jbilcke / sdxl-cyberpunk-2077
- Public
- 1.6K runs
-
L40S
- SDXL fine-tune
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDooc34htb47jz6le4xr3ml64u7qStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T09:42:13.690662Z", "created_at": "2023-10-22T09:42:00.377829Z", "data_removed": false, "error": null, "id": "ooc34htb47jz6le4xr3ml64u7q", "input": { "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 20397\nPrompt: young woman posing in a futuristic desert, dusty, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/70 [00:00<?, ?it/s]\n 1%|▏ | 1/70 [00:00<00:11, 5.99it/s]\n 3%|▎ | 2/70 [00:00<00:11, 5.97it/s]\n 4%|▍ | 3/70 [00:00<00:11, 5.96it/s]\n 6%|▌ | 4/70 [00:00<00:11, 5.96it/s]\n 7%|▋ | 5/70 [00:00<00:10, 5.96it/s]\n 9%|▊ | 6/70 [00:01<00:10, 5.96it/s]\n 10%|█ | 7/70 [00:01<00:10, 5.96it/s]\n 11%|█▏ | 8/70 [00:01<00:10, 5.96it/s]\n 13%|█▎ | 9/70 [00:01<00:10, 5.96it/s]\n 14%|█▍ | 10/70 [00:01<00:10, 5.95it/s]\n 16%|█▌ | 11/70 [00:01<00:09, 5.95it/s]\n 17%|█▋ | 12/70 [00:02<00:09, 5.95it/s]\n 19%|█▊ | 13/70 [00:02<00:09, 5.94it/s]\n 20%|██ | 14/70 [00:02<00:09, 5.94it/s]\n 21%|██▏ | 15/70 [00:02<00:09, 5.93it/s]\n 23%|██▎ | 16/70 [00:02<00:09, 5.93it/s]\n 24%|██▍ | 17/70 [00:02<00:08, 5.93it/s]\n 26%|██▌ | 18/70 [00:03<00:08, 5.93it/s]\n 27%|██▋ | 19/70 [00:03<00:08, 5.93it/s]\n 29%|██▊ | 20/70 [00:03<00:08, 5.93it/s]\n 30%|███ | 21/70 [00:03<00:08, 5.93it/s]\n 31%|███▏ | 22/70 [00:03<00:08, 5.93it/s]\n 33%|███▎ | 23/70 [00:03<00:07, 5.92it/s]\n 34%|███▍ | 24/70 [00:04<00:07, 5.93it/s]\n 36%|███▌ | 25/70 [00:04<00:07, 5.93it/s]\n 37%|███▋ | 26/70 [00:04<00:07, 5.93it/s]\n 39%|███▊ | 27/70 [00:04<00:07, 5.93it/s]\n 40%|████ | 28/70 [00:04<00:07, 5.93it/s]\n 41%|████▏ | 29/70 [00:04<00:06, 5.93it/s]\n 43%|████▎ | 30/70 [00:05<00:06, 5.93it/s]\n 44%|████▍ | 31/70 [00:05<00:06, 5.93it/s]\n 46%|████▌ | 32/70 [00:05<00:06, 5.93it/s]\n 47%|████▋ | 33/70 [00:05<00:06, 5.93it/s]\n 49%|████▊ | 34/70 [00:05<00:06, 5.93it/s]\n 50%|█████ | 35/70 [00:05<00:05, 5.92it/s]\n 51%|█████▏ | 36/70 [00:06<00:05, 5.93it/s]\n 53%|█████▎ | 37/70 [00:06<00:05, 5.92it/s]\n 54%|█████▍ | 38/70 [00:06<00:05, 5.92it/s]\n 56%|█████▌ | 39/70 [00:06<00:05, 5.92it/s]\n 57%|█████▋ | 40/70 [00:06<00:05, 5.93it/s]\n 59%|█████▊ | 41/70 [00:06<00:04, 5.92it/s]\n 60%|██████ | 42/70 [00:07<00:04, 5.93it/s]\n 61%|██████▏ | 43/70 [00:07<00:04, 5.93it/s]\n 63%|██████▎ | 44/70 [00:07<00:04, 5.92it/s]\n 64%|██████▍ | 45/70 [00:07<00:04, 5.92it/s]\n 66%|██████▌ | 46/70 [00:07<00:04, 5.93it/s]\n 67%|██████▋ | 47/70 [00:07<00:03, 5.92it/s]\n 69%|██████▊ | 48/70 [00:08<00:03, 5.93it/s]\n 70%|███████ | 49/70 [00:08<00:03, 5.93it/s]\n 71%|███████▏ | 50/70 [00:08<00:03, 5.93it/s]\n 73%|███████▎ | 51/70 [00:08<00:03, 5.93it/s]\n 74%|███████▍ | 52/70 [00:08<00:03, 5.92it/s]\n 76%|███████▌ | 53/70 [00:08<00:02, 5.92it/s]\n 77%|███████▋ | 54/70 [00:09<00:02, 5.91it/s]\n 79%|███████▊ | 55/70 [00:09<00:02, 5.91it/s]\n 80%|████████ | 56/70 [00:09<00:02, 5.84it/s]\n 81%|████████▏ | 57/70 [00:09<00:02, 5.83it/s]\n 83%|████████▎ | 58/70 [00:09<00:02, 5.86it/s]\n 84%|████████▍ | 59/70 [00:09<00:01, 5.87it/s]\n 86%|████████▌ | 60/70 [00:10<00:01, 5.89it/s]\n 87%|████████▋ | 61/70 [00:10<00:01, 5.90it/s]\n 89%|████████▊ | 62/70 [00:10<00:01, 5.91it/s]\n 90%|█████████ | 63/70 [00:10<00:01, 5.91it/s]\n 91%|█████████▏| 64/70 [00:10<00:01, 5.91it/s]\n 93%|█████████▎| 65/70 [00:10<00:00, 5.91it/s]\n 94%|█████████▍| 66/70 [00:11<00:00, 5.91it/s]\n 96%|█████████▌| 67/70 [00:11<00:00, 5.91it/s]\n 97%|█████████▋| 68/70 [00:11<00:00, 5.91it/s]\n 99%|█████████▊| 69/70 [00:11<00:00, 5.92it/s]\n100%|██████████| 70/70 [00:11<00:00, 5.92it/s]\n100%|██████████| 70/70 [00:11<00:00, 5.92it/s]", "metrics": { "predict_time": 13.430409, "total_time": 13.312833 }, "output": [ "https://pbxt.replicate.delivery/k1k63hrKwoZQFdL5PMA83VfohwHnikfrxaTrUJfpVYNoDUhjA/out-0.png" ], "started_at": "2023-10-22T09:42:00.260253Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ooc34htb47jz6le4xr3ml64u7q", "cancel": "https://api.replicate.com/v1/predictions/ooc34htb47jz6le4xr3ml64u7q/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 20397 Prompt: young woman posing in a futuristic desert, dusty, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/70 [00:00<?, ?it/s] 1%|▏ | 1/70 [00:00<00:11, 5.99it/s] 3%|▎ | 2/70 [00:00<00:11, 5.97it/s] 4%|▍ | 3/70 [00:00<00:11, 5.96it/s] 6%|▌ | 4/70 [00:00<00:11, 5.96it/s] 7%|▋ | 5/70 [00:00<00:10, 5.96it/s] 9%|▊ | 6/70 [00:01<00:10, 5.96it/s] 10%|█ | 7/70 [00:01<00:10, 5.96it/s] 11%|█▏ | 8/70 [00:01<00:10, 5.96it/s] 13%|█▎ | 9/70 [00:01<00:10, 5.96it/s] 14%|█▍ | 10/70 [00:01<00:10, 5.95it/s] 16%|█▌ | 11/70 [00:01<00:09, 5.95it/s] 17%|█▋ | 12/70 [00:02<00:09, 5.95it/s] 19%|█▊ | 13/70 [00:02<00:09, 5.94it/s] 20%|██ | 14/70 [00:02<00:09, 5.94it/s] 21%|██▏ | 15/70 [00:02<00:09, 5.93it/s] 23%|██▎ | 16/70 [00:02<00:09, 5.93it/s] 24%|██▍ | 17/70 [00:02<00:08, 5.93it/s] 26%|██▌ | 18/70 [00:03<00:08, 5.93it/s] 27%|██▋ | 19/70 [00:03<00:08, 5.93it/s] 29%|██▊ | 20/70 [00:03<00:08, 5.93it/s] 30%|███ | 21/70 [00:03<00:08, 5.93it/s] 31%|███▏ | 22/70 [00:03<00:08, 5.93it/s] 33%|███▎ | 23/70 [00:03<00:07, 5.92it/s] 34%|███▍ | 24/70 [00:04<00:07, 5.93it/s] 36%|███▌ | 25/70 [00:04<00:07, 5.93it/s] 37%|███▋ | 26/70 [00:04<00:07, 5.93it/s] 39%|███▊ | 27/70 [00:04<00:07, 5.93it/s] 40%|████ | 28/70 [00:04<00:07, 5.93it/s] 41%|████▏ | 29/70 [00:04<00:06, 5.93it/s] 43%|████▎ | 30/70 [00:05<00:06, 5.93it/s] 44%|████▍ | 31/70 [00:05<00:06, 5.93it/s] 46%|████▌ | 32/70 [00:05<00:06, 5.93it/s] 47%|████▋ | 33/70 [00:05<00:06, 5.93it/s] 49%|████▊ | 34/70 [00:05<00:06, 5.93it/s] 50%|█████ | 35/70 [00:05<00:05, 5.92it/s] 51%|█████▏ | 36/70 [00:06<00:05, 5.93it/s] 53%|█████▎ | 37/70 [00:06<00:05, 5.92it/s] 54%|█████▍ | 38/70 [00:06<00:05, 5.92it/s] 56%|█████▌ | 39/70 [00:06<00:05, 5.92it/s] 57%|█████▋ | 40/70 [00:06<00:05, 5.93it/s] 59%|█████▊ | 41/70 [00:06<00:04, 5.92it/s] 60%|██████ | 42/70 [00:07<00:04, 5.93it/s] 61%|██████▏ | 43/70 [00:07<00:04, 5.93it/s] 63%|██████▎ | 44/70 [00:07<00:04, 5.92it/s] 64%|██████▍ | 45/70 [00:07<00:04, 5.92it/s] 66%|██████▌ | 46/70 [00:07<00:04, 5.93it/s] 67%|██████▋ | 47/70 [00:07<00:03, 5.92it/s] 69%|██████▊ | 48/70 [00:08<00:03, 5.93it/s] 70%|███████ | 49/70 [00:08<00:03, 5.93it/s] 71%|███████▏ | 50/70 [00:08<00:03, 5.93it/s] 73%|███████▎ | 51/70 [00:08<00:03, 5.93it/s] 74%|███████▍ | 52/70 [00:08<00:03, 5.92it/s] 76%|███████▌ | 53/70 [00:08<00:02, 5.92it/s] 77%|███████▋ | 54/70 [00:09<00:02, 5.91it/s] 79%|███████▊ | 55/70 [00:09<00:02, 5.91it/s] 80%|████████ | 56/70 [00:09<00:02, 5.84it/s] 81%|████████▏ | 57/70 [00:09<00:02, 5.83it/s] 83%|████████▎ | 58/70 [00:09<00:02, 5.86it/s] 84%|████████▍ | 59/70 [00:09<00:01, 5.87it/s] 86%|████████▌ | 60/70 [00:10<00:01, 5.89it/s] 87%|████████▋ | 61/70 [00:10<00:01, 5.90it/s] 89%|████████▊ | 62/70 [00:10<00:01, 5.91it/s] 90%|█████████ | 63/70 [00:10<00:01, 5.91it/s] 91%|█████████▏| 64/70 [00:10<00:01, 5.91it/s] 93%|█████████▎| 65/70 [00:10<00:00, 5.91it/s] 94%|█████████▍| 66/70 [00:11<00:00, 5.91it/s] 96%|█████████▌| 67/70 [00:11<00:00, 5.91it/s] 97%|█████████▋| 68/70 [00:11<00:00, 5.91it/s] 99%|█████████▊| 69/70 [00:11<00:00, 5.92it/s] 100%|██████████| 70/70 [00:11<00:00, 5.92it/s] 100%|██████████| 70/70 [00:11<00:00, 5.92it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294ID257hkblbboztlydsr6yt2fkl6uStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- young woman posing in a futuristic street, japanese district, medium-shot, in the style of TOK, crisp, sharp
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic street, japanese district, medium-shot, in the style of TOK, crisp, sharp", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "young woman posing in a futuristic street, japanese district, medium-shot, in the style of TOK, crisp, sharp", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic street, japanese district, medium-shot, in the style of TOK, crisp, sharp", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic street, japanese district, medium-shot, in the style of TOK, crisp, sharp", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T09:43:13.023664Z", "created_at": "2023-10-22T09:42:59.600122Z", "data_removed": false, "error": null, "id": "257hkblbboztlydsr6yt2fkl6u", "input": { "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic street, japanese district, medium-shot, in the style of TOK, crisp, sharp", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 31624\nPrompt: young woman posing in a futuristic street, japanese district, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/70 [00:00<?, ?it/s]\n 1%|▏ | 1/70 [00:00<00:11, 5.99it/s]\n 3%|▎ | 2/70 [00:00<00:11, 5.98it/s]\n 4%|▍ | 3/70 [00:00<00:11, 5.96it/s]\n 6%|▌ | 4/70 [00:00<00:11, 5.97it/s]\n 7%|▋ | 5/70 [00:00<00:10, 5.96it/s]\n 9%|▊ | 6/70 [00:01<00:10, 5.96it/s]\n 10%|█ | 7/70 [00:01<00:10, 5.95it/s]\n 11%|█▏ | 8/70 [00:01<00:10, 5.95it/s]\n 13%|█▎ | 9/70 [00:01<00:10, 5.95it/s]\n 14%|█▍ | 10/70 [00:01<00:10, 5.95it/s]\n 16%|█▌ | 11/70 [00:01<00:09, 5.95it/s]\n 17%|█▋ | 12/70 [00:02<00:09, 5.95it/s]\n 19%|█▊ | 13/70 [00:02<00:09, 5.94it/s]\n 20%|██ | 14/70 [00:02<00:09, 5.94it/s]\n 21%|██▏ | 15/70 [00:02<00:09, 5.94it/s]\n 23%|██▎ | 16/70 [00:02<00:09, 5.94it/s]\n 24%|██▍ | 17/70 [00:02<00:08, 5.94it/s]\n 26%|██▌ | 18/70 [00:03<00:08, 5.93it/s]\n 27%|██▋ | 19/70 [00:03<00:08, 5.93it/s]\n 29%|██▊ | 20/70 [00:03<00:08, 