/s]\n 25%|██▌ | 5/20 [00:01<00:04, 3.63it/s]\n 30%|███ | 6/20 [00:01<00:03, 3.60it/s]\n 35%|███▌ | 7/20 [00:01<00:03, 3.58it/s]\n 40%|████ | 8/20 [00:02<00:03, 3.56it/s]\n 45%|████▌ | 9/20 [00:02<00:03, 3.56it/s]\n 50%|█████ | 10/20 [00:02<00:02, 3.55it/s]\n 55%|█████▌ | 11/20 [00:03<00:02, 3.55it/s]\n 60%|██████ | 12/20 [00:03<00:02, 3.54it/s]\n 65%|██████▌ | 13/20 [00:03<00:01, 3.54it/s]\n 70%|███████ | 14/20 [00:03<00:01, 3.54it/s]\n 75%|███████▌ | 15/20 [00:04<00:01, 3.54it/s]\n 80%|████████ | 16/20 [00:04<00:01, 3.54it/s]\n 85%|████████▌ | 17/20 [00:04<00:00, 3.54it/s]\n 90%|█████████ | 18/20 [00:05<00:00, 3.54it/s]\n 95%|█████████▌| 19/20 [00:05<00:00, 3.54it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.54it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.57it/s]", "metrics": { "predict_time": 89.168728492, "total_time": 89.195511 }, "output": [ "https://replicate.delivery/yhqm/HDN8SNL7CTpLOJX6JUb61Bu68vLLRmNhgLs8ZEadRPoZzE4E/out-0.webp" ], "started_at": "2024-09-25T03:18:37.935782Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/d478b4ryanrm20cj4wra52wqzm", "cancel": "https://api.replicate.com/v1/predictions/d478b4ryanrm20cj4wra52wqzm/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 60689 Prompt: a t-shirt featuring a cat, LNTP illustration style [!] txt2img mode Using dev model Loaded LoRAs in 83.03s 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:05, 3.54it/s] 10%|█ | 2/20 [00:00<00:04, 4.00it/s] 15%|█▌ | 3/20 [00:00<00:04, 3.78it/s] 20%|██ | 4/20 [00:01<00:04, 3.68it/s] 25%|██▌ | 5/20 [00:01<00:04, 3.63it/s] 30%|███ | 6/20 [00:01<00:03, 3.60it/s] 35%|███▌ | 7/20 [00:01<00:03, 3.58it/s] 40%|████ | 8/20 [00:02<00:03, 3.56it/s] 45%|████▌ | 9/20 [00:02<00:03, 3.56it/s] 50%|█████ | 10/20 [00:02<00:02, 3.55it/s] 55%|█████▌ | 11/20 [00:03<00:02, 3.55it/s] 60%|██████ | 12/20 [00:03<00:02, 3.54it/s] 65%|██████▌ | 13/20 [00:03<00:01, 3.54it/s] 70%|███████ | 14/20 [00:03<00:01, 3.54it/s] 75%|███████▌ | 15/20 [00:04<00:01, 3.54it/s] 80%|████████ | 16/20 [00:04<00:01, 3.54it/s] 85%|████████▌ | 17/20 [00:04<00:00, 3.54it/s] 90%|█████████ | 18/20 [00:05<00:00, 3.54it/s] 95%|█████████▌| 19/20 [00:05<00:00, 3.54it/s] 100%|██████████| 20/20 [00:05<00:00, 3.54it/s] 100%|██████████| 20/20 [00:05<00:00, 3.57it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccIDy6rp6rx0pnrm40cj4wpscsxe80StatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- a t-shirt, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2.8
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 20
- disable_safety_checker
{ "model": "dev", "prompt": "a t-shirt, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.8, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "a t-shirt, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2.8, output_quality: 80, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 20 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "a t-shirt, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.8, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "a t-shirt, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.8, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T03:16:12.559204Z", "created_at": "2024-09-25T03:15:54.677000Z", "data_removed": false, "error": null, "id": "y6rp6rx0pnrm40cj4wpscsxe80", "input": { "model": "dev", "prompt": "a t-shirt, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.8, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }, "logs": "Using seed: 53681\nPrompt: a t-shirt, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 11.74s\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:05, 3.53it/s]\n 10%|█ | 2/20 [00:00<00:04, 3.98it/s]\n 15%|█▌ | 3/20 [00:00<00:04, 3.77it/s]\n 20%|██ | 4/20 [00:01<00:04, 3.67it/s]\n 25%|██▌ | 5/20 [00:01<00:04, 3.62it/s]\n 30%|███ | 6/20 [00:01<00:03, 3.59it/s]\n 35%|███▌ | 7/20 [00:01<00:03, 3.58it/s]\n 40%|████ | 8/20 [00:02<00:03, 3.56it/s]\n 45%|████▌ | 9/20 [00:02<00:03, 3.56it/s]\n 50%|█████ | 10/20 [00:02<00:02, 3.55it/s]\n 55%|█████▌ | 11/20 [00:03<00:02, 3.55it/s]\n 60%|██████ | 12/20 [00:03<00:02, 3.55it/s]\n 65%|██████▌ | 13/20 [00:03<00:01, 3.54it/s]\n 70%|███████ | 14/20 [00:03<00:01, 3.54it/s]\n 75%|███████▌ | 15/20 [00:04<00:01, 3.54it/s]\n 80%|████████ | 16/20 [00:04<00:01, 3.54it/s]\n 85%|████████▌ | 17/20 [00:04<00:00, 3.54it/s]\n 90%|█████████ | 18/20 [00:05<00:00, 3.54it/s]\n 95%|█████████▌| 19/20 [00:05<00:00, 3.54it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.54it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.57it/s]", "metrics": { "predict_time": 17.869774939, "total_time": 17.882204 }, "output": [ "https://replicate.delivery/yhqm/OCzIYAihfc3BOql92yYxGO7tW80kxtXNXmFXF2uUPwe8JTgTA/out-0.webp" ], "started_at": "2024-09-25T03:15:54.689429Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/y6rp6rx0pnrm40cj4wpscsxe80", "cancel": "https://api.replicate.com/v1/predictions/y6rp6rx0pnrm40cj4wpscsxe80/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 53681 Prompt: a t-shirt, LNTP illustration style [!] txt2img mode Using dev model Loaded LoRAs in 11.74s 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:05, 3.53it/s] 10%|█ | 2/20 [00:00<00:04, 3.98it/s] 15%|█▌ | 3/20 [00:00<00:04, 3.77it/s] 20%|██ | 4/20 [00:01<00:04, 3.67it/s] 25%|██▌ | 5/20 [00:01<00:04, 3.62it/s] 30%|███ | 6/20 [00:01<00:03, 3.59it/s] 35%|███▌ | 7/20 [00:01<00:03, 3.58it/s] 40%|████ | 8/20 [00:02<00:03, 3.56it/s] 45%|████▌ | 9/20 [00:02<00:03, 3.56it/s] 50%|█████ | 10/20 [00:02<00:02, 3.55it/s] 55%|█████▌ | 11/20 [00:03<00:02, 3.55it/s] 60%|██████ | 12/20 [00:03<00:02, 3.55it/s] 65%|██████▌ | 13/20 [00:03<00:01, 3.54it/s] 70%|███████ | 14/20 [00:03<00:01, 3.54it/s] 75%|███████▌ | 15/20 [00:04<00:01, 3.54it/s] 80%|████████ | 16/20 [00:04<00:01, 3.54it/s] 85%|████████▌ | 17/20 [00:04<00:00, 3.54it/s] 90%|█████████ | 18/20 [00:05<00:00, 3.54it/s] 95%|█████████▌| 19/20 [00:05<00:00, 3.54it/s] 100%|██████████| 20/20 [00:05<00:00, 3.54it/s] 100%|██████████| 20/20 [00:05<00:00, 3.57it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccIDggzrka5fv5rm40cj4xga7bx6drStatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A neon-lit diner floating in a pastel nebula, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 16:9
