Readme
Use “overexposed” in the negative prompt!
A SDXL LoRA inspired by Breath of the Wild
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jbilcke/sdxl-botw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jbilcke/sdxl-botw:bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc",
{
input: {
width: 1024,
height: 1024,
prompt: "Link riding a llama, in the style of TOK",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.83,
num_outputs: 1,
guidance_scale: 18.41,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "overexposed",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jbilcke/sdxl-botw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jbilcke/sdxl-botw:bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc",
input={
"width": 1024,
"height": 1024,
"prompt": "Link riding a llama, in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.83,
"num_outputs": 1,
"guidance_scale": 18.41,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "overexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jbilcke/sdxl-botw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc",
"input": {
"width": 1024,
"height": 1024,
"prompt": "Link riding a llama, in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.83,
"num_outputs": 1,
"guidance_scale": 18.41,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "overexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/jbilcke/sdxl-botw@sha256:bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="Link riding a llama, in the style of TOK"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.83' \
-i 'num_outputs=1' \
-i 'guidance_scale=18.41' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt="overexposed"' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/jbilcke/sdxl-botw@sha256:bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "Link riding a llama, in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.83, "num_outputs": 1, "guidance_scale": 18.41, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "overexposed", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.034. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-08-30T15:59:19.223401Z",
"created_at": "2023-08-30T15:59:04.273206Z",
"data_removed": false,
"error": null,
"id": "4zrx3m3b2yo5x5m2i2euvjley4",
"input": {
"width": 1024,
"height": 1024,
"prompt": "Link riding a llama, in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.83,
"num_outputs": 1,
"guidance_scale": 18.41,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "overexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 3176\nPrompt: Link riding a llama, in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.71it/s]\n 4%|▍ | 2/50 [00:00<00:12, 3.69it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.69it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.68it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.67it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.67it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.66it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.68it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.68it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.69it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.69it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.69it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.69it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.69it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.69it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.68it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.68it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.68it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.68it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.68it/s]",
"metrics": {
"predict_time": 14.971958,
"total_time": 14.950195
},
"output": [
"https://pbxt.replicate.delivery/L5P6dSEzH276JR7QawvxTdN5AQW1GVg5AJbvksFrsckVZ0XE/out-0.png"
],
"started_at": "2023-08-30T15:59:04.251443Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/4zrx3m3b2yo5x5m2i2euvjley4",
"cancel": "https://api.replicate.com/v1/predictions/4zrx3m3b2yo5x5m2i2euvjley4/cancel"
},
"version": "bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc"
}
Using seed: 3176
Prompt: Link riding a llama, in the style of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.71it/s]
4%|▍ | 2/50 [00:00<00:12, 3.69it/s]
6%|▌ | 3/50 [00:00<00:12, 3.69it/s]
8%|▊ | 4/50 [00:01<00:12, 3.68it/s]
10%|█ | 5/50 [00:01<00:12, 3.67it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.66it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]
30%|███ | 15/50 [00:04<00:09, 3.68it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.68it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.69it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.69it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]
40%|████ | 20/50 [00:05<00:08, 3.69it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.69it/s]
50%|█████ | 25/50 [00:06<00:06, 3.69it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.69it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]
80%|████████ | 40/50 [00:10<00:02, 3.68it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
This model costs approximately $0.034 to run on Replicate, or 29 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 35 seconds. The predict time for this model varies significantly based on the inputs.
Use “overexposed” in the negative prompt!
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 3176
Prompt: Link riding a llama, in the style of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.71it/s]
4%|▍ | 2/50 [00:00<00:12, 3.69it/s]
6%|▌ | 3/50 [00:00<00:12, 3.69it/s]
8%|▊ | 4/50 [00:01<00:12, 3.68it/s]
10%|█ | 5/50 [00:01<00:12, 3.67it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.66it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]
30%|███ | 15/50 [00:04<00:09, 3.68it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.68it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.69it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.69it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.69it/s]
40%|████ | 20/50 [00:05<00:08, 3.69it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.69it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.69it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.69it/s]
50%|█████ | 25/50 [00:06<00:06, 3.69it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.69it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]
80%|████████ | 40/50 [00:10<00:02, 3.68it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]