5.93it/s]\n 30%|███ | 21/70 [00:03<00:08, 5.93it/s]\n 31%|███▏ | 22/70 [00:03<00:08, 5.93it/s]\n 33%|███▎ | 23/70 [00:03<00:07, 5.93it/s]\n 34%|███▍ | 24/70 [00:04<00:07, 5.93it/s]\n 36%|███▌ | 25/70 [00:04<00:07, 5.94it/s]\n 37%|███▋ | 26/70 [00:04<00:07, 5.93it/s]\n 39%|███▊ | 27/70 [00:04<00:07, 5.93it/s]\n 40%|████ | 28/70 [00:04<00:07, 5.93it/s]\n 41%|████▏ | 29/70 [00:04<00:06, 5.93it/s]\n 43%|████▎ | 30/70 [00:05<00:06, 5.93it/s]\n 44%|████▍ | 31/70 [00:05<00:06, 5.93it/s]\n 46%|████▌ | 32/70 [00:05<00:06, 5.93it/s]\n 47%|████▋ | 33/70 [00:05<00:06, 5.93it/s]\n 49%|████▊ | 34/70 [00:05<00:06, 5.93it/s]\n 50%|█████ | 35/70 [00:05<00:05, 5.93it/s]\n 51%|█████▏ | 36/70 [00:06<00:05, 5.93it/s]\n 53%|█████▎ | 37/70 [00:06<00:05, 5.93it/s]\n 54%|█████▍ | 38/70 [00:06<00:05, 5.93it/s]\n 56%|█████▌ | 39/70 [00:06<00:05, 5.93it/s]\n 57%|█████▋ | 40/70 [00:06<00:05, 5.93it/s]\n 59%|█████▊ | 41/70 [00:06<00:04, 5.92it/s]\n 60%|██████ | 42/70 [00:07<00:04, 5.93it/s]\n 61%|██████▏ | 43/70 [00:07<00:04, 5.93it/s]\n 63%|██████▎ | 44/70 [00:07<00:04, 5.93it/s]\n 64%|██████▍ | 45/70 [00:07<00:04, 5.92it/s]\n 66%|██████▌ | 46/70 [00:07<00:04, 5.93it/s]\n 67%|██████▋ | 47/70 [00:07<00:03, 5.92it/s]\n 69%|██████▊ | 48/70 [00:08<00:03, 5.93it/s]\n 70%|███████ | 49/70 [00:08<00:03, 5.93it/s]\n 71%|███████▏ | 50/70 [00:08<00:03, 5.93it/s]\n 73%|███████▎ | 51/70 [00:08<00:03, 5.93it/s]\n 74%|███████▍ | 52/70 [00:08<00:03, 5.92it/s]\n 76%|███████▌ | 53/70 [00:08<00:02, 5.92it/s]\n 77%|███████▋ | 54/70 [00:09<00:02, 5.92it/s]\n 79%|███████▊ | 55/70 [00:09<00:02, 5.93it/s]\n 80%|████████ | 56/70 [00:09<00:02, 5.92it/s]\n 81%|████████▏ | 57/70 [00:09<00:02, 5.92it/s]\n 83%|████████▎ | 58/70 [00:09<00:02, 5.92it/s]\n 84%|████████▍ | 59/70 [00:09<00:01, 5.92it/s]\n 86%|████████▌ | 60/70 [00:10<00:01, 5.92it/s]\n 87%|████████▋ | 61/70 [00:10<00:01, 5.92it/s]\n 89%|████████▊ | 62/70 [00:10<00:01, 5.92it/s]\n 90%|█████████ | 63/70 [00:10<00:01, 5.92it/s]\n 91%|█████████▏| 64/70 [00:10<00:01, 5.92it/s]\n 93%|█████████▎| 65/70 [00:10<00:00, 5.92it/s]\n 94%|█████████▍| 66/70 [00:11<00:00, 5.93it/s]\n 96%|█████████▌| 67/70 [00:11<00:00, 5.92it/s]\n 97%|█████████▋| 68/70 [00:11<00:00, 5.92it/s]\n 99%|█████████▊| 69/70 [00:11<00:00, 5.92it/s]\n100%|██████████| 70/70 [00:11<00:00, 5.92it/s]\n100%|██████████| 70/70 [00:11<00:00, 5.93it/s]", "metrics": { "predict_time": 13.440091, "total_time": 13.423542 }, "output": [ "https://pbxt.replicate.delivery/sut7jrvTb365FZb7rUR2kH6zZNao1fZtex78EiU7JygwCqwRA/out-0.png" ], "started_at": "2023-10-22T09:42:59.583573Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/257hkblbboztlydsr6yt2fkl6u", "cancel": "https://api.replicate.com/v1/predictions/257hkblbboztlydsr6yt2fkl6u/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 31624 Prompt: young woman posing in a futuristic street, japanese district, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/70 [00:00<?, ?it/s] 1%|▏ | 1/70 [00:00<00:11, 5.99it/s] 3%|▎ | 2/70 [00:00<00:11, 5.98it/s] 4%|▍ | 3/70 [00:00<00:11, 5.96it/s] 6%|▌ | 4/70 [00:00<00:11, 5.97it/s] 7%|▋ | 5/70 [00:00<00:10, 5.96it/s] 9%|▊ | 6/70 [00:01<00:10, 5.96it/s] 10%|█ | 7/70 [00:01<00:10, 5.95it/s] 11%|█▏ | 8/70 [00:01<00:10, 5.95it/s] 13%|█▎ | 9/70 [00:01<00:10, 5.95it/s] 14%|█▍ | 10/70 [00:01<00:10, 5.95it/s] 16%|█▌ | 11/70 [00:01<00:09, 5.95it/s] 17%|█▋ | 12/70 [00:02<00:09, 5.95it/s] 19%|█▊ | 13/70 [00:02<00:09, 5.94it/s] 20%|██ | 14/70 [00:02<00:09, 5.94it/s] 21%|██▏ | 15/70 [00:02<00:09, 5.94it/s] 23%|██▎ | 16/70 [00:02<00:09, 5.94it/s] 24%|██▍ | 17/70 [00:02<00:08, 5.94it/s] 26%|██▌ | 18/70 [00:03<00:08, 5.93it/s] 27%|██▋ | 19/70 [00:03<00:08, 5.93it/s] 29%|██▊ | 20/70 [00:03<00:08, 5.93it/s] 30%|███ | 21/70 [00:03<00:08, 5.93it/s] 31%|███▏ | 22/70 [00:03<00:08, 5.93it/s] 33%|███▎ | 23/70 [00:03<00:07, 5.93it/s] 34%|███▍ | 24/70 [00:04<00:07, 5.93it/s] 36%|███▌ | 25/70 [00:04<00:07, 5.94it/s] 37%|███▋ | 26/70 [00:04<00:07, 5.93it/s] 39%|███▊ | 27/70 [00:04<00:07, 5.93it/s] 40%|████ | 28/70 [00:04<00:07, 5.93it/s] 41%|████▏ | 29/70 [00:04<00:06, 5.93it/s] 43%|████▎ | 30/70 [00:05<00:06, 5.93it/s] 44%|████▍ | 31/70 [00:05<00:06, 5.93it/s] 46%|████▌ | 32/70 [00:05<00:06, 5.93it/s] 47%|████▋ | 33/70 [00:05<00:06, 5.93it/s] 49%|████▊ | 34/70 [00:05<00:06, 5.93it/s] 50%|█████ | 35/70 [00:05<00:05, 5.93it/s] 51%|█████▏ | 36/70 [00:06<00:05, 5.93it/s] 53%|█████▎ | 37/70 [00:06<00:05, 5.93it/s] 54%|█████▍ | 38/70 [00:06<00:05, 5.93it/s] 56%|█████▌ | 39/70 [00:06<00:05, 5.93it/s] 57%|█████▋ | 40/70 [00:06<00:05, 5.93it/s] 59%|█████▊ | 41/70 [00:06<00:04, 5.92it/s] 60%|██████ | 42/70 [00:07<00:04, 5.93it/s] 61%|██████▏ | 43/70 [00:07<00:04, 5.93it/s] 63%|██████▎ | 44/70 [00:07<00:04, 5.93it/s] 64%|██████▍ | 45/70 [00:07<00:04, 5.92it/s] 66%|██████▌ | 46/70 [00:07<00:04, 5.93it/s] 67%|██████▋ | 47/70 [00:07<00:03, 5.92it/s] 69%|██████▊ | 48/70 [00:08<00:03, 5.93it/s] 70%|███████ | 49/70 [00:08<00:03, 5.93it/s] 71%|███████▏ | 50/70 [00:08<00:03, 5.93it/s] 73%|███████▎ | 51/70 [00:08<00:03, 5.93it/s] 74%|███████▍ | 52/70 [00:08<00:03, 5.92it/s] 76%|███████▌ | 53/70 [00:08<00:02, 5.92it/s] 77%|███████▋ | 54/70 [00:09<00:02, 5.92it/s] 79%|███████▊ | 55/70 [00:09<00:02, 5.93it/s] 80%|████████ | 56/70 [00:09<00:02, 5.92it/s] 81%|████████▏ | 57/70 [00:09<00:02, 5.92it/s] 83%|████████▎ | 58/70 [00:09<00:02, 5.92it/s] 84%|████████▍ | 59/70 [00:09<00:01, 5.92it/s] 86%|████████▌ | 60/70 [00:10<00:01, 5.92it/s] 87%|████████▋ | 61/70 [00:10<00:01, 5.92it/s] 89%|████████▊ | 62/70 [00:10<00:01, 5.92it/s] 90%|█████████ | 63/70 [00:10<00:01, 5.92it/s] 91%|█████████▏| 64/70 [00:10<00:01, 5.92it/s] 93%|█████████▎| 65/70 [00:10<00:00, 5.92it/s] 94%|█████████▍| 66/70 [00:11<00:00, 5.93it/s] 96%|█████████▌| 67/70 [00:11<00:00, 5.92it/s] 97%|█████████▋| 68/70 [00:11<00:00, 5.92it/s] 99%|█████████▊| 69/70 [00:11<00:00, 5.92it/s] 100%|██████████| 70/70 [00:11<00:00, 5.92it/s] 100%|██████████| 70/70 [00:11<00:00, 5.93it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDuro24y3babqgpqyko3o67qnfniStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T09:46:25.022341Z", "created_at": "2023-10-22T09:46:11.974561Z", "data_removed": false, "error": null, "id": "uro24y3babqgpqyko3o67qnfni", "input": { "width": 1024, "height": 576, "prompt": "young woman posing in a futuristic desert, dusty, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 55178\nPrompt: young woman posing in a futuristic desert, dusty, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/55 [00:00<?, ?it/s]\n 2%|▏ | 1/55 [00:00<00:09, 5.98it/s]\n 4%|▎ | 2/55 [00:00<00:08, 5.97it/s]\n 5%|▌ | 3/55 [00:00<00:08, 5.95it/s]\n 7%|▋ | 4/55 [00:00<00:08, 5.95it/s]\n 9%|▉ | 5/55 [00:00<00:08, 5.95it/s]\n 11%|█ | 6/55 [00:01<00:08, 5.95it/s]\n 13%|█▎ | 7/55 [00:01<00:08, 5.95it/s]\n 15%|█▍ | 8/55 [00:01<00:07, 5.95it/s]\n 16%|█▋ | 9/55 [00:01<00:07, 5.95it/s]\n 18%|█▊ | 10/55 [00:01<00:07, 5.94it/s]\n 20%|██ | 11/55 [00:01<00:07, 5.93it/s]\n 22%|██▏ | 12/55 [00:02<00:07, 5.94it/s]\n 24%|██▎ | 13/55 [00:02<00:07, 5.94it/s]\n 25%|██▌ | 14/55 [00:02<00:06, 5.94it/s]\n 27%|██▋ | 15/55 [00:02<00:06, 5.94it/s]\n 29%|██▉ | 16/55 [00:02<00:06, 5.94it/s]\n 31%|███ | 17/55 [00:02<00:06, 5.94it/s]\n 33%|███▎ | 18/55 [00:03<00:06, 5.93it/s]\n 35%|███▍ | 19/55 [00:03<00:06, 5.93it/s]\n 36%|███▋ | 20/55 [00:03<00:05, 5.93it/s]\n 38%|███▊ | 21/55 [00:03<00:05, 5.93it/s]\n 40%|████ | 22/55 [00:03<00:05, 5.93it/s]\n 42%|████▏ | 23/55 [00:03<00:05, 5.94it/s]\n 44%|████▎ | 24/55 [00:04<00:05, 5.94it/s]\n 45%|████▌ | 25/55 [00:04<00:05, 5.93it/s]\n 47%|████▋ | 26/55 [00:04<00:04, 5.93it/s]\n 49%|████▉ | 27/55 [00:04<00:04, 5.93it/s]\n 51%|█████ | 28/55 [00:04<00:04, 5.93it/s]\n 53%|█████▎ | 29/55 [00:04<00:04, 5.92it/s]\n 55%|█████▍ | 30/55 [00:05<00:04, 5.92it/s]\n 56%|█████▋ | 31/55 [00:05<00:04, 5.92it/s]\n 58%|█████▊ | 32/55 [00:05<00:03, 5.92it/s]\n 60%|██████ | 33/55 [00:05<00:03, 5.93it/s]\n 62%|██████▏ | 34/55 [00:05<00:03, 5.93it/s]\n 64%|██████▎ | 35/55 [00:05<00:03, 5.93it/s]\n 65%|██████▌ | 36/55 [00:06<00:03, 5.92it/s]\n 67%|██████▋ | 37/55 [00:06<00:03, 5.92it/s]\n 69%|██████▉ | 38/55 [00:06<00:02, 5.93it/s]\n 71%|███████ | 39/55 [00:06<00:02, 5.93it/s]\n 73%|███████▎ | 40/55 [00:06<00:02, 5.92it/s]\n 75%|███████▍ | 41/55 [00:06<00:02, 5.92it/s]\n 76%|███████▋ | 42/55 [00:07<00:02, 5.92it/s]\n 78%|███████▊ | 43/55 [00:07<00:02, 5.92it/s]\n 80%|████████ | 44/55 [00:07<00:01, 5.92it/s]\n 82%|████████▏ | 45/55 [00:07<00:01, 5.92it/s]\n 84%|████████▎ | 46/55 [00:07<00:01, 5.92it/s]\n 85%|████████▌ | 47/55 [00:07<00:01, 5.92it/s]\n 87%|████████▋ | 48/55 [00:08<00:01, 5.92it/s]\n 89%|████████▉ | 49/55 [00:08<00:01, 5.92it/s]\n 91%|█████████ | 50/55 [00:08<00:00, 5.92it/s]\n 93%|█████████▎| 51/55 [00:08<00:00, 5.92it/s]\n 95%|█████████▍| 52/55 [00:08<00:00, 5.92it/s]\n 96%|█████████▋| 53/55 [00:08<00:00, 5.92it/s]\n 98%|█████████▊| 54/55 [00:09<00:00, 5.91it/s]\n100%|██████████| 55/55 [00:09<00:00, 5.92it/s]\n100%|██████████| 55/55 [00:09<00:00, 5.93it/s]\n 0%| | 0/15 [00:00<?, ?it/s]\n 7%|▋ | 1/15 [00:00<00:01, 7.47it/s]\n 13%|█▎ | 2/15 [00:00<00:01, 7.42it/s]\n 20%|██ | 3/15 [00:00<00:01, 7.40it/s]\n 27%|██▋ | 4/15 [00:00<00:01, 7.40it/s]\n 33%|███▎ | 5/15 [00:00<00:01, 7.39it/s]\n 40%|████ | 6/15 [00:00<00:01, 7.38it/s]\n 47%|████▋ | 7/15 [00:00<00:01, 7.38it/s]\n 53%|█████▎ | 8/15 [00:01<00:00, 7.38it/s]\n 60%|██████ | 9/15 [00:01<00:00, 7.38it/s]\n 67%|██████▋ | 10/15 [00:01<00:00, 