You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jbilcke/sdxl-botw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jbilcke/sdxl-botw:bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc",
{
input: {
image: "https://replicate.delivery/pbxt/JRSLRPP85HVTB5t2YfWqcoQ6hjr1nHvPrkAKuQtMVgtVtBqC/Capture%20d%E2%80%99e%CC%81cran%202023-08-30%20a%CC%80%2020.33.54.png",
width: 1024,
height: 1024,
prompt: "Zelda looking at a computer, drinking a coke, amused, in the style of TOK",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.83,
num_outputs: 1,
guidance_scale: 18.41,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "overexposed",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jbilcke/sdxl-botw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jbilcke/sdxl-botw:bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc",
input={
"image": "https://replicate.delivery/pbxt/JRSLRPP85HVTB5t2YfWqcoQ6hjr1nHvPrkAKuQtMVgtVtBqC/Capture%20d%E2%80%99e%CC%81cran%202023-08-30%20a%CC%80%2020.33.54.png",
"width": 1024,
"height": 1024,
"prompt": "Zelda looking at a computer, drinking a coke, amused, in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.83,
"num_outputs": 1,
"guidance_scale": 18.41,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "overexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jbilcke/sdxl-botw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc",
"input": {
"image": "https://replicate.delivery/pbxt/JRSLRPP85HVTB5t2YfWqcoQ6hjr1nHvPrkAKuQtMVgtVtBqC/Capture%20d%E2%80%99e%CC%81cran%202023-08-30%20a%CC%80%2020.33.54.png",
"width": 1024,
"height": 1024,
"prompt": "Zelda looking at a computer, drinking a coke, amused, in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.83,
"num_outputs": 1,
"guidance_scale": 18.41,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "overexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run jbilcke/sdxl-botw using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/jbilcke/sdxl-botw@sha256:bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc \
-i 'image="https://replicate.delivery/pbxt/JRSLRPP85HVTB5t2YfWqcoQ6hjr1nHvPrkAKuQtMVgtVtBqC/Capture%20d%E2%80%99e%CC%81cran%202023-08-30%20a%CC%80%2020.33.54.png"' \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="Zelda looking at a computer, drinking a coke, amused, in the style of TOK"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.83' \
-i 'num_outputs=1' \
-i 'guidance_scale=18.41' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt="overexposed"' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run jbilcke/sdxl-botw using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/jbilcke/sdxl-botw@sha256:bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JRSLRPP85HVTB5t2YfWqcoQ6hjr1nHvPrkAKuQtMVgtVtBqC/Capture%20d%E2%80%99e%CC%81cran%202023-08-30%20a%CC%80%2020.33.54.png", "width": 1024, "height": 1024, "prompt": "Zelda looking at a computer, drinking a coke, amused, in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.83, "num_outputs": 1, "guidance_scale": 18.41, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "overexposed", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.034. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-08-30T18:37:03.913613Z",
"created_at": "2023-08-30T18:36:53.381548Z",
"data_removed": false,
"error": null,
"id": "xi6igj3byu43q3dbdj4lctseqy",
"input": {
"image": "https://replicate.delivery/pbxt/JRSLRPP85HVTB5t2YfWqcoQ6hjr1nHvPrkAKuQtMVgtVtBqC/Capture%20d%E2%80%99e%CC%81cran%202023-08-30%20a%CC%80%2020.33.54.png",
"width": 1024,
"height": 1024,
"prompt": "Zelda looking at a computer, drinking a coke, amused, in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.83,
"num_outputs": 1,