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
- disable_safety_checker
{ "model": "dev", "prompt": "A neon-lit diner floating in a pastel nebula, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "A neon-lit diner floating in a pastel nebula, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "16:9", output_format: "webp", guidance_scale: 2.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "A neon-lit diner floating in a pastel nebula, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "A neon-lit diner floating in a pastel nebula, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T04:13:00.524076Z", "created_at": "2024-09-25T04:11:40.889000Z", "data_removed": false, "error": null, "id": "ggzrka5fv5rm40cj4xga7bx6dr", "input": { "model": "dev", "prompt": "A neon-lit diner floating in a pastel nebula, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }, "logs": "Using seed: 1597\nPrompt: A neon-lit diner floating in a pastel nebula, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 10.73s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.57it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.04it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.81it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.71it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.66it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.63it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.61it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.60it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.59it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.58it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.58it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.58it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.57it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.57it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.57it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.57it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.57it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.57it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.57it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.57it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.57it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.57it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.57it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.57it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.57it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.57it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.57it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.59it/s]", "metrics": { "predict_time": 19.093468676, "total_time": 79.635076 }, "output": [ "https://replicate.delivery/yhqm/eNjb7FD8GMVRb6V0eFPmecUhitJZdOgm8fvyegSj8VWk5fE4E/out-0.webp" ], "started_at": "2024-09-25T04:12:41.430607Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ggzrka5fv5rm40cj4xga7bx6dr", "cancel": "https://api.replicate.com/v1/predictions/ggzrka5fv5rm40cj4xga7bx6dr/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 1597 Prompt: A neon-lit diner floating in a pastel nebula, LNTP illustration style [!] txt2img mode Using dev model Loaded LoRAs in 10.73s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.57it/s] 7%|▋ | 2/28 [00:00<00:06, 4.04it/s] 11%|█ | 3/28 [00:00<00:06, 3.81it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.71it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.66it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.63it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.61it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.60it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.59it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.58it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.58it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.58it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s] 50%|█████ | 14/28 [00:03<00:03, 3.57it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.57it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.57it/s] 61%|██████ | 17/28 [00:04<00:03, 3.57it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.57it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.57it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.57it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.57it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.57it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.57it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.57it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.57it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.57it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.57it/s] 100%|██████████| 28/28 [00:07<00:00, 3.57it/s] 100%|██████████| 28/28 [00:07<00:00, 3.59it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccID674d1dkjc1rm20cj4xha53hb0rStatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A nostalgic robot ice cream vendor from the 1950s, yellow background, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 4:5
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
- disable_safety_checker