7.38it/s]\n 73%|███████▎ | 11/15 [00:01<00:00, 7.39it/s]\n 80%|████████ | 12/15 [00:01<00:00, 7.38it/s]\n 87%|████████▋ | 13/15 [00:01<00:00, 7.37it/s]\n 93%|█████████▎| 14/15 [00:01<00:00, 7.37it/s]\n100%|██████████| 15/15 [00:02<00:00, 7.37it/s]\n100%|██████████| 15/15 [00:02<00:00, 7.38it/s]", "metrics": { "predict_time": 13.106313, "total_time": 13.04778 }, "output": [ "https://pbxt.replicate.delivery/dAd5aZ0pBuZfeE9bCMLP7KDyFtmj0k7682NUn7n4eAFhLUhjA/out-0.png" ], "started_at": "2023-10-22T09:46:11.916028Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/uro24y3babqgpqyko3o67qnfni", "cancel": "https://api.replicate.com/v1/predictions/uro24y3babqgpqyko3o67qnfni/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 55178 Prompt: young woman posing in a futuristic desert, dusty, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/55 [00:00<?, ?it/s] 2%|▏ | 1/55 [00:00<00:09, 5.98it/s] 4%|▎ | 2/55 [00:00<00:08, 5.97it/s] 5%|▌ | 3/55 [00:00<00:08, 5.95it/s] 7%|▋ | 4/55 [00:00<00:08, 5.95it/s] 9%|▉ | 5/55 [00:00<00:08, 5.95it/s] 11%|█ | 6/55 [00:01<00:08, 5.95it/s] 13%|█▎ | 7/55 [00:01<00:08, 5.95it/s] 15%|█▍ | 8/55 [00:01<00:07, 5.95it/s] 16%|█▋ | 9/55 [00:01<00:07, 5.95it/s] 18%|█▊ | 10/55 [00:01<00:07, 5.94it/s] 20%|██ | 11/55 [00:01<00:07, 5.93it/s] 22%|██▏ | 12/55 [00:02<00:07, 5.94it/s] 24%|██▎ | 13/55 [00:02<00:07, 5.94it/s] 25%|██▌ | 14/55 [00:02<00:06, 5.94it/s] 27%|██▋ | 15/55 [00:02<00:06, 5.94it/s] 29%|██▉ | 16/55 [00:02<00:06, 5.94it/s] 31%|███ | 17/55 [00:02<00:06, 5.94it/s] 33%|███▎ | 18/55 [00:03<00:06, 5.93it/s] 35%|███▍ | 19/55 [00:03<00:06, 5.93it/s] 36%|███▋ | 20/55 [00:03<00:05, 5.93it/s] 38%|███▊ | 21/55 [00:03<00:05, 5.93it/s] 40%|████ | 22/55 [00:03<00:05, 5.93it/s] 42%|████▏ | 23/55 [00:03<00:05, 5.94it/s] 44%|████▎ | 24/55 [00:04<00:05, 5.94it/s] 45%|████▌ | 25/55 [00:04<00:05, 5.93it/s] 47%|████▋ | 26/55 [00:04<00:04, 5.93it/s] 49%|████▉ | 27/55 [00:04<00:04, 5.93it/s] 51%|█████ | 28/55 [00:04<00:04, 5.93it/s] 53%|█████▎ | 29/55 [00:04<00:04, 5.92it/s] 55%|█████▍ | 30/55 [00:05<00:04, 5.92it/s] 56%|█████▋ | 31/55 [00:05<00:04, 5.92it/s] 58%|█████▊ | 32/55 [00:05<00:03, 5.92it/s] 60%|██████ | 33/55 [00:05<00:03, 5.93it/s] 62%|██████▏ | 34/55 [00:05<00:03, 5.93it/s] 64%|██████▎ | 35/55 [00:05<00:03, 5.93it/s] 65%|██████▌ | 36/55 [00:06<00:03, 5.92it/s] 67%|██████▋ | 37/55 [00:06<00:03, 5.92it/s] 69%|██████▉ | 38/55 [00:06<00:02, 5.93it/s] 71%|███████ | 39/55 [00:06<00:02, 5.93it/s] 73%|███████▎ | 40/55 [00:06<00:02, 5.92it/s] 75%|███████▍ | 41/55 [00:06<00:02, 5.92it/s] 76%|███████▋ | 42/55 [00:07<00:02, 5.92it/s] 78%|███████▊ | 43/55 [00:07<00:02, 5.92it/s] 80%|████████ | 44/55 [00:07<00:01, 5.92it/s] 82%|████████▏ | 45/55 [00:07<00:01, 5.92it/s] 84%|████████▎ | 46/55 [00:07<00:01, 5.92it/s] 85%|████████▌ | 47/55 [00:07<00:01, 5.92it/s] 87%|████████▋ | 48/55 [00:08<00:01, 5.92it/s] 89%|████████▉ | 49/55 [00:08<00:01, 5.92it/s] 91%|█████████ | 50/55 [00:08<00:00, 5.92it/s] 93%|█████████▎| 51/55 [00:08<00:00, 5.92it/s] 95%|█████████▍| 52/55 [00:08<00:00, 5.92it/s] 96%|█████████▋| 53/55 [00:08<00:00, 5.92it/s] 98%|█████████▊| 54/55 [00:09<00:00, 5.91it/s] 100%|██████████| 55/55 [00:09<00:00, 5.92it/s] 100%|██████████| 55/55 [00:09<00:00, 5.93it/s] 0%| | 0/15 [00:00<?, ?it/s] 7%|▋ | 1/15 [00:00<00:01, 7.47it/s] 13%|█▎ | 2/15 [00:00<00:01, 7.42it/s] 20%|██ | 3/15 [00:00<00:01, 7.40it/s] 27%|██▋ | 4/15 [00:00<00:01, 7.40it/s] 33%|███▎ | 5/15 [00:00<00:01, 7.39it/s] 40%|████ | 6/15 [00:00<00:01, 7.38it/s] 47%|████▋ | 7/15 [00:00<00:01, 7.38it/s] 53%|█████▎ | 8/15 [00:01<00:00, 7.38it/s] 60%|██████ | 9/15 [00:01<00:00, 7.38it/s] 67%|██████▋ | 10/15 [00:01<00:00, 7.38it/s] 73%|███████▎ | 11/15 [00:01<00:00, 7.39it/s] 80%|████████ | 12/15 [00:01<00:00, 7.38it/s] 87%|████████▋ | 13/15 [00:01<00:00, 7.37it/s] 93%|█████████▎| 14/15 [00:01<00:00, 7.37it/s] 100%|██████████| 15/15 [00:02<00:00, 7.37it/s] 100%|██████████| 15/15 [00:02<00:00, 7.38it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDxv2h4q3ba25yg7rnu66r4du3j4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- sportscar in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 1024, "height": 576, "prompt": "sportscar in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "sportscar in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "sportscar in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "sportscar in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T09:48:54.587032Z", "created_at": "2023-10-22T09:48:41.620999Z", "data_removed": false, "error": null, "id": "xv2h4q3ba25yg7rnu66r4du3j4", "input": { "width": 1024, "height": 576, "prompt": "sportscar in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 6232\nPrompt: sportscar in a futuristic city, morning light, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/55 [00:00<?, ?it/s]\n 2%|▏ | 1/55 [00:00<00:09, 5.98it/s]\n 4%|▎ | 2/55 [00:00<00:08, 5.97it/s]\n 5%|▌ | 3/55 [00:00<00:08, 5.96it/s]\n 7%|▋ | 4/55 [00:00<00:08, 5.95it/s]\n 9%|▉ | 5/55 [00:00<00:08, 5.95it/s]\n 11%|█ | 6/55 [00:01<00:08, 5.95it/s]\n 13%|█▎ | 7/55 [00:01<00:08, 5.95it/s]\n 15%|█▍ | 8/55 [00:01<00:07, 5.94it/s]\n 16%|█▋ | 9/55 [00:01<00:07, 5.94it/s]\n 18%|█▊ | 10/55 [00:01<00:07, 5.96it/s]\n 20%|██ | 11/55 [00:01<00:07, 5.96it/s]\n 22%|██▏ | 12/55 [00:02<00:07, 5.97it/s]\n 24%|██▎ | 13/55 [00:02<00:07, 5.96it/s]\n 25%|██▌ | 14/55 [00:02<00:06, 5.96it/s]\n 27%|██▋ | 15/55 [00:02<00:06, 5.96it/s]\n 29%|██▉ | 16/55 [00:02<00:06, 5.96it/s]\n 31%|███ | 17/55 [00:02<00:06, 5.97it/s]\n 33%|███▎ | 18/55 [00:03<00:06, 5.97it/s]\n 35%|███▍ | 19/55 [00:03<00:06, 5.97it/s]\n 36%|███▋ | 20/55 [00:03<00:05, 5.97it/s]\n 38%|███▊ | 21/55 [00:03<00:05, 5.97it/s]\n 40%|████ | 22/55 [00:03<00:05, 5.97it/s]\n 42%|████▏ | 23/55 [00:03<00:05, 5.97it/s]\n 44%|████▎ | 24/55 [00:04<00:05, 5.97it/s]\n 45%|████▌ | 25/55 [00:04<00:05, 5.97it/s]\n 47%|████▋ | 26/55 [00:04<00:04, 5.97it/s]\n 49%|████▉ | 27/55 [00:04<00:04, 5.97it/s]\n 51%|█████ | 28/55 [00:04<00:04, 5.97it/s]\n 53%|█████▎ | 29/55 [00:04<00:04, 5.97it/s]\n 55%|█████▍ | 30/55 [00:05<00:04, 5.97it/s]\n 56%|█████▋ | 31/55 [00:05<00:04, 5.97it/s]\n 58%|█████▊ | 32/55 [00:05<00:03, 5.97it/s]\n 60%|██████ | 33/55 [00:05<00:03, 5.97it/s]\n 62%|██████▏ | 34/55 [00:05<00:03, 5.97it/s]\n 64%|██████▎ | 35/55 [00:05<00:03, 5.97it/s]\n 65%|██████▌ | 36/55 [00:06<00:03, 5.97it/s]\n 67%|██████▋ | 37/55 [00:06<00:03, 5.96it/s]\n 69%|██████▉ | 38/55 [00:06<00:02, 5.96it/s]\n 71%|███████ | 39/55 [00:06<00:02, 5.96it/s]\n 73%|███████▎ | 40/55 [00:06<00:02, 5.96it/s]\n 75%|███████▍ | 41/55 [00:06<00:02, 5.96it/s]\n 76%|███████▋ | 42/55 [00:07<00:02, 5.96it/s]\n 78%|███████▊ | 43/55 [00:07<00:02, 5.95it/s]\n 80%|████████ | 44/55 [00:07<00:01, 5.96it/s]\n 82%|████████▏ | 45/55 [00:07<00:01, 5.96it/s]\n 84%|████████▎ | 46/55 [00:07<00:01, 5.96it/s]\n 85%|████████▌ | 47/55 [00:07<00:01, 5.96it/s]\n 87%|████████▋ | 48/55 [00:08<00:01, 5.96it/s]\n 89%|████████▉ | 49/55 [00:08<00:01, 5.90it/s]\n 91%|█████████ | 50/55 [00:08<00:00, 5.86it/s]\n 93%|█████████▎| 51/55 [00:08<00:00, 5.87it/s]\n 95%|█████████▍| 52/55 [00:08<00:00, 5.89it/s]\n 96%|█████████▋| 53/55 [00:08<00:00, 5.91it/s]\n 98%|█████████▊| 54/55 [00:09<00:00, 5.92it/s]\n100%|██████████| 55/55 [00:09<00:00, 5.93it/s]\n100%|██████████| 55/55 [00:09<00:00, 5.95it/s]\n 0%| | 0/15 [00:00<?, ?it/s]\n 7%|▋ | 1/15 [00:00<00:01, 7.58it/s]\n 13%|█▎ | 2/15 [00:00<00:01, 7.50it/s]\n 20%|██ | 3/15 [00:00<00:01, 7.46it/s]\n 27%|██▋ | 4/15 [00:00<00:01, 7.44it/s]\n 33%|███▎ | 5/15 [00:00<00:01, 7.42it/s]\n 40%|████ | 6/15 [00:00<00:01, 7.43it/s]\n 47%|████▋ | 7/15 [00:00<00:01, 7.42it/s]\n 53%|█████▎ | 8/15 [00:01<00:00, 7.40it/s]\n 60%|██████ | 9/15 [00:01<00:00, 7.41it/s]\n 67%|██████▋ | 10/15 [00:01<00:00, 7.42it/s]\n 73%|███████▎ | 11/15 [00:01<00:00, 7.42it/s]\n 80%|████████ | 12/15 [00:01<00:00, 7.42it/s]\n 87%|████████▋ | 13/15 [00:01<00:00, 7.42it/s]\n 93%|█████████▎| 14/15 [00:01<00:00, 7.41it/s]\n100%|██████████| 15/15 [00:02<00:00, 7.40it/s]\n100%|██████████| 15/15 [00:02<00:00, 7.42it/s]", "metrics": { "predict_time": 12.957486, "total_time": 12.966033 }, "output": [ "https://pbxt.replicate.delivery/Px7ZpA0VwxqKEdST77wflofGhvZzwG7W2SMS7Yq3c2bFIqwRA/out-0.png" ], "started_at": "2023-10-22T09:48:41.629546Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xv2h4q3ba25yg7rnu66r4du3j4", "cancel": "https://api.replicate.com/v1/predictions/xv2h4q3ba25yg7rnu66r4du3j4/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 6232 Prompt: sportscar in a futuristic city, morning light, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/55 [00:00<?, ?it/s] 2%|▏ | 1/55 [00:00<00:09, 5.98it/s] 4%|▎ | 2/55 [00:00<00:08, 5.97it/s] 5%|▌ | 3/55 [00:00<00:08, 5.96it/s] 7%|▋ | 4/55 [00:00<00:08, 5.95it/s] 9%|▉ | 5/55 [00:00<00:08, 5.95it/s] 11%|█ | 6/55 [00:01<00:08, 5.95it/s] 13%|█▎ | 7/55 [00:01<00:08, 5.95it/s] 15%|█▍ | 8/55 [00:01<00:07, 5.94it/s] 16%|█▋ | 9/55 [00:01<00:07, 5.94it/s] 18%|█▊ | 10/55 [00:01<00:07, 5.96it/s] 20%|██ | 11/55 [00:01<00:07, 5.96it/s] 22%|██▏ | 12/55 [00:02<00:07, 5.97it/s] 24%|██▎ | 13/55 [00:02<00:07, 5.96it/s] 25%|██▌ | 14/55 [00:02<00:06, 5.96it/s] 27%|██▋ | 15/55 [00:02<00:06, 5.96it/s] 29%|██▉ | 16/55 [00:02<00:06, 5.96it/s] 31%|███ | 17/55 [00:02<00:06, 5.97it/s] 33%|███▎ | 18/55 [00:03<00:06, 5.97it/s] 35%|███▍ | 19/55 [00:03<00:06, 5.97it/s] 36%|███▋ | 20/55 [00:03<00:05, 5.97it/s] 38%|███▊ | 21/55 [00:03<00:05, 5.97it/s] 