"guidance_scale": 18.41,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "overexposed",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 58833\nPrompt: Zelda looking at a computer, drinking a coke, amused, in the style of <s0><s1>\nimg2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:07, 5.00it/s]\n 5%|▌ | 2/40 [00:00<00:07, 4.99it/s]\n 8%|▊ | 3/40 [00:00<00:07, 4.98it/s]\n 10%|█ | 4/40 [00:00<00:07, 4.97it/s]\n 12%|█▎ | 5/40 [00:01<00:07, 4.96it/s]\n 15%|█▌ | 6/40 [00:01<00:06, 4.96it/s]\n 18%|█▊ | 7/40 [00:01<00:06, 4.96it/s]\n 20%|██ | 8/40 [00:01<00:06, 4.96it/s]\n 22%|██▎ | 9/40 [00:01<00:06, 4.96it/s]\n 25%|██▌ | 10/40 [00:02<00:06, 4.95it/s]\n 28%|██▊ | 11/40 [00:02<00:05, 4.95it/s]\n 30%|███ | 12/40 [00:02<00:05, 4.95it/s]\n 32%|███▎ | 13/40 [00:02<00:05, 4.95it/s]\n 35%|███▌ | 14/40 [00:02<00:05, 4.94it/s]\n 38%|███▊ | 15/40 [00:03<00:05, 4.94it/s]\n 40%|████ | 16/40 [00:03<00:04, 4.94it/s]\n 42%|████▎ | 17/40 [00:03<00:04, 4.93it/s]\n 45%|████▌ | 18/40 [00:03<00:04, 4.93it/s]\n 48%|████▊ | 19/40 [00:03<00:04, 4.93it/s]\n 50%|█████ | 20/40 [00:04<00:04, 4.93it/s]\n 52%|█████▎ | 21/40 [00:04<00:03, 4.93it/s]\n 55%|█████▌ | 22/40 [00:04<00:03, 4.93it/s]\n 57%|█████▊ | 23/40 [00:04<00:03, 4.92it/s]\n 60%|██████ | 24/40 [00:04<00:03, 4.92it/s]\n 62%|██████▎ | 25/40 [00:05<00:03, 4.92it/s]\n 65%|██████▌ | 26/40 [00:05<00:02, 4.92it/s]\n 68%|██████▊ | 27/40 [00:05<00:02, 4.92it/s]\n 70%|███████ | 28/40 [00:05<00:02, 4.92it/s]\n 72%|███████▎ | 29/40 [00:05<00:02, 4.92it/s]\n 75%|███████▌ | 30/40 [00:06<00:02, 4.92it/s]\n 78%|███████▊ | 31/40 [00:06<00:01, 4.92it/s]\n 80%|████████ | 32/40 [00:06<00:01, 4.92it/s]\n 82%|████████▎ | 33/40 [00:06<00:01, 4.92it/s]\n 85%|████████▌ | 34/40 [00:06<00:01, 4.91it/s]\n 88%|████████▊ | 35/40 [00:07<00:01, 4.91it/s]\n 90%|█████████ | 36/40 [00:07<00:00, 4.91it/s]\n 92%|█████████▎| 37/40 [00:07<00:00, 4.91it/s]\n 95%|█████████▌| 38/40 [00:07<00:00, 4.91it/s]\n 98%|█████████▊| 39/40 [00:07<00:00, 4.91it/s]\n100%|██████████| 40/40 [00:08<00:00, 4.91it/s]\n100%|██████████| 40/40 [00:08<00:00, 4.93it/s]",
"metrics": {
"predict_time": 10.538237,
"total_time": 10.532065
},
"output": [
"https://pbxt.replicate.delivery/fSikzXB4LHVmMqNvkpTIYLtqXTo6TfSlUXdX0t4x14tP5TfiA/out-0.png"
],
"started_at": "2023-08-30T18:36:53.375376Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/xi6igj3byu43q3dbdj4lctseqy",
"cancel": "https://api.replicate.com/v1/predictions/xi6igj3byu43q3dbdj4lctseqy/cancel"
},
"version": "bf412da351d41547f117391eff2824ab0301b6ba1c6c010c4b5f766a492d62fc"
}
Using seed: 58833
Prompt: Zelda looking at a computer, drinking a coke, amused, in the style of <s0><s1>
img2img mode
0%| | 0/40 [00:00<?, ?it/s]
2%|▎ | 1/40 [00:00<00:07, 5.00it/s]
5%|▌ | 2/40 [00:00<00:07, 4.99it/s]
8%|▊ | 3/40 [00:00<00:07, 4.98it/s]
10%|█ | 4/40 [00:00<00:07, 4.97it/s]
12%|█▎ | 5/40 [00:01<00:07, 4.96it/s]
15%|█▌ | 6/40 [00:01<00:06, 4.96it/s]
18%|█▊ | 7/40 [00:01<00:06, 4.96it/s]
20%|██ | 8/40 [00:01<00:06, 4.96it/s]
22%|██▎ | 9/40 [00:01<00:06, 4.96it/s]
25%|██▌ | 10/40 [00:02<00:06, 4.95it/s]
28%|██▊ | 11/40 [00:02<00:05, 4.95it/s]
30%|███ | 12/40 [00:02<00:05, 4.95it/s]
32%|███▎ | 13/40 [00:02<00:05, 4.95it/s]
35%|███▌ | 14/40 [00:02<00:05, 4.94it/s]
38%|███▊ | 15/40 [00:03<00:05, 4.94it/s]
40%|████ | 16/40 [00:03<00:04, 4.94it/s]
42%|████▎ | 17/40 [00:03<00:04, 4.93it/s]
45%|████▌ | 18/40 [00:03<00:04, 4.93it/s]
48%|████▊ | 19/40 [00:03<00:04, 4.93it/s]
50%|█████ | 20/40 [00:04<00:04, 4.93it/s]
52%|█████▎ | 21/40 [00:04<00:03, 4.93it/s]
55%|█████▌ | 22/40 [00:04<00:03, 4.93it/s]
57%|█████▊ | 23/40 [00:04<00:03, 4.92it/s]
60%|██████ | 24/40 [00:04<00:03, 4.92it/s]
62%|██████▎ | 25/40 [00:05<00:03, 4.92it/s]
65%|██████▌ | 26/40 [00:05<00:02, 4.92it/s]
68%|██████▊ | 27/40 [00:05<00:02, 4.92it/s]
70%|███████ | 28/40 [00:05<00:02, 4.92it/s]
72%|███████▎ | 29/40 [00:05<00:02, 4.92it/s]
75%|███████▌ | 30/40 [00:06<00:02, 4.92it/s]
78%|███████▊ | 31/40 [00:06<00:01, 4.92it/s]
80%|████████ | 32/40 [00:06<00:01, 4.92it/s]
82%|████████▎ | 33/40 [00:06<00:01, 4.92it/s]
85%|████████▌ | 34/40 [00:06<00:01, 4.91it/s]
88%|████████▊ | 35/40 [00:07<00:01, 4.91it/s]
90%|█████████ | 36/40 [00:07<00:00, 4.91it/s]
92%|█████████▎| 37/40 [00:07<00:00, 4.91it/s]
95%|█████████▌| 38/40 [00:07<00:00, 4.91it/s]
98%|█████████▊| 39/40 [00:07<00:00, 4.91it/s]
100%|██████████| 40/40 [00:08<00:00, 4.91it/s]
100%|██████████| 40/40 [00:08<00:00, 4.93it/s]