{ "model": "dev", "prompt": "A nostalgic robot ice cream vendor from the 1950s, yellow background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "A nostalgic robot ice cream vendor from the 1950s, yellow background, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "4:5", output_format: "webp", guidance_scale: 2.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "A nostalgic robot ice cream vendor from the 1950s, yellow background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "A nostalgic robot ice cream vendor from the 1950s, yellow background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T04:14:42.920270Z", "created_at": "2024-09-25T04:13:36.224000Z", "data_removed": false, "error": null, "id": "674d1dkjc1rm20cj4xha53hb0r", "input": { "model": "dev", "prompt": "A nostalgic robot ice cream vendor from the 1950s, yellow background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }, "logs": "Using seed: 47437\nPrompt: A nostalgic robot ice cream vendor from the 1950s, yellow background, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.75it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.24it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.00it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.90it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.84it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.81it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.79it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.78it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.77it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.76it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.76it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.75it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.75it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.75it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.75it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.75it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.75it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.75it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.75it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.75it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.75it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.75it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.75it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.75it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.78it/s]", "metrics": { "predict_time": 7.992696934, "total_time": 66.69627 }, "output": [ "https://replicate.delivery/yhqm/sWM0wTlYJH42FhTmIdyE20qdffWvrw2J9aRJhMQeYGLkBoAnA/out-0.webp" ], "started_at": "2024-09-25T04:14:34.927573Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/674d1dkjc1rm20cj4xha53hb0r", "cancel": "https://api.replicate.com/v1/predictions/674d1dkjc1rm20cj4xha53hb0r/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 47437 Prompt: A nostalgic robot ice cream vendor from the 1950s, yellow background, LNTP illustration style [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.75it/s] 7%|▋ | 2/28 [00:00<00:06, 4.24it/s] 11%|█ | 3/28 [00:00<00:06, 4.00it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.90it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.84it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.81it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.79it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.78it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.77it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.76it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.76it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.75it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.75it/s] 50%|█████ | 14/28 [00:03<00:03, 3.75it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s] 61%|██████ | 17/28 [00:04<00:02, 3.75it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.75it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.75it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.75it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.75it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.75it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.75it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.75it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.75it/s] 100%|██████████| 28/28 [00:07<00:00, 3.75it/s] 100%|██████████| 28/28 [00:07<00:00, 3.78it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccID2tfm6h7v0hrm60cj4xjreakyfcStatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- astronaut, orange background, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 4:5
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
- disable_safety_checker
{ "model": "dev", "prompt": "astronaut, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "astronaut, orange background, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "4:5", output_format: "webp", guidance_scale: 2.