40%|████ | 22/55 [00:03<00:05, 5.97it/s] 42%|████▏ | 23/55 [00:03<00:05, 5.97it/s] 44%|████▎ | 24/55 [00:04<00:05, 5.97it/s] 45%|████▌ | 25/55 [00:04<00:05, 5.97it/s] 47%|████▋ | 26/55 [00:04<00:04, 5.97it/s] 49%|████▉ | 27/55 [00:04<00:04, 5.97it/s] 51%|█████ | 28/55 [00:04<00:04, 5.97it/s] 53%|█████▎ | 29/55 [00:04<00:04, 5.97it/s] 55%|█████▍ | 30/55 [00:05<00:04, 5.97it/s] 56%|█████▋ | 31/55 [00:05<00:04, 5.97it/s] 58%|█████▊ | 32/55 [00:05<00:03, 5.97it/s] 60%|██████ | 33/55 [00:05<00:03, 5.97it/s] 62%|██████▏ | 34/55 [00:05<00:03, 5.97it/s] 64%|██████▎ | 35/55 [00:05<00:03, 5.97it/s] 65%|██████▌ | 36/55 [00:06<00:03, 5.97it/s] 67%|██████▋ | 37/55 [00:06<00:03, 5.96it/s] 69%|██████▉ | 38/55 [00:06<00:02, 5.96it/s] 71%|███████ | 39/55 [00:06<00:02, 5.96it/s] 73%|███████▎ | 40/55 [00:06<00:02, 5.96it/s] 75%|███████▍ | 41/55 [00:06<00:02, 5.96it/s] 76%|███████▋ | 42/55 [00:07<00:02, 5.96it/s] 78%|███████▊ | 43/55 [00:07<00:02, 5.95it/s] 80%|████████ | 44/55 [00:07<00:01, 5.96it/s] 82%|████████▏ | 45/55 [00:07<00:01, 5.96it/s] 84%|████████▎ | 46/55 [00:07<00:01, 5.96it/s] 85%|████████▌ | 47/55 [00:07<00:01, 5.96it/s] 87%|████████▋ | 48/55 [00:08<00:01, 5.96it/s] 89%|████████▉ | 49/55 [00:08<00:01, 5.90it/s] 91%|█████████ | 50/55 [00:08<00:00, 5.86it/s] 93%|█████████▎| 51/55 [00:08<00:00, 5.87it/s] 95%|█████████▍| 52/55 [00:08<00:00, 5.89it/s] 96%|█████████▋| 53/55 [00:08<00:00, 5.91it/s] 98%|█████████▊| 54/55 [00:09<00:00, 5.92it/s] 100%|██████████| 55/55 [00:09<00:00, 5.93it/s] 100%|██████████| 55/55 [00:09<00:00, 5.95it/s] 0%| | 0/15 [00:00<?, ?it/s] 7%|▋ | 1/15 [00:00<00:01, 7.58it/s] 13%|█▎ | 2/15 [00:00<00:01, 7.50it/s] 20%|██ | 3/15 [00:00<00:01, 7.46it/s] 27%|██▋ | 4/15 [00:00<00:01, 7.44it/s] 33%|███▎ | 5/15 [00:00<00:01, 7.42it/s] 40%|████ | 6/15 [00:00<00:01, 7.43it/s] 47%|████▋ | 7/15 [00:00<00:01, 7.42it/s] 53%|█████▎ | 8/15 [00:01<00:00, 7.40it/s] 60%|██████ | 9/15 [00:01<00:00, 7.41it/s] 67%|██████▋ | 10/15 [00:01<00:00, 7.42it/s] 73%|███████▎ | 11/15 [00:01<00:00, 7.42it/s] 80%|████████ | 12/15 [00:01<00:00, 7.42it/s] 87%|████████▋ | 13/15 [00:01<00:00, 7.42it/s] 93%|█████████▎| 14/15 [00:01<00:00, 7.41it/s] 100%|██████████| 15/15 [00:02<00:00, 7.40it/s] 100%|██████████| 15/15 [00:02<00:00, 7.42it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDl4fyw4dbqo5c4st6lvbghvwis4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- mercenary, posing in front of a sportscar, armes crossed, sun glasses, in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.85
- num_inference_steps
- 90
{ "width": 1024, "height": 576, "prompt": "mercenary, posing in front of a sportscar, armes crossed, sun glasses, in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "mercenary, posing in front of a sportscar, armes crossed, sun glasses, in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.85, num_inference_steps: 90 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "mercenary, posing in front of a sportscar, armes crossed, sun glasses, in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "mercenary, posing in front of a sportscar, armes crossed, sun glasses, in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T09:52:46.141568Z", "created_at": "2023-10-22T09:52:29.896801Z", "data_removed": false, "error": null, "id": "l4fyw4dbqo5c4st6lvbghvwis4", "input": { "width": 1024, "height": 576, "prompt": "mercenary, posing in front of a sportscar, armes crossed, sun glasses, in a futuristic city, morning light, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }, "logs": "Using seed: 34594\nPrompt: mercenary, posing in front of a sportscar, armes crossed, sun glasses, in a futuristic city, morning light, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/71 [00:00<?, ?it/s]\n 1%|▏ | 1/71 [00:00<00:11, 6.01it/s]\n 3%|▎ | 2/71 [00:00<00:11, 5.98it/s]\n 4%|▍ | 3/71 [00:00<00:11, 5.97it/s]\n 6%|▌ | 4/71 [00:00<00:11, 5.97it/s]\n 7%|▋ | 5/71 [00:00<00:11, 5.96it/s]\n 8%|▊ | 6/71 [00:01<00:10, 5.96it/s]\n 10%|▉ | 7/71 [00:01<00:10, 5.96it/s]\n 11%|█▏ | 8/71 [00:01<00:10, 5.95it/s]\n 13%|█▎ | 9/71 [00:01<00:10, 5.96it/s]\n 14%|█▍ | 10/71 [00:01<00:10, 5.96it/s]\n 15%|█▌ | 11/71 [00:01<00:10, 5.96it/s]\n 17%|█▋ | 12/71 [00:02<00:09, 5.96it/s]\n 18%|█▊ | 13/71 [00:02<00:09, 5.95it/s]\n 20%|█▉ | 14/71 [00:02<00:09, 5.95it/s]\n 21%|██ | 15/71 [00:02<00:09, 5.95it/s]\n 23%|██▎ | 16/71 [00:02<00:09, 5.95it/s]\n 24%|██▍ | 17/71 [00:02<00:09, 5.94it/s]\n 25%|██▌ | 18/71 [00:03<00:08, 5.94it/s]\n 27%|██▋ | 19/71 [00:03<00:08, 5.94it/s]\n 28%|██▊ | 20/71 [00:03<00:08, 5.93it/s]\n 30%|██▉ | 21/71 [00:03<00:08, 5.94it/s]\n 31%|███ | 22/71 [00:03<00:08, 5.93it/s]\n 32%|███▏ | 23/71 [00:03<00:08, 5.93it/s]\n 34%|███▍ | 24/71 [00:04<00:07, 5.93it/s]\n 35%|███▌ | 25/71 [00:04<00:07, 5.93it/s]\n 37%|███▋ | 26/71 [00:04<00:07, 5.93it/s]\n 38%|███▊ | 27/71 [00:04<00:07, 5.92it/s]\n 39%|███▉ | 28/71 [00:04<00:07, 5.93it/s]\n 41%|████ | 29/71 [00:04<00:07, 5.93it/s]\n 42%|████▏ | 30/71 [00:05<00:06, 5.93it/s]\n 44%|████▎ | 31/71 [00:05<00:06, 5.92it/s]\n 45%|████▌ | 32/71 [00:05<00:06, 5.92it/s]\n 46%|████▋ | 33/71 [00:05<00:06, 5.93it/s]\n 48%|████▊ | 34/71 [00:05<00:06, 5.93it/s]\n 49%|████▉ | 35/71 [00:05<00:06, 5.93it/s]\n 51%|█████ | 36/71 [00:06<00:05, 5.93it/s]\n 52%|█████▏ | 37/71 [00:06<00:05, 5.93it/s]\n 54%|█████▎ | 38/71 [00:06<00:05, 5.93it/s]\n 55%|█████▍ | 39/71 [00:06<00:05, 5.93it/s]\n 56%|█████▋ | 40/71 [00:06<00:05, 5.93it/s]\n 58%|█████▊ | 41/71 [00:06<00:05, 5.93it/s]\n 59%|█████▉ | 42/71 [00:07<00:04, 5.93it/s]\n 61%|██████ | 43/71 [00:07<00:04, 5.93it/s]\n 62%|██████▏ | 44/71 [00:07<00:04, 5.93it/s]\n 63%|██████▎ | 45/71 [00:07<00:04, 5.93it/s]\n 65%|██████▍ | 46/71 [00:07<00:04, 5.92it/s]\n 66%|██████▌ | 47/71 [00:07<00:04, 5.92it/s]\n 68%|██████▊ | 48/71 [00:08<00:03, 5.92it/s]\n 69%|██████▉ | 49/71 [00:08<00:03, 5.92it/s]\n 70%|███████ | 50/71 [00:08<00:03, 5.92it/s]\n 72%|███████▏ | 51/71 [00:08<00:03, 5.92it/s]\n 73%|███████▎ | 52/71 [00:08<00:03, 5.92it/s]\n 75%|███████▍ | 53/71 [00:08<00:03, 5.92it/s]\n 76%|███████▌ | 54/71 [00:09<00:02, 5.92it/s]\n 77%|███████▋ | 55/71 [00:09<00:02, 5.92it/s]\n 79%|███████▉ | 56/71 [00:09<00:02, 5.92it/s]\n 80%|████████ | 57/71 [00:09<00:02, 5.91it/s]\n 82%|████████▏ | 58/71 [00:09<00:02, 5.92it/s]\n 83%|████████▎ | 59/71 [00:09<00:02, 5.91it/s]\n 85%|████████▍ | 60/71 [00:10<00:01, 5.92it/s]\n 86%|████████▌ | 61/71 [00:10<00:01, 5.92it/s]\n 87%|████████▋ | 62/71 [00:10<00:01, 5.92it/s]\n 89%|████████▊ | 63/71 [00:10<00:01, 5.92it/s]\n 90%|█████████ | 64/71 [00:10<00:01, 5.92it/s]\n 92%|█████████▏| 65/71 [00:10<00:01, 5.92it/s]\n 93%|█████████▎| 66/71 [00:11<00:00, 5.92it/s]\n 94%|█████████▍| 67/71 [00:11<00:00, 5.92it/s]\n 96%|█████████▌| 68/71 [00:11<00:00, 5.92it/s]\n 97%|█████████▋| 69/71 [00:11<00:00, 5.92it/s]\n 99%|█████████▊| 70/71 [00:11<00:00, 5.91it/s]\n100%|██████████| 71/71 [00:11<00:00, 5.92it/s]\n100%|██████████| 71/71 [00:11<00:00, 5.93it/s]\n 0%| | 0/19 [00:00<?, ?it/s]\n 5%|▌ | 1/19 [00:00<00:02, 7.50it/s]\n 11%|█ | 2/19 [00:00<00:02, 7.42it/s]\n 16%|█▌ | 3/19 [00:00<00:02, 7.39it/s]\n 21%|██ | 4/19 [00:00<00:02, 7.39it/s]\n 26%|██▋ | 5/19 [00:00<00:01, 7.39it/s]\n 32%|███▏ | 6/19 [00:00<00:01, 7.38it/s]\n 37%|███▋ | 7/19 [00:00<00:01, 7.38it/s]\n 42%|████▏ | 8/19 [00:01<00:01, 7.37it/s]\n 47%|████▋ | 9/19 [00:01<00:01, 7.38it/s]\n 53%|█████▎ | 10/19 [00:01<00:01, 7.38it/s]\n 58%|█████▊ | 11/19 [00:01<00:01, 7.37it/s]\n 63%|██████▎ | 12/19 [00:01<00:00, 7.37it/s]\n 68%|██████▊ | 13/19 [00:01<00:00, 7.38it/s]\n 74%|███████▎ | 14/19 [00:01<00:00, 7.37it/s]\n 79%|███████▉ | 15/19 [00:02<00:00, 7.36it/s]\n 84%|████████▍ | 16/19 [00:02<00:00, 7.36it/s]\n 89%|████████▉ | 17/19 [00:02<00:00, 7.36it/s]\n 95%|█████████▍| 18/19 [00:02<00:00, 7.37it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.37it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.38it/s]", "metrics": { "predict_time": 16.259558, "total_time": 16.244767 }, "output": [ "https://pbxt.replicate.delivery/UJqTwBM32QagHFXsLynQsE4b48yEC4nYMTjxX6Dod2U7iKcE/out-0.png" ], "started_at": "2023-10-22T09:52:29.882010Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/l4fyw4dbqo5c4st6lvbghvwis4", "cancel": "https://api.replicate.com/v1/predictions/l4fyw4dbqo5c4st6lvbghvwis4/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 34594 Prompt: mercenary, posing in front of a sportscar, armes crossed, sun glasses, in a futuristic city, morning light, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/71 [00:00<?, ?it/s] 1%|▏ | 1/71 [00:00<00:11, 6.01it/s] 3%|▎ | 2/71 [00:00<00:11, 5.98it/s] 4%|▍ | 3/71 [00:00<00:11, 5.97it/s] 6%|▌ | 4/71 [00:00<00:11, 5.97it/s] 7%|▋ | 5/71 [00:00<00:11, 5.96it/s] 8%|▊ | 6/71 [00:01<00:10, 5.96it/s] 10%|▉ | 7/71 [00:01<00:10, 5.96it/s] 11%|█▏ | 8/71 [00:01<00:10, 5.95it/s] 13%|█▎ | 9/71 [00:01<00:10, 5.96it/s] 14%|█▍ | 10/71 [00:01<00:10, 5.96it/s] 15%|█▌ | 11/71 [00:01<00:10, 5.96it/s] 17%|█▋ | 12/71 [00:02<00:09, 5.96it/s] 18%|█▊ | 13/71 [00:02<00:09, 5.95it/s] 20%|█▉ | 14/71 [00:02<00:09, 5.95it/s] 21%|██ | 15/71 [00:02<00:09, 5.95it/s] 23%|██▎ | 16/71 [00:02<00:09, 5.95it/s] 24%|██▍ | 17/71 [00:02<00:09, 5.94it/s] 25%|██▌ | 18/71 [00:03<00:08, 5.94it/s] 27%|██▋ | 19/71 [00:03<00:08, 5.94it/s] 28%|██▊ | 20/71 [00:03<00:08, 5.93it/s] 30%|██▉ | 21/71 [00:03<00:08, 5.94it/s] 31%|███ | 22/71 [00:03<00:08, 5.93it/s] 32%|███▏ | 23/71 [00:03<00:08, 5.93it/s] 34%|███▍ | 24/71 [00:04<00:07, 5.93it/s] 35%|███▌ | 25/71 [00:04<00:07, 5.93it/s] 37%|███▋ | 26/71 [00:04<00:07, 5.93it/s] 38%|███▊ | 27/71 [00:04<00:07, 5.92it/s] 39%|███▉ | 28/71 [00:04<00:07, 5.93it/s] 41%|████ | 29/71 [00:04<00:07, 5.93it/s] 42%|████▏ | 30/71 [00:05<00:06, 5.93it/s] 44%|████▎ | 31/71 [00:05<00:06, 5.92it/s] 45%|████▌ | 32/71 [00:05<00:06, 5.92it/s] 46%|████▋ | 33/71 [00:05<00:06, 5.93it/s] 48%|████▊ | 34/71 [00:05<00:06, 5.93it/s] 49%|████▉ | 35/71 [00:05<00:06, 5.93it/s] 51%|█████ | 36/71 [00:06<00:05, 5.93it/s] 52%|█████▏ | 37/71 [00:06<00:05, 5.93it/s] 54%|█████▎ | 38/71 [00:06<00:05, 5.93it/s] 55%|█████▍ | 39/71 [00:06<00:05, 5.93it/s] 56%|█████▋ | 40/71 [00:06<00:05, 5.93it/s] 58%|█████▊ | 41/71 [00:06<00:05, 5.93it/s] 59%|█████▉ | 42/71 [00:07<00:04, 5.93it/s] 61%|██████ | 43/71 [00:07<00:04, 5.93it/s] 62%|██████▏ | 44/71 [00:07<00:04, 5.93it/s] 63%|██████▎ | 45/71 [00:07<00:04, 5.93it/s] 65%|██████▍ | 46/71 [00:07<00:04, 5.92it/s] 66%|██████▌ | 47/71 [00:07<00:04, 5.92it/s] 68%|██████▊ | 48/71 [00:08<00:03, 5.92it/s] 69%|██████▉ | 49/71 [00:08<00:03, 5.92it/s] 70%|███████ | 50/71 [00:08<00:03, 5.92it/s] 72%|███████▏ | 51/71 [00:08<00:03, 5.92it/s] 73%|███████▎ | 52/71 [00:08<00:03, 5.92it/s] 75%|███████▍ | 53/71 [00:08<00:03, 5.92it/s] 76%|███████▌ | 54/71 [00:09<00:02, 5.92it/s] 77%|███████▋ | 55/71 [00:09<00:02, 5.92it/s] 79%|███████▉ | 56/71 [00:09<00:02, 5.92it/s] 80%|████████ | 57/71 [00:09<00:02, 5.91it/s] 82%|████████▏ | 58/71 [00:09<00:02, 5.92it/s] 83%|████████▎ | 59/71 [00:09<00:02, 5.91it/s] 85%|████████▍ | 60/71 [00:10<00:01, 5.92it/s] 86%|████████▌ | 61/71 [00:10<00:01, 5.92it/s] 87%|████████▋ | 62/71 [00:10<00:01, 5.92it/s] 89%|████████▊ | 63/71 [00:10<00:01, 5.92it/s] 90%|█████████ | 64/71 [00:10<00:01, 5.92it/s] 92%|█████████▏| 65/71 [00:10<00:01, 5.92it/s] 93%|█████████▎| 66/71 [00:11<00:00, 5.92it/s] 94%|█████████▍| 67/71 [00:11<00:00, 5.92it/s] 96%|█████████▌| 68/71 [00:11<00:00, 5.92it/s] 97%|█████████▋| 69/71 [00:11<00:00, 5.92it/s] 99%|█████████▊| 70/71 [00:11<00:00, 5.91it/s] 100%|██████████| 71/71 [00:11<00:00, 5.92it/s] 100%|██████████| 71/71 [00:11<00:00, 5.93it/s] 0%| | 0/19 [00:00<?, ?it/s] 5%|▌ | 1/19 [00:00<00:02, 7.50it/s] 11%|█ | 2/19 [00:00<00:02, 7.42it/s] 16%|█▌ | 3/19 [00:00<00:02, 7.39it/s] 21%|██ | 4/19 [00:00<00:02, 7.39it/s] 26%|██▋ | 5/19 [00:00<00:01, 7.39it/s] 32%|███▏ | 6/19 [00:00<00:01, 7.38it/s] 37%|███▋ | 7/19 [00:00<00:01, 7.38it/s] 42%|████▏ | 8/19 [00:01<00:01, 7.37it/s] 47%|████▋ | 9/19 [00:01<00:01, 7.38it/s] 53%|█████▎ | 10/19 [00:01<00:01, 7.38it/s] 58%|█████▊ | 11/19 [00:01<00:01, 7.37it/s] 63%|██████▎ | 12/19 [00:01<00:00, 7.37it/s] 68%|██████▊ | 13/19 [00:01<00:00, 7.38it/s] 74%|███████▎ | 14/19 [00:01<00:00, 7.37it/s] 79%|███████▉ | 15/19 [00:02<00:00, 7.36it/s] 84%|████████▍ | 16/19 [00:02<00:00, 7.36it/s] 89%|████████▉ | 17/19 [00:02<00:00, 7.36it/s] 95%|█████████▍| 18/19 [00:02<00:00, 7.37it/s] 100%|██████████| 19/19 [00:02<00:00, 7.37it/s] 100%|██████████| 19/19 [00:02<00:00, 7.38it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDn34muo3bx5sw6zeiz6r5uukioqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- young woman yielding a katana, plastic raincoat, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.85
- num_inference_steps
- 90
{ "width": 1024, "height": 576, "prompt": "young woman yielding a katana, plastic raincoat, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "young woman yielding a katana, plastic raincoat, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.85, num_inference_steps: 90 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "young woman yielding a katana, plastic raincoat, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "young woman yielding a katana, plastic raincoat, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T10:05:46.261381Z", "created_at": "2023-10-22T10:05:29.942354Z", "data_removed": false, "error": null, "id": "n34muo3bx5sw6zeiz6r5uukioq", "input": { "width": 1024, "height": 576, "prompt": "young woman yielding a katana, plastic raincoat, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }, "logs": "Using seed: 24855\nPrompt: young woman yielding a katana, plastic raincoat, raining, night city, futuristic, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/71 [00:00<?, ?it/s]\n 1%|▏ | 1/71 [00:00<00:12, 5.75it/s]\n 3%|▎ | 2/71 [00:00<00:11, 5.76it/s]\n 4%|▍ | 3/71 [00:00<00:11, 5.83it/s]\n 6%|▌ | 4/71 [00:00<00:11, 5.87it/s]\n 7%|▋ | 5/71 [00:00<00:11, 5.89it/s]\n 8%|▊ | 6/71 [00:01<00:11, 5.90it/s]\n 10%|▉ | 7/71 [00:01<00:10, 5.91it/s]\n 11%|█▏ | 8/71 [00:01<00:10, 5.91it/s]\n 13%|█▎ | 9/71 [00:01<00:10, 5.92it/s]\n 14%|█▍ | 10/71 [00:01<00:10, 5.91it/s]\n 15%|█▌ | 11/71 [00:01<00:10, 5.91it/s]\n 17%|█▋ | 12/71 [00:02<00:09, 5.91it/s]\n 18%|█▊ | 13/71 [00:02<00:09, 5.91it/s]\n 20%|█▉ | 14/71 [00:02<00:09, 5.91it/s]\n 21%|██ | 15/71 [00:02<00:09, 5.92it/s]\n 23%|██▎ | 16/71 [00:02<00:09, 5.92it/s]\n 24%|██▍ | 17/71 [00:02<00:09, 5.92it/s]\n 25%|██▌ | 18/71 [00:03<00:08, 5.92it/s]\n 27%|██▋ | 19/71 [00:03<00:08, 5.92it/s]\n 28%|██▊ | 20/71 [00:03<00:08, 5.93it/s]\n 30%|██▉ | 21/71 [00:03<00:08, 5.93it/s]\n 31%|███ | 22/71 [00:03<00:08, 5.93it/s]\n 32%|███▏ | 23/71 [00:03<00:08, 5.93it/s]\n 34%|███▍ | 24/71 [00:04<00:07, 5.93it/s]\n 35%|███▌ | 25/71 [00:04<00:07, 5.93it/s]\n 37%|███▋ | 26/71 [00:04<00:07, 5.92it/s]\n 38%|███▊ | 27/71 [00:04<00:07, 5.92it/s]\n 39%|███▉ | 28/71 [00:04<00:07, 5.92it/s]\n 41%|████ | 29/71 [00:04<00:07, 5.92it/s]\n 42%|████▏ | 30/71 [00:05<00:06, 5.92it/s]\n 44%|████▎ | 31/71 [00:05<00:06, 5.92it/s]\n 45%|████▌ | 32/71 [00:05<00:06, 5.91it/s]\n 46%|████▋ | 33/71 [00:05<00:06, 5.91it/s]\n 48%|████▊ | 34/71 [00:05<00:06, 5.91it/s]\n 49%|████▉ | 35/71 [00:05<00:06, 5.91it/s]\n 51%|█████ | 36/71 [00:06<00:05, 5.92it/s]\n 52%|█████▏ | 37/71 [00:06<00:05, 5.91it/s]\n 54%|█████▎ | 38/71 [00:06<00:05, 5.92it/s]\n 55%|█████▍ | 39/71 [00:06<00:05, 5.91it/s]\n 56%|█████▋ | 40/71 [00:06<00:05, 5.91it/s]\n 58%|█████▊ | 41/71 [00:06<00:05, 5.91it/s]\n 59%|█████▉ | 42/71 [00:07<00:04, 5.91it/s]\n 61%|██████ | 43/71 [00:07<00:04, 5.90it/s]\n 62%|██████▏ | 44/71 [00:07<00:04, 5.90it/s]\n 63%|██████▎ | 45/71 [00:07<00:04, 5.90it/s]\n 65%|██████▍ | 46/71 [00:07<00:04, 5.90it/s]\n 66%|██████▌ | 47/71 [00:07<00:04, 5.90it/s]\n 68%|██████▊ | 48/71 [00:08<00:03, 5.90it/s]\n 69%|██████▉ | 49/71 [00:08<00:03, 5.89it/s]\n 70%|███████ | 50/71 [00:08<00:03, 5.90it/s]\n 72%|███████▏ | 51/71 [00:08<00:03, 5.89it/s]\n 73%|███████▎ | 52/71 [00:08<00:03, 5.89it/s]\n 75%|███████▍ | 53/71 [00:08<00:03, 5.89it/s]\n 76%|███████▌ | 54/71 [00:09<00:02, 5.89it/s]\n 77%|███████▋ | 55/71 [00:09<00:02, 5.90it/s]\n 79%|███████▉ | 56/71 [00:09<00:02, 5.90it/s]\n 80%|████████ | 57/71 [00:09<00:02, 5.89it/s]\n 82%|████████▏ | 58/71 [00:09<00:02, 5.90it/s]\n 83%|████████▎ | 59/71 [00:09<00:02, 5.90it/s]\n 85%|████████▍ | 60/71 [00:10<00:01, 5.90it/s]\n 86%|████████▌ | 61/71 [00:10<00:01, 5.90it/s]\n 87%|████████▋ | 62/71 [00:10<00:01, 5.90it/s]\n 89%|████████▊ | 63/71 [00:10<00:01, 5.90it/s]\n 90%|█████████ | 64/71 [00:10<00:01, 5.90it/s]\n 92%|█████████▏| 65/71 [00:11<00:01, 5.90it/s]\n 93%|█████████▎| 66/71 [00:11<00:00, 5.89it/s]\n 94%|█████████▍| 67/71 [00:11<00:00, 5.89it/s]\n 96%|█████████▌| 68/71 [00:11<00:00, 5.89it/s]\n 97%|█████████▋| 69/71 [00:11<00:00, 5.89it/s]\n 99%|█████████▊| 70/71 [00:11<00:00, 5.89it/s]\n100%|██████████| 71/71 [00:12<00:00, 5.89it/s]\n100%|██████████| 71/71 [00:12<00:00, 5.90it/s]\n 0%| | 0/19 [00:00<?, ?it/s]\n 5%|▌ | 1/19 [00:00<00:02, 7.48it/s]\n 11%|█ | 2/19 [00:00<00:02, 7.43it/s]\n 16%|█▌ | 3/19 [00:00<00:02, 7.38it/s]\n 21%|██ | 4/19 [00:00<00:02, 7.36it/s]\n 26%|██▋ | 5/19 [00:00<00:01, 7.36it/s]\n 32%|███▏ | 6/19 [00:00<00:01, 7.34it/s]\n 37%|███▋ | 7/19 [00:00<00:01, 7.35it/s]\n 42%|████▏ | 8/19 [00:01<00:01, 7.36it/s]\n 47%|████▋ | 9/19 [00:01<00:01, 7.35it/s]\n 53%|█████▎ | 10/19 [00:01<00:01, 7.36it/s]\n 58%|█████▊ | 11/19 [00:01<00:01, 7.36it/s]\n 63%|██████▎ | 12/19 [00:01<00:00, 7.37it/s]\n 68%|██████▊ | 13/19 [00:01<00:00, 7.37it/s]\n 74%|███████▎ | 14/19 [00:01<00:00, 7.37it/s]\n 79%|███████▉ | 15/19 [00:02<00:00, 7.37it/s]\n 84%|████████▍ | 16/19 [00:02<00:00, 7.37it/s]\n 89%|████████▉ | 17/19 [00:02<00:00, 7.38it/s]\n 95%|█████████▍| 18/19 [00:02<00:00, 7.37it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.37it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.37it/s]", "metrics": { "predict_time": 16.306247, "total_time": 16.319027 }, "output": [ "https://pbxt.replicate.delivery/D81eASTr7Yw9JikVKaqIpuxRjx5rf1CdcMAV0ijHJHC5XqwRA/out-0.png" ], "started_at": "2023-10-22T10:05:29.955134Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/n34muo3bx5sw6zeiz6r5uukioq", "cancel": "https://api.replicate.com/v1/predictions/n34muo3bx5sw6zeiz6r5uukioq/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 24855 Prompt: young woman yielding a katana, plastic raincoat, raining, night city, futuristic, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/71 [00:00<?, ?it/s] 1%|▏ | 1/71 [00:00<00:12, 5.75it/s] 3%|▎ | 2/71 [00:00<00:11, 5.76it/s] 4%|▍ | 3/71 [00:00<00:11, 5.83it/s] 6%|▌ | 4/71 [00:00<00:11, 5.87it/s] 7%|▋ | 5/71 [00:00<00:11, 5.89it/s] 8%|▊ | 6/71 [00:01<00:11, 5.90it/s] 10%|▉ | 7/71 [00:01<00:10, 5.91it/s] 11%|█▏ | 8/71 [00:01<00:10, 5.91it/s] 13%|█▎ | 9/71 [00:01<00:10, 5.92it/s] 14%|█▍ | 10/71 [00:01<00:10, 5.91it/s] 15%|█▌ | 11/71 [00:01<00:10, 5.91it/s] 