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "astronaut, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "astronaut, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T04:18:19.944969Z", "created_at": "2024-09-25T04:17:27.812000Z", "data_removed": false, "error": null, "id": "2tfm6h7v0hrm60cj4xjreakyfc", "input": { "model": "dev", "prompt": "astronaut, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }, "logs": "Using seed: 51721\nPrompt: astronaut, orange background, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.74it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.24it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.00it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.90it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.84it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.81it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.79it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.78it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.77it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.76it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.76it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.76it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.75it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.75it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.75it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.75it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.75it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.75it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.75it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.75it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.75it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.75it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.75it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.75it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.78it/s]", "metrics": { "predict_time": 7.979377737, "total_time": 52.132969 }, "output": [ "https://replicate.delivery/yhqm/aTO58xRixp5AFZlFJuWtlU3CQNP7esAZIrfsdnd6fifvQQBOB/out-0.webp" ], "started_at": "2024-09-25T04:18:11.965592Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2tfm6h7v0hrm60cj4xjreakyfc", "cancel": "https://api.replicate.com/v1/predictions/2tfm6h7v0hrm60cj4xjreakyfc/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 51721 Prompt: astronaut, orange background, LNTP illustration style [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.74it/s] 7%|▋ | 2/28 [00:00<00:06, 4.24it/s] 11%|█ | 3/28 [00:00<00:06, 4.00it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.90it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.84it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.81it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.79it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.78it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.77it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.76it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.76it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.76it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.75it/s] 50%|█████ | 14/28 [00:03<00:03, 3.75it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s] 61%|██████ | 17/28 [00:04<00:02, 3.75it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.75it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.75it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.75it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.75it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.75it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.75it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.75it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.75it/s] 100%|██████████| 28/28 [00:07<00:00, 3.75it/s] 100%|██████████| 28/28 [00:07<00:00, 3.78it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccIDj8spzqq2khrm20cj4xjt3j16n8StatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- girl, orange background, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 4:5
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
- disable_safety_checker
{ "model": "dev", "prompt": "girl, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "girl, orange background, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "4:5", output_format: "webp", guidance_scale: 2.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "girl, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "girl, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T04:18:03.963901Z", "created_at": "2024-09-25T04:17:21.564000Z", "data_removed": false, "error": null, "id": "j8spzqq2khrm20cj4xjt3j16n8", "input": { "model": "dev", "prompt": "girl, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }, "logs": "Using seed: 45794\nPrompt: girl, orange background, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.03s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.74it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.24it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.00it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.89it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.84it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.80it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.78it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.77it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.76it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.76it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.76it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.76it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.76it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.75it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.75it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.75it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.75it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.75it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.75it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.75it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.75it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.75it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.75it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.75it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.77it/s]", "metrics": { "predict_time": 7.9631889319999996, "total_time": 42.399901 }, "output": [ "https://replicate.delivery/yhqm/KShfD9UJSc3zIiYUnWtr0zgDSxV0XINar23ZJYitl169BKwJA/out-0.webp" ], "started_at": "2024-09-25T04:17:56.000712Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/j8spzqq2khrm20cj4xjt3j16n8", "cancel": "https://api.replicate.com/v1/predictions/j8spzqq2khrm20cj4xjt3j16n8/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 45794 Prompt: girl, orange background, LNTP illustration style [!] txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.03s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.74it/s] 7%|▋ | 2/28 [00:00<00:06, 4.24it/s] 11%|█ | 3/28 [00:00<00:06, 4.00it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.89it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.84it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.80it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.78it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.77it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.76it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.76it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.76it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.76it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.76it/s] 50%|█████ | 14/28 [00:03<00:03, 3.75it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.75it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.75it/s] 61%|██████ | 17/28 [00:04<00:02, 3.75it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.75it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.75it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.75it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.75it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.75it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.75it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.75it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.75it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.75it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.75it/s] 100%|██████████| 28/28 [00:07<00:00, 3.75it/s] 100%|██████████| 28/28 [00:07<00:00, 3.77it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccIDnzfm5rpwedrm40cj4xksb6abgwStatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- man, orange background, LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 4:5
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
- disable_safety_checker
{ "model": "dev", "prompt": "man, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "man, orange background, LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "4:5", output_format: "webp", guidance_scale: 2.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "man, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "man, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T04:20:22.052599Z", "created_at": "2024-09-25T04:19:31.059000Z", "data_removed": false, "error": null, "id": "nzfm5rpwedrm40cj4xksb6abgw", "input": { "model": "dev", "prompt": "man, orange background, LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28, "disable_safety_checker": false }, "logs": "Using seed: 42882\nPrompt: man, orange background, LNTP illustration style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 15.02s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.76it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.26it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.02it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.91it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.86it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.82it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.80it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.79it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.78it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.77it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.77it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.77it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.76it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.76it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.76it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.76it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.76it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.76it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.76it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.76it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.76it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.76it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.76it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.76it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.76it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.76it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.76it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.76it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.79it/s]", "metrics": { "predict_time": 22.919689963, "total_time": 50.993599 }, "output": [ "https://replicate.delivery/yhqm/hI7PQzxtoBoTDNic6d4yf70eBLR157OMCw7YP59BLAxFGUgTA/out-0.webp" ], "started_at": "2024-09-25T04:19:59.132909Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nzfm5rpwedrm40cj4xksb6abgw", "cancel": "https://api.replicate.com/v1/predictions/nzfm5rpwedrm40cj4xksb6abgw/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 42882 Prompt: man, orange background, LNTP illustration style [!] txt2img mode Using dev model Loaded LoRAs in 15.02s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.76it/s] 7%|▋ | 2/28 [00:00<00:06, 4.26it/s] 11%|█ | 3/28 [00:00<00:06, 