17%|█▋ | 12/71 [00:02<00:09, 5.91it/s] 18%|█▊ | 13/71 [00:02<00:09, 5.91it/s] 20%|█▉ | 14/71 [00:02<00:09, 5.91it/s] 21%|██ | 15/71 [00:02<00:09, 5.92it/s] 23%|██▎ | 16/71 [00:02<00:09, 5.92it/s] 24%|██▍ | 17/71 [00:02<00:09, 5.92it/s] 25%|██▌ | 18/71 [00:03<00:08, 5.92it/s] 27%|██▋ | 19/71 [00:03<00:08, 5.92it/s] 28%|██▊ | 20/71 [00:03<00:08, 5.93it/s] 30%|██▉ | 21/71 [00:03<00:08, 5.93it/s] 31%|███ | 22/71 [00:03<00:08, 5.93it/s] 32%|███▏ | 23/71 [00:03<00:08, 5.93it/s] 34%|███▍ | 24/71 [00:04<00:07, 5.93it/s] 35%|███▌ | 25/71 [00:04<00:07, 5.93it/s] 37%|███▋ | 26/71 [00:04<00:07, 5.92it/s] 38%|███▊ | 27/71 [00:04<00:07, 5.92it/s] 39%|███▉ | 28/71 [00:04<00:07, 5.92it/s] 41%|████ | 29/71 [00:04<00:07, 5.92it/s] 42%|████▏ | 30/71 [00:05<00:06, 5.92it/s] 44%|████▎ | 31/71 [00:05<00:06, 5.92it/s] 45%|████▌ | 32/71 [00:05<00:06, 5.91it/s] 46%|████▋ | 33/71 [00:05<00:06, 5.91it/s] 48%|████▊ | 34/71 [00:05<00:06, 5.91it/s] 49%|████▉ | 35/71 [00:05<00:06, 5.91it/s] 51%|█████ | 36/71 [00:06<00:05, 5.92it/s] 52%|█████▏ | 37/71 [00:06<00:05, 5.91it/s] 54%|█████▎ | 38/71 [00:06<00:05, 5.92it/s] 55%|█████▍ | 39/71 [00:06<00:05, 5.91it/s] 56%|█████▋ | 40/71 [00:06<00:05, 5.91it/s] 58%|█████▊ | 41/71 [00:06<00:05, 5.91it/s] 59%|█████▉ | 42/71 [00:07<00:04, 5.91it/s] 61%|██████ | 43/71 [00:07<00:04, 5.90it/s] 62%|██████▏ | 44/71 [00:07<00:04, 5.90it/s] 63%|██████▎ | 45/71 [00:07<00:04, 5.90it/s] 65%|██████▍ | 46/71 [00:07<00:04, 5.90it/s] 66%|██████▌ | 47/71 [00:07<00:04, 5.90it/s] 68%|██████▊ | 48/71 [00:08<00:03, 5.90it/s] 69%|██████▉ | 49/71 [00:08<00:03, 5.89it/s] 70%|███████ | 50/71 [00:08<00:03, 5.90it/s] 72%|███████▏ | 51/71 [00:08<00:03, 5.89it/s] 73%|███████▎ | 52/71 [00:08<00:03, 5.89it/s] 75%|███████▍ | 53/71 [00:08<00:03, 5.89it/s] 76%|███████▌ | 54/71 [00:09<00:02, 5.89it/s] 77%|███████▋ | 55/71 [00:09<00:02, 5.90it/s] 79%|███████▉ | 56/71 [00:09<00:02, 5.90it/s] 80%|████████ | 57/71 [00:09<00:02, 5.89it/s] 82%|████████▏ | 58/71 [00:09<00:02, 5.90it/s] 83%|████████▎ | 59/71 [00:09<00:02, 5.90it/s] 85%|████████▍ | 60/71 [00:10<00:01, 5.90it/s] 86%|████████▌ | 61/71 [00:10<00:01, 5.90it/s] 87%|████████▋ | 62/71 [00:10<00:01, 5.90it/s] 89%|████████▊ | 63/71 [00:10<00:01, 5.90it/s] 90%|█████████ | 64/71 [00:10<00:01, 5.90it/s] 92%|█████████▏| 65/71 [00:11<00:01, 5.90it/s] 93%|█████████▎| 66/71 [00:11<00:00, 5.89it/s] 94%|█████████▍| 67/71 [00:11<00:00, 5.89it/s] 96%|█████████▌| 68/71 [00:11<00:00, 5.89it/s] 97%|█████████▋| 69/71 [00:11<00:00, 5.89it/s] 99%|█████████▊| 70/71 [00:11<00:00, 5.89it/s] 100%|██████████| 71/71 [00:12<00:00, 5.89it/s] 100%|██████████| 71/71 [00:12<00:00, 5.90it/s] 0%| | 0/19 [00:00<?, ?it/s] 5%|▌ | 1/19 [00:00<00:02, 7.48it/s] 11%|█ | 2/19 [00:00<00:02, 7.43it/s] 16%|█▌ | 3/19 [00:00<00:02, 7.38it/s] 21%|██ | 4/19 [00:00<00:02, 7.36it/s] 26%|██▋ | 5/19 [00:00<00:01, 7.36it/s] 32%|███▏ | 6/19 [00:00<00:01, 7.34it/s] 37%|███▋ | 7/19 [00:00<00:01, 7.35it/s] 42%|████▏ | 8/19 [00:01<00:01, 7.36it/s] 47%|████▋ | 9/19 [00:01<00:01, 7.35it/s] 53%|█████▎ | 10/19 [00:01<00:01, 7.36it/s] 58%|█████▊ | 11/19 [00:01<00:01, 7.36it/s] 63%|██████▎ | 12/19 [00:01<00:00, 7.37it/s] 68%|██████▊ | 13/19 [00:01<00:00, 7.37it/s] 74%|███████▎ | 14/19 [00:01<00:00, 7.37it/s] 79%|███████▉ | 15/19 [00:02<00:00, 7.37it/s] 84%|████████▍ | 16/19 [00:02<00:00, 7.37it/s] 89%|████████▉ | 17/19 [00:02<00:00, 7.38it/s] 95%|█████████▍| 18/19 [00:02<00:00, 7.37it/s] 100%|██████████| 19/19 [00:02<00:00, 7.37it/s] 100%|██████████| 19/19 [00:02<00:00, 7.37it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294ID4qvshe3b3flhv42kg6ex5ceweiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- asian man holding a gun, posing, plastic raincoat, metal arm, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.85
- num_inference_steps
- 90
{ "width": 1024, "height": 576, "prompt": "asian man holding a gun, posing, plastic raincoat, metal arm, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "asian man holding a gun, posing, plastic raincoat, metal arm, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.85, num_inference_steps: 90 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "asian man holding a gun, posing, plastic raincoat, metal arm, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "asian man holding a gun, posing, plastic raincoat, metal arm, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T10:08:43.180035Z", "created_at": "2023-10-22T10:08:26.916592Z", "data_removed": false, "error": null, "id": "4qvshe3b3flhv42kg6ex5cewei", "input": { "width": 1024, "height": 576, "prompt": "asian man holding a gun, posing, plastic raincoat, metal arm, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }, "logs": "Using seed: 53268\nPrompt: asian man holding a gun, posing, plastic raincoat, metal arm, raining, night city, futuristic, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/71 [00:00<?, ?it/s]\n 1%|▏ | 1/71 [00:00<00:11, 5.99it/s]\n 3%|▎ | 2/71 [00:00<00:11, 5.97it/s]\n 4%|▍ | 3/71 [00:00<00:11, 5.95it/s]\n 6%|▌ | 4/71 [00:00<00:11, 5.95it/s]\n 7%|▋ | 5/71 [00:00<00:11, 5.95it/s]\n 8%|▊ | 6/71 [00:01<00:10, 5.94it/s]\n 10%|▉ | 7/71 [00:01<00:10, 5.94it/s]\n 11%|█▏ | 8/71 [00:01<00:10, 5.94it/s]\n 13%|█▎ | 9/71 [00:01<00:10, 5.94it/s]\n 14%|█▍ | 10/71 [00:01<00:10, 5.94it/s]\n 15%|█▌ | 11/71 [00:01<00:10, 5.94it/s]\n 17%|█▋ | 12/71 [00:02<00:09, 5.94it/s]\n 18%|█▊ | 13/71 [00:02<00:09, 5.93it/s]\n 20%|█▉ | 14/71 [00:02<00:09, 5.93it/s]\n 21%|██ | 15/71 [00:02<00:09, 5.93it/s]\n 23%|██▎ | 16/71 [00:02<00:09, 5.93it/s]\n 24%|██▍ | 17/71 [00:02<00:09, 5.93it/s]\n 25%|██▌ | 18/71 [00:03<00:08, 5.93it/s]\n 27%|██▋ | 19/71 [00:03<00:08, 5.93it/s]\n 28%|██▊ | 20/71 [00:03<00:08, 5.93it/s]\n 30%|██▉ | 21/71 [00:03<00:08, 5.93it/s]\n 31%|███ | 22/71 [00:03<00:08, 5.94it/s]\n 32%|███▏ | 23/71 [00:03<00:08, 5.94it/s]\n 34%|███▍ | 24/71 [00:04<00:07, 5.93it/s]\n 35%|███▌ | 25/71 [00:04<00:07, 5.93it/s]\n 37%|███▋ | 26/71 [00:04<00:07, 5.93it/s]\n 38%|███▊ | 27/71 [00:04<00:07, 5.93it/s]\n 39%|███▉ | 28/71 [00:04<00:07, 5.93it/s]\n 41%|████ | 29/71 [00:04<00:07, 5.93it/s]\n 42%|████▏ | 30/71 [00:05<00:06, 5.93it/s]\n 44%|████▎ | 31/71 [00:05<00:06, 5.93it/s]\n 45%|████▌ | 32/71 [00:05<00:06, 5.93it/s]\n 46%|████▋ | 33/71 [00:05<00:06, 5.93it/s]\n 48%|████▊ | 34/71 [00:05<00:06, 5.93it/s]\n 49%|████▉ | 35/71 [00:05<00:06, 5.93it/s]\n 51%|█████ | 36/71 [00:06<00:05, 5.93it/s]\n 52%|█████▏ | 37/71 [00:06<00:05, 5.93it/s]\n 54%|█████▎ | 38/71 [00:06<00:05, 5.93it/s]\n 55%|█████▍ | 39/71 [00:06<00:05, 5.93it/s]\n 56%|█████▋ | 40/71 [00:06<00:05, 5.93it/s]\n 58%|█████▊ | 41/71 [00:06<00:05, 5.92it/s]\n 59%|█████▉ | 42/71 [00:07<00:04, 5.93it/s]\n 61%|██████ | 43/71 [00:07<00:04, 5.92it/s]\n 62%|██████▏ | 44/71 [00:07<00:04, 5.92it/s]\n 63%|██████▎ | 45/71 [00:07<00:04, 5.92it/s]\n 65%|██████▍ | 46/71 [00:07<00:04, 5.92it/s]\n 66%|██████▌ | 47/71 [00:07<00:04, 5.93it/s]\n 68%|██████▊ | 48/71 [00:08<00:03, 5.92it/s]\n 69%|██████▉ | 49/71 [00:08<00:03, 5.92it/s]\n 70%|███████ | 50/71 [00:08<00:03, 5.92it/s]\n 72%|███████▏ | 51/71 [00:08<00:03, 5.92it/s]\n 73%|███████▎ | 52/71 [00:08<00:03, 5.92it/s]\n 75%|███████▍ | 53/71 [00:08<00:03, 5.92it/s]\n 76%|███████▌ | 54/71 [00:09<00:02, 5.92it/s]\n 77%|███████▋ | 55/71 [00:09<00:02, 5.92it/s]\n 79%|███████▉ | 56/71 [00:09<00:02, 5.92it/s]\n 80%|████████ | 57/71 [00:09<00:02, 5.92it/s]\n 82%|████████▏ | 58/71 [00:09<00:02, 5.92it/s]\n 83%|████████▎ | 59/71 [00:09<00:02, 5.92it/s]\n 85%|████████▍ | 60/71 [00:10<00:01, 5.92it/s]\n 86%|████████▌ | 61/71 [00:10<00:01, 5.91it/s]\n 87%|████████▋ | 62/71 [00:10<00:01, 5.91it/s]\n 89%|████████▊ | 63/71 [00:10<00:01, 5.91it/s]\n 90%|█████████ | 64/71 [00:10<00:01, 5.92it/s]\n 92%|█████████▏| 65/71 [00:10<00:01, 5.92it/s]\n 93%|█████████▎| 66/71 [00:11<00:00, 5.91it/s]\n 94%|█████████▍| 67/71 [00:11<00:00, 5.91it/s]\n 96%|█████████▌| 68/71 [00:11<00:00, 5.91it/s]\n 97%|█████████▋| 69/71 [00:11<00:00, 5.91it/s]\n 99%|█████████▊| 70/71 [00:11<00:00, 5.92it/s]\n100%|██████████| 71/71 [00:11<00:00, 5.92it/s]\n100%|██████████| 71/71 [00:11<00:00, 5.93it/s]\n 0%| | 0/19 [00:00<?, ?it/s]\n 5%|▌ | 1/19 [00:00<00:02, 7.50it/s]\n 11%|█ | 2/19 [00:00<00:02, 7.43it/s]\n 16%|█▌ | 3/19 [00:00<00:02, 7.43it/s]\n 21%|██ | 4/19 [00:00<00:02, 7.41it/s]\n 26%|██▋ | 5/19 [00:00<00:01, 7.41it/s]\n 32%|███▏ | 6/19 [00:00<00:01, 7.42it/s]\n 37%|███▋ | 7/19 [00:00<00:01, 7.40it/s]\n 42%|████▏ | 8/19 [00:01<00:01, 7.39it/s]\n 47%|████▋ | 9/19 [00:01<00:01, 7.39it/s]\n 53%|█████▎ | 10/19 [00:01<00:01, 7.40it/s]\n 58%|█████▊ | 11/19 [00:01<00:01, 7.40it/s]\n 63%|██████▎ | 12/19 [00:01<00:00, 7.39it/s]\n 68%|██████▊ | 13/19 [00:01<00:00, 7.39it/s]\n 74%|███████▎ | 14/19 [00:01<00:00, 7.40it/s]\n 79%|███████▉ | 15/19 [00:02<00:00, 7.38it/s]\n 84%|████████▍ | 16/19 [00:02<00:00, 7.38it/s]\n 89%|████████▉ | 17/19 [00:02<00:00, 7.38it/s]\n 95%|█████████▍| 18/19 [00:02<00:00, 7.38it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.38it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.39it/s]", "metrics": { "predict_time": 16.313194, "total_time": 16.263443 }, "output": [ "https://pbxt.replicate.delivery/bJPFYSEoAuoBFVYojl18nvvLY3TGM2IJWa9ku4IT5NmqmKcE/out-0.png" ], "started_at": "2023-10-22T10:08:26.866841Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4qvshe3b3flhv42kg6ex5cewei", "cancel": "https://api.replicate.com/v1/predictions/4qvshe3b3flhv42kg6ex5cewei/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 53268 Prompt: asian man holding a gun, posing, plastic raincoat, metal arm, raining, night city, futuristic, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/71 [00:00<?, ?it/s] 1%|▏ | 1/71 [00:00<00:11, 5.99it/s] 3%|▎ | 2/71 [00:00<00:11, 5.97it/s] 4%|▍ | 3/71 [00:00<00:11, 5.95it/s] 6%|▌ | 4/71 [00:00<00:11, 5.95it/s] 7%|▋ | 5/71 [00:00<00:11, 5.95it/s] 8%|▊ | 6/71 [00:01<00:10, 5.94it/s] 10%|▉ | 7/71 [00:01<00:10, 5.94it/s] 11%|█▏ | 8/71 [00:01<00:10, 5.94it/s] 13%|█▎ | 9/71 [00:01<00:10, 5.94it/s] 14%|█▍ | 10/71 [00:01<00:10, 5.94it/s] 15%|█▌ | 11/71 [00:01<00:10, 5.94it/s] 17%|█▋ | 12/71 [00:02<00:09, 5.94it/s] 18%|█▊ | 13/71 [00:02<00:09, 5.93it/s] 20%|█▉ | 14/71 [00:02<00:09, 5.93it/s] 21%|██ | 15/71 [00:02<00:09, 5.93it/s] 23%|██▎ | 16/71 [00:02<00:09, 5.93it/s] 24%|██▍ | 17/71 [00:02<00:09, 5.93it/s] 25%|██▌ | 18/71 [00:03<00:08, 5.93it/s] 27%|██▋ | 19/71 [00:03<00:08, 5.93it/s] 28%|██▊ | 20/71 [00:03<00:08, 5.93it/s] 30%|██▉ | 21/71 [00:03<00:08, 5.93it/s] 31%|███ | 22/71 [00:03<00:08, 5.94it/s] 32%|███▏ | 23/71 [00:03<00:08, 5.94it/s] 34%|███▍ | 24/71 [00:04<00:07, 5.93it/s] 35%|███▌ | 25/71 [00:04<00:07, 5.93it/s] 37%|███▋ | 26/71 [00:04<00:07, 5.93it/s] 38%|███▊ | 27/71 [00:04<00:07, 5.93it/s] 39%|███▉ | 28/71 [00:04<00:07, 5.93it/s] 41%|████ | 29/71 [00:04<00:07, 5.93it/s] 42%|████▏ | 30/71 [00:05<00:06, 5.93it/s] 44%|████▎ | 31/71 [00:05<00:06, 5.93it/s] 45%|████▌ | 32/71 [00:05<00:06, 5.93it/s] 46%|████▋ | 33/71 [00:05<00:06, 5.93it/s] 48%|████▊ | 34/71 [00:05<00:06, 5.93it/s] 49%|████▉ | 35/71 [00:05<00:06, 5.93it/s] 51%|█████ | 36/71 [00:06<00:05, 5.93it/s] 52%|█████▏ | 37/71 [00:06<00:05, 5.93it/s] 54%|█████▎ | 38/71 [00:06<00:05, 5.93it/s] 55%|█████▍ | 39/71 [00:06<00:05, 5.93it/s] 56%|█████▋ | 40/71 [00:06<00:05, 5.93it/s] 58%|█████▊ | 41/71 [00:06<00:05, 5.92it/s] 59%|█████▉ | 42/71 [00:07<00:04, 5.93it/s] 61%|██████ | 43/71 [00:07<00:04, 5.92it/s] 62%|██████▏ | 44/71 [00:07<00:04, 5.92it/s] 63%|██████▎ | 45/71 [00:07<00:04, 5.92it/s] 65%|██████▍ | 46/71 [00:07<00:04, 5.92it/s] 66%|██████▌ | 47/71 [00:07<00:04, 5.93it/s] 68%|██████▊ | 48/71 [00:08<00:03, 5.92it/s] 69%|██████▉ | 49/71 [00:08<00:03, 5.92it/s] 70%|███████ | 50/71 [00:08<00:03, 5.92it/s] 72%|███████▏ | 51/71 [00:08<00:03, 5.92it/s] 73%|███████▎ | 52/71 [00:08<00:03, 5.92it/s] 75%|███████▍ | 53/71 [00:08<00:03, 5.92it/s] 76%|███████▌ | 54/71 [00:09<00:02, 5.92it/s] 77%|███████▋ | 55/71 [00:09<00:02, 5.92it/s] 79%|███████▉ | 56/71 [00:09<00:02, 5.92it/s] 80%|████████ | 57/71 [00:09<00:02, 5.92it/s] 82%|████████▏ | 58/71 [00:09<00:02, 5.92it/s] 83%|████████▎ | 59/71 [00:09<00:02, 5.92it/s] 85%|████████▍ | 60/71 [00:10<00:01, 5.92it/s] 86%|████████▌ | 61/71 [00:10<00:01, 5.91it/s] 87%|████████▋ | 62/71 [00:10<00:01, 5.91it/s] 89%|████████▊ | 63/71 [00:10<00:01, 5.91it/s] 90%|█████████ | 64/71 [00:10<00:01, 5.92it/s] 92%|█████████▏| 65/71 [00:10<00:01, 5.92it/s] 93%|█████████▎| 66/71 [00:11<00:00, 5.91it/s] 94%|█████████▍| 67/71 [00:11<00:00, 5.91it/s] 96%|█████████▌| 68/71 [00:11<00:00, 5.91it/s] 97%|█████████▋| 69/71 [00:11<00:00, 5.91it/s] 99%|█████████▊| 70/71 [00:11<00:00, 5.92it/s] 100%|██████████| 71/71 [00:11<00:00, 5.92it/s] 100%|██████████| 71/71 [00:11<00:00, 5.93it/s] 0%| | 0/19 [00:00<?, ?it/s] 5%|▌ | 1/19 [00:00<00:02, 7.50it/s] 11%|█ | 2/19 [00:00<00:02, 7.43it/s] 16%|█▌ | 3/19 [00:00<00:02, 7.43it/s] 21%|██ | 4/19 [00:00<00:02, 7.41it/s] 26%|██▋ | 5/19 [00:00<00:01, 7.41it/s] 32%|███▏ | 6/19 [00:00<00:01, 7.42it/s] 37%|███▋ | 7/19 [00:00<00:01, 7.40it/s] 42%|████▏ | 8/19 [00:01<00:01, 7.39it/s] 47%|████▋ | 9/19 [00:01<00:01, 7.39it/s] 53%|█████▎ | 10/19 [00:01<00:01, 7.40it/s] 58%|█████▊ | 11/19 [00:01<00:01, 7.40it/s] 63%|██████▎ | 12/19 [00:01<00:00, 7.39it/s] 68%|██████▊ | 13/19 [00:01<00:00, 7.39it/s] 74%|███████▎ | 14/19 [00:01<00:00, 7.40it/s] 79%|███████▉ | 15/19 [00:02<00:00, 7.38it/s] 84%|████████▍ | 16/19 [00:02<00:00, 7.38it/s] 89%|████████▉ | 17/19 [00:02<00:00, 7.38it/s] 95%|█████████▍| 18/19 [00:02<00:00, 7.38it/s] 100%|██████████| 19/19 [00:02<00:00, 7.38it/s] 100%|██████████| 19/19 [00:02<00:00, 7.39it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDkgdnqwdbhfg2gzvieef5runfpuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- woman driving a motorbike, plastic raincoat, cyborg, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.85
- num_inference_steps
- 90
{ "width": 1024, "height": 576, "prompt": "woman driving a motorbike, plastic raincoat, cyborg, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "woman driving a motorbike, plastic raincoat, cyborg, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.85, num_inference_steps: 90 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "woman driving a motorbike, plastic raincoat, cyborg, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "woman driving a motorbike, plastic raincoat, cyborg, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T10:11:34.387318Z", "created_at": "2023-10-22T10:11:18.153896Z", "data_removed": false, "error": null, "id": "kgdnqwdbhfg2gzvieef5runfpu", "input": { "width": 1024, "height": 576, "prompt": "woman driving a motorbike, plastic raincoat, cyborg, raining, night city, futuristic, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }, "logs": "Using seed: 46646\nPrompt: woman driving a motorbike, plastic raincoat, cyborg, raining, night city, futuristic, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/71 [00:00<?, ?it/s]\n 1%|▏ | 1/71 [00:00<00:11, 5.96it/s]\n 3%|▎ | 2/71 [00:00<00:11, 5.94it/s]\n 4%|▍ | 3/71 [00:00<00:11, 5.93it/s]\n 6%|▌ | 4/71 [00:00<00:11, 5.93it/s]\n 7%|▋ | 5/71 [00:00<00:11, 5.93it/s]\n 8%|▊ | 6/71 [00:01<00:10, 5.93it/s]\n 10%|▉ | 7/71 [00:01<00:10, 5.93it/s]\n 11%|█▏ | 8/71 [00:01<00:10, 5.93it/s]\n 13%|█▎ | 9/71 [00:01<00:10, 5.93it/s]\n 14%|█▍ | 10/71 [00:01<00:10, 5.93it/s]\n 15%|█▌ | 11/71 [00:01<00:10, 5.92it/s]\n 17%|█▋ | 12/71 [00:02<00:09, 5.93it/s]\n 18%|█▊ | 13/71 [00:02<00:09, 5.93it/s]\n 20%|█▉ | 14/71 [00:02<00:09, 5.93it/s]\n 21%|██ | 15/71 [00:02<00:09, 5.93it/s]\n 23%|██▎ | 16/71 [00:02<00:09, 5.92it/s]\n 24%|██▍ | 17/71 [00:02<00:09, 5.92it/s]\n 25%|██▌ | 18/71 [00:03<00:08, 5.92it/s]\n 27%|██▋ | 19/71 [00:03<00:08, 5.92it/s]\n 28%|██▊ | 20/71 [00:03<00:08, 5.92it/s]\n 30%|██▉ | 21/71 [00:03<00:08, 5.92it/s]\n 31%|███ | 22/71 [00:03<00:08, 5.92it/s]\n 32%|███▏ | 23/71 [00:03<00:08, 5.92it/s]\n 34%|███▍ | 24/71 [00:04<00:07, 5.92it/s]\n 35%|███▌ | 25/71 [00:04<00:07, 5.91it/s]\n 37%|███▋ | 26/71 [00:04<00:07, 5.92it/s]\n 38%|███▊ | 27/71 [00:04<00:07, 5.91it/s]\n 39%|███▉ | 28/71 [00:04<00:07, 5.92it/s]\n 41%|████ | 29/71 [00:04<00:07, 5.91it/s]\n 42%|████▏ | 30/71 [00:05<00:06, 5.91it/s]\n 44%|████▎ | 31/71 [00:05<00:06, 5.92it/s]\n 45%|████▌ | 32/71 [00:05<00:06, 5.92it/s]\n 46%|████▋ | 33/71 [00:05<00:06, 5.92it/s]\n 48%|████▊ | 34/71 [00:05<00:06, 5.92it/s]\n 49%|████▉ | 35/71 [00:05<00:06, 5.92it/s]\n 51%|█████ | 36/71 [00:06<00:05, 5.91it/s]\n 52%|█████▏ | 37/71 [00:06<00:05, 5.92it/s]\n 54%|█████▎ | 38/71 [00:06<00:05, 5.91it/s]\n 55%|█████▍ | 39/71 [00:06<00:05, 5.92it/s]\n 56%|█████▋ | 40/71 [00:06<00:05, 5.92it/s]\n 58%|█████▊ | 41/71 [00:06<00:05, 5.92it/s]\n 59%|█████▉ | 42/71 [00:07<00:04, 5.91it/s]\n 61%|██████ | 43/71 [00:07<00:04, 5.92it/s]\n 62%|██████▏ | 44/71 [00:07<00:04, 5.92it/s]\n 63%|██████▎ | 45/71 [00:07<00:04, 5.91it/s]\n 65%|██████▍ | 46/71 [00:07<00:04, 5.91it/s]\n 66%|██████▌ | 47/71 [00:07<00:04, 5.91it/s]\n 68%|██████▊ | 48/71 [00:08<00:03, 5.91it/s]\n 69%|██████▉ | 49/71 [00:08<00:03, 5.91it/s]\n 70%|███████ | 50/71 [00:08<00:03, 5.92it/s]\n 72%|███████▏ | 51/71 [00:08<00:03, 5.92it/s]\n 73%|███████▎ | 52/71 [00:08<00:03, 5.91it/s]\n 75%|███████▍ | 53/71 [00:08<00:03, 5.91it/s]\n 76%|███████▌ | 54/71 [00:09<00:02, 5.91it/s]\n 77%|███████▋ | 55/71 [00:09<00:02, 5.92it/s]\n 79%|███████▉ | 56/71 [00:09<00:02, 5.92it/s]\n 80%|████████ | 57/71 [00:09<00:02, 5.92it/s]\n 82%|████████▏ | 58/71 [00:09<00:02, 5.91it/s]\n 83%|████████▎ | 59/71 [00:09<00:02, 5.91it/s]\n 85%|████████▍ | 60/71 [00:10<00:01, 5.90it/s]\n 86%|████████▌ | 61/71 [00:10<00:01, 5.91it/s]\n 87%|████████▋ | 62/71 [00:10<00:01, 5.91it/s]\n 89%|████████▊ | 63/71 [00:10<00:01, 5.91it/s]\n 90%|█████████ | 64/71 [00:10<00:01, 5.91it/s]\n 92%|█████████▏| 65/71 [00:10<00:01, 5.90it/s]\n 93%|█████████▎| 66/71 [00:11<00:00, 5.90it/s]\n 94%|█████████▍| 67/71 [00:11<00:00, 5.90it/s]\n 96%|█████████▌| 68/71 [00:11<00:00, 5.90it/s]\n 97%|█████████▋| 69/71 [00:11<00:00, 5.91it/s]\n 99%|█████████▊| 70/71 [00:11<00:00, 5.90it/s]\n100%|██████████| 71/71 [00:12<00:00, 5.90it/s]\n100%|██████████| 71/71 [00:12<00:00, 5.92it/s]\n 0%| | 0/19 [00:00<?, ?it/s]\n 5%|▌ | 1/19 [00:00<00:02, 7.51it/s]\n 11%|█ | 2/19 [00:00<00:02, 7.44it/s]\n 16%|█▌ | 3/19 [00:00<00:02, 7.42it/s]\n 21%|██ | 4/19 [00:00<00:02, 7.41it/s]\n 26%|██▋ | 5/19 [00:00<00:01, 7.39it/s]\n 32%|███▏ | 6/19 [00:00<00:01, 7.40it/s]\n 37%|███▋ | 7/19 [00:00<00:01, 7.38it/s]\n 42%|████▏ | 8/19 [00:01<00:01, 7.36it/s]\n 47%|████▋ | 9/19 [00:01<00:01, 7.35it/s]\n 53%|█████▎ | 10/19 [00:01<00:01, 7.36it/s]\n 58%|█████▊ | 11/19 [00:01<00:01, 7.38it/s]\n 63%|██████▎ | 12/19 [00:01<00:00, 7.39it/s]\n 68%|██████▊ | 13/19 [00:01<00:00, 7.39it/s]\n 74%|███████▎ | 14/19 [00:01<00:00, 7.38it/s]\n 79%|███████▉ | 15/19 [00:02<00:00, 7.38it/s]\n 84%|████████▍ | 16/19 [00:02<00:00, 7.38it/s]\n 89%|████████▉ | 17/19 [00:02<00:00, 