4.02it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.91it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.86it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.82it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.80it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.79it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.78it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.77it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.77it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.77it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.76it/s] 50%|█████ | 14/28 [00:03<00:03, 3.76it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.76it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.76it/s] 61%|██████ | 17/28 [00:04<00:02, 3.76it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.76it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.76it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.76it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.76it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.76it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.76it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.76it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.76it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.76it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.76it/s] 100%|██████████| 28/28 [00:07<00:00, 3.76it/s] 100%|██████████| 28/28 [00:07<00:00, 3.79it/s]
Prediction
jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06ccID0g92prkys9rm20cj5cv8qenjr0StatusSucceededSourceAPIHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- screenprint tshirt design, a happy cat holding a sign that says "I LOVE REPLICATE", LNTP illustration style
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 20
- disable_safety_checker
{ "model": "dev", "prompt": "screenprint tshirt design, a happy cat holding a sign that says \"I LOVE REPLICATE\", LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", { input: { model: "dev", prompt: "screenprint tshirt design, a happy cat holding a sign that says \"I LOVE REPLICATE\", LNTP illustration style", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 20 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", input={ "model": "dev", "prompt": "screenprint tshirt design, a happy cat holding a sign that says \"I LOVE REPLICATE\", LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jakedahn/flux-latentpop using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jakedahn/flux-latentpop:c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc", "input": { "model": "dev", "prompt": "screenprint tshirt design, a happy cat holding a sign that says \\"I LOVE REPLICATE\\", LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-25T22:04:30.262889Z", "created_at": "2024-09-25T22:04:04.682000Z", "data_removed": false, "error": null, "id": "0g92prkys9rm20cj5cv8qenjr0", "input": { "model": "dev", "prompt": "screenprint tshirt design, a happy cat holding a sign that says \"I LOVE REPLICATE\", LNTP illustration style", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 20, "disable_safety_checker": false }, "logs": "Using seed: 4485\nPrompt: screenprint tshirt design, a happy cat holding a sign that says \"I LOVE REPLICATE\", LNTP illustration style\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 8.77s\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:05, 3.51it/s]\n 10%|█ | 2/20 [00:00<00:04, 3.97it/s]\n 15%|█▌ | 3/20 [00:00<00:04, 3.74it/s]\n 20%|██ | 4/20 [00:01<00:04, 3.64it/s]\n 25%|██▌ | 5/20 [00:01<00:04, 3.59it/s]\n 30%|███ | 6/20 [00:01<00:03, 3.56it/s]\n 35%|███▌ | 7/20 [00:01<00:03, 3.55it/s]\n 40%|████ | 8/20 [00:02<00:03, 3.53it/s]\n 45%|████▌ | 9/20 [00:02<00:03, 3.53it/s]\n 50%|█████ | 10/20 [00:02<00:02, 3.52it/s]\n 55%|█████▌ | 11/20 [00:03<00:02, 3.52it/s]\n 60%|██████ | 12/20 [00:03<00:02, 3.51it/s]\n 65%|██████▌ | 13/20 [00:03<00:01, 3.51it/s]\n 70%|███████ | 14/20 [00:03<00:01, 3.51it/s]\n 75%|███████▌ | 15/20 [00:04<00:01, 3.51it/s]\n 80%|████████ | 16/20 [00:04<00:01, 3.51it/s]\n 85%|████████▌ | 17/20 [00:04<00:00, 3.51it/s]\n 90%|█████████ | 18/20 [00:05<00:00, 3.50it/s]\n 95%|█████████▌| 19/20 [00:05<00:00, 3.50it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.50it/s]\n100%|██████████| 20/20 [00:05<00:00, 3.54it/s]", "metrics": { "predict_time": 14.983668764, "total_time": 25.580889 }, "output": [ "https://replicate.delivery/yhqm/6oe5Mae5xNrptUvEdwdWLxKkiEIWdPpgfJd44JkXSmUdXHBnA/out-0.webp" ], "started_at": "2024-09-25T22:04:15.279220Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/0g92prkys9rm20cj5cv8qenjr0", "cancel": "https://api.replicate.com/v1/predictions/0g92prkys9rm20cj5cv8qenjr0/cancel" }, "version": "c5e4432e01d30a523f9ebf1af1ad9f7ce82adc6709ec3061a817d53ff3bb06cc" }
Generated inUsing seed: 4485 Prompt: screenprint tshirt design, a happy cat holding a sign that says "I LOVE REPLICATE", LNTP illustration style [!] txt2img mode Using dev model Loaded LoRAs in 8.77s 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:05, 3.51it/s] 10%|█ | 2/20 [00:00<00:04, 3.97it/s] 15%|█▌ | 3/20 [00:00<00:04, 3.74it/s] 20%|██ | 4/20 [00:01<00:04, 3.64it/s] 25%|██▌ | 5/20 [00:01<00:04, 3.59it/s] 30%|███ | 6/20 [00:01<00:03, 3.56it/s] 35%|███▌ | 7/20 [00:01<00:03, 3.55it/s] 40%|████ | 8/20 [00:02<00:03, 3.53it/s] 45%|████▌ | 9/20 [00:02<00:03, 3.53it/s] 50%|█████ | 10/20 [00:02<00:02, 3.52it/s] 55%|█████▌ | 11/20 [00:03<00:02, 3.52it/s] 60%|██████ | 12/20 [00:03<00:02, 3.51it/s] 65%|██████▌ | 13/20 [00:03<00:01, 3.51it/s] 70%|███████ | 14/20 [00:03<00:01, 3.51it/s] 75%|███████▌ | 15/20 [00:04<00:01, 3.51it/s] 80%|████████ | 16/20 [00:04<00:01, 3.51it/s] 85%|████████▌ | 17/20 [00:04<00:00, 3.51it/s] 90%|█████████ | 18/20 [00:05<00:00, 3.50it/s] 95%|█████████▌| 19/20 [00:05<00:00, 3.50it/s] 100%|██████████| 20/20 [00:05<00:00, 3.50it/s] 100%|██████████| 20/20 [00:05<00:00, 3.54it/s]
Want to make some of these yourself?
Run this model