7.38it/s]\n 95%|█████████▍| 18/19 [00:02<00:00, 7.38it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.38it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.38it/s]", "metrics": { "predict_time": 16.307457, "total_time": 16.233422 }, "output": [ "https://pbxt.replicate.delivery/Ppof7PEjRd10DiA3y6xFT4Q4Uk9ammua2rfpCiZa87BVdqwRA/out-0.png" ], "started_at": "2023-10-22T10:11:18.079861Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kgdnqwdbhfg2gzvieef5runfpu", "cancel": "https://api.replicate.com/v1/predictions/kgdnqwdbhfg2gzvieef5runfpu/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 46646 Prompt: woman driving a motorbike, plastic raincoat, cyborg, raining, night city, futuristic, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/71 [00:00<?, ?it/s] 1%|▏ | 1/71 [00:00<00:11, 5.96it/s] 3%|▎ | 2/71 [00:00<00:11, 5.94it/s] 4%|▍ | 3/71 [00:00<00:11, 5.93it/s] 6%|▌ | 4/71 [00:00<00:11, 5.93it/s] 7%|▋ | 5/71 [00:00<00:11, 5.93it/s] 8%|▊ | 6/71 [00:01<00:10, 5.93it/s] 10%|▉ | 7/71 [00:01<00:10, 5.93it/s] 11%|█▏ | 8/71 [00:01<00:10, 5.93it/s] 13%|█▎ | 9/71 [00:01<00:10, 5.93it/s] 14%|█▍ | 10/71 [00:01<00:10, 5.93it/s] 15%|█▌ | 11/71 [00:01<00:10, 5.92it/s] 17%|█▋ | 12/71 [00:02<00:09, 5.93it/s] 18%|█▊ | 13/71 [00:02<00:09, 5.93it/s] 20%|█▉ | 14/71 [00:02<00:09, 5.93it/s] 21%|██ | 15/71 [00:02<00:09, 5.93it/s] 23%|██▎ | 16/71 [00:02<00:09, 5.92it/s] 24%|██▍ | 17/71 [00:02<00:09, 5.92it/s] 25%|██▌ | 18/71 [00:03<00:08, 5.92it/s] 27%|██▋ | 19/71 [00:03<00:08, 5.92it/s] 28%|██▊ | 20/71 [00:03<00:08, 5.92it/s] 30%|██▉ | 21/71 [00:03<00:08, 5.92it/s] 31%|███ | 22/71 [00:03<00:08, 5.92it/s] 32%|███▏ | 23/71 [00:03<00:08, 5.92it/s] 34%|███▍ | 24/71 [00:04<00:07, 5.92it/s] 35%|███▌ | 25/71 [00:04<00:07, 5.91it/s] 37%|███▋ | 26/71 [00:04<00:07, 5.92it/s] 38%|███▊ | 27/71 [00:04<00:07, 5.91it/s] 39%|███▉ | 28/71 [00:04<00:07, 5.92it/s] 41%|████ | 29/71 [00:04<00:07, 5.91it/s] 42%|████▏ | 30/71 [00:05<00:06, 5.91it/s] 44%|████▎ | 31/71 [00:05<00:06, 5.92it/s] 45%|████▌ | 32/71 [00:05<00:06, 5.92it/s] 46%|████▋ | 33/71 [00:05<00:06, 5.92it/s] 48%|████▊ | 34/71 [00:05<00:06, 5.92it/s] 49%|████▉ | 35/71 [00:05<00:06, 5.92it/s] 51%|█████ | 36/71 [00:06<00:05, 5.91it/s] 52%|█████▏ | 37/71 [00:06<00:05, 5.92it/s] 54%|█████▎ | 38/71 [00:06<00:05, 5.91it/s] 55%|█████▍ | 39/71 [00:06<00:05, 5.92it/s] 56%|█████▋ | 40/71 [00:06<00:05, 5.92it/s] 58%|█████▊ | 41/71 [00:06<00:05, 5.92it/s] 59%|█████▉ | 42/71 [00:07<00:04, 5.91it/s] 61%|██████ | 43/71 [00:07<00:04, 5.92it/s] 62%|██████▏ | 44/71 [00:07<00:04, 5.92it/s] 63%|██████▎ | 45/71 [00:07<00:04, 5.91it/s] 65%|██████▍ | 46/71 [00:07<00:04, 5.91it/s] 66%|██████▌ | 47/71 [00:07<00:04, 5.91it/s] 68%|██████▊ | 48/71 [00:08<00:03, 5.91it/s] 69%|██████▉ | 49/71 [00:08<00:03, 5.91it/s] 70%|███████ | 50/71 [00:08<00:03, 5.92it/s] 72%|███████▏ | 51/71 [00:08<00:03, 5.92it/s] 73%|███████▎ | 52/71 [00:08<00:03, 5.91it/s] 75%|███████▍ | 53/71 [00:08<00:03, 5.91it/s] 76%|███████▌ | 54/71 [00:09<00:02, 5.91it/s] 77%|███████▋ | 55/71 [00:09<00:02, 5.92it/s] 79%|███████▉ | 56/71 [00:09<00:02, 5.92it/s] 80%|████████ | 57/71 [00:09<00:02, 5.92it/s] 82%|████████▏ | 58/71 [00:09<00:02, 5.91it/s] 83%|████████▎ | 59/71 [00:09<00:02, 5.91it/s] 85%|████████▍ | 60/71 [00:10<00:01, 5.90it/s] 86%|████████▌ | 61/71 [00:10<00:01, 5.91it/s] 87%|████████▋ | 62/71 [00:10<00:01, 5.91it/s] 89%|████████▊ | 63/71 [00:10<00:01, 5.91it/s] 90%|█████████ | 64/71 [00:10<00:01, 5.91it/s] 92%|█████████▏| 65/71 [00:10<00:01, 5.90it/s] 93%|█████████▎| 66/71 [00:11<00:00, 5.90it/s] 94%|█████████▍| 67/71 [00:11<00:00, 5.90it/s] 96%|█████████▌| 68/71 [00:11<00:00, 5.90it/s] 97%|█████████▋| 69/71 [00:11<00:00, 5.91it/s] 99%|█████████▊| 70/71 [00:11<00:00, 5.90it/s] 100%|██████████| 71/71 [00:12<00:00, 5.90it/s] 100%|██████████| 71/71 [00:12<00:00, 5.92it/s] 0%| | 0/19 [00:00<?, ?it/s] 5%|▌ | 1/19 [00:00<00:02, 7.51it/s] 11%|█ | 2/19 [00:00<00:02, 7.44it/s] 16%|█▌ | 3/19 [00:00<00:02, 7.42it/s] 21%|██ | 4/19 [00:00<00:02, 7.41it/s] 26%|██▋ | 5/19 [00:00<00:01, 7.39it/s] 32%|███▏ | 6/19 [00:00<00:01, 7.40it/s] 37%|███▋ | 7/19 [00:00<00:01, 7.38it/s] 42%|████▏ | 8/19 [00:01<00:01, 7.36it/s] 47%|████▋ | 9/19 [00:01<00:01, 7.35it/s] 53%|█████▎ | 10/19 [00:01<00:01, 7.36it/s] 58%|█████▊ | 11/19 [00:01<00:01, 7.38it/s] 63%|██████▎ | 12/19 [00:01<00:00, 7.39it/s] 68%|██████▊ | 13/19 [00:01<00:00, 7.39it/s] 74%|███████▎ | 14/19 [00:01<00:00, 7.38it/s] 79%|███████▉ | 15/19 [00:02<00:00, 7.38it/s] 84%|████████▍ | 16/19 [00:02<00:00, 7.38it/s] 89%|████████▉ | 17/19 [00:02<00:00, 7.38it/s] 95%|█████████▍| 18/19 [00:02<00:00, 7.38it/s] 100%|██████████| 19/19 [00:02<00:00, 7.38it/s] 100%|██████████| 19/19 [00:02<00:00, 7.38it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDzdic7xdbzmyjxrcd6mo6o4xvp4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- european woman, plastic coat, futuristic chinese restaurant, modern skyrise, mahogany, medium-shot, in the style of TOK, crisp, sharp
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.85
- num_inference_steps
- 90
{ "width": 1024, "height": 576, "prompt": "european woman, plastic coat, futuristic chinese restaurant, modern skyrise, mahogany, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "european woman, plastic coat, futuristic chinese restaurant, modern skyrise, mahogany, medium-shot, in the style of TOK, crisp, sharp", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.85, num_inference_steps: 90 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "european woman, plastic coat, futuristic chinese restaurant, modern skyrise, mahogany, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "european woman, plastic coat, futuristic chinese restaurant, modern skyrise, mahogany, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T10:16:14.002748Z", "created_at": "2023-10-22T10:15:57.776847Z", "data_removed": false, "error": null, "id": "zdic7xdbzmyjxrcd6mo6o4xvp4", "input": { "width": 1024, "height": 576, "prompt": "european woman, plastic coat, futuristic chinese restaurant, modern skyrise, mahogany, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 90 }, "logs": "Using seed: 52950\nPrompt: european woman, plastic coat, futuristic chinese restaurant, modern skyrise, mahogany, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/71 [00:00<?, ?it/s]\n 1%|▏ | 1/71 [00:00<00:11, 5.99it/s]\n 3%|▎ | 2/71 [00:00<00:11, 5.97it/s]\n 4%|▍ | 3/71 [00:00<00:11, 5.96it/s]\n 6%|▌ | 4/71 [00:00<00:11, 5.96it/s]\n 7%|▋ | 5/71 [00:00<00:11, 5.95it/s]\n 8%|▊ | 6/71 [00:01<00:10, 5.95it/s]\n 10%|▉ | 7/71 [00:01<00:10, 5.94it/s]\n 11%|█▏ | 8/71 [00:01<00:10, 5.94it/s]\n 13%|█▎ | 9/71 [00:01<00:10, 5.93it/s]\n 14%|█▍ | 10/71 [00:01<00:10, 5.94it/s]\n 15%|█▌ | 11/71 [00:01<00:10, 5.94it/s]\n 17%|█▋ | 12/71 [00:02<00:09, 5.94it/s]\n 18%|█▊ | 13/71 [00:02<00:09, 5.94it/s]\n 20%|█▉ | 14/71 [00:02<00:09, 5.94it/s]\n 21%|██ | 15/71 [00:02<00:09, 5.93it/s]\n 23%|██▎ | 16/71 [00:02<00:09, 5.93it/s]\n 24%|██▍ | 17/71 [00:02<00:09, 5.94it/s]\n 25%|██▌ | 18/71 [00:03<00:08, 5.93it/s]\n 27%|██▋ | 19/71 [00:03<00:08, 5.93it/s]\n 28%|██▊ | 20/71 [00:03<00:08, 5.93it/s]\n 30%|██▉ | 21/71 [00:03<00:08, 5.93it/s]\n 31%|███ | 22/71 [00:03<00:08, 5.93it/s]\n 32%|███▏ | 23/71 [00:03<00:08, 5.93it/s]\n 34%|███▍ | 24/71 [00:04<00:07, 5.93it/s]\n 35%|███▌ | 25/71 [00:04<00:07, 5.93it/s]\n 37%|███▋ | 26/71 [00:04<00:07, 5.92it/s]\n 38%|███▊ | 27/71 [00:04<00:07, 5.93it/s]\n 39%|███▉ | 28/71 [00:04<00:07, 5.93it/s]\n 41%|████ | 29/71 [00:04<00:07, 5.93it/s]\n 42%|████▏ | 30/71 [00:05<00:06, 5.93it/s]\n 44%|████▎ | 31/71 [00:05<00:06, 5.93it/s]\n 45%|████▌ | 32/71 [00:05<00:06, 5.92it/s]\n 46%|████▋ | 33/71 [00:05<00:06, 5.93it/s]\n 48%|████▊ | 34/71 [00:05<00:06, 5.93it/s]\n 49%|████▉ | 35/71 [00:05<00:06, 5.92it/s]\n 51%|█████ | 36/71 [00:06<00:05, 5.92it/s]\n 52%|█████▏ | 37/71 [00:06<00:05, 5.93it/s]\n 54%|█████▎ | 38/71 [00:06<00:05, 5.93it/s]\n 55%|█████▍ | 39/71 [00:06<00:05, 5.92it/s]\n 56%|█████▋ | 40/71 [00:06<00:05, 5.93it/s]\n 58%|█████▊ | 41/71 [00:06<00:05, 5.93it/s]\n 59%|█████▉ | 42/71 [00:07<00:04, 5.93it/s]\n 61%|██████ | 43/71 [00:07<00:04, 5.93it/s]\n 62%|██████▏ | 44/71 [00:07<00:04, 5.93it/s]\n 63%|██████▎ | 45/71 [00:07<00:04, 5.93it/s]\n 65%|██████▍ | 46/71 [00:07<00:04, 5.93it/s]\n 66%|██████▌ | 47/71 [00:07<00:04, 5.93it/s]\n 68%|██████▊ | 48/71 [00:08<00:03, 5.93it/s]\n 69%|██████▉ | 49/71 [00:08<00:03, 5.93it/s]\n 70%|███████ | 50/71 [00:08<00:03, 5.92it/s]\n 72%|███████▏ | 51/71 [00:08<00:03, 5.92it/s]\n 73%|███████▎ | 52/71 [00:08<00:03, 5.92it/s]\n 75%|███████▍ | 53/71 [00:08<00:03, 5.93it/s]\n 76%|███████▌ | 54/71 [00:09<00:02, 5.92it/s]\n 77%|███████▋ | 55/71 [00:09<00:02, 5.93it/s]\n 79%|███████▉ | 56/71 [00:09<00:02, 5.93it/s]\n 80%|████████ | 57/71 [00:09<00:02, 5.92it/s]\n 82%|████████▏ | 58/71 [00:09<00:02, 5.93it/s]\n 83%|████████▎ | 59/71 [00:09<00:02, 5.93it/s]\n 85%|████████▍ | 60/71 [00:10<00:01, 5.93it/s]\n 86%|████████▌ | 61/71 [00:10<00:01, 5.93it/s]\n 87%|████████▋ | 62/71 [00:10<00:01, 5.92it/s]\n 89%|████████▊ | 63/71 [00:10<00:01, 5.92it/s]\n 90%|█████████ | 64/71 [00:10<00:01, 5.92it/s]\n 92%|█████████▏| 65/71 [00:10<00:01, 5.92it/s]\n 93%|█████████▎| 66/71 [00:11<00:00, 5.92it/s]\n 94%|█████████▍| 67/71 [00:11<00:00, 5.93it/s]\n 96%|█████████▌| 68/71 [00:11<00:00, 5.92it/s]\n 97%|█████████▋| 69/71 [00:11<00:00, 5.92it/s]\n 99%|█████████▊| 70/71 [00:11<00:00, 5.92it/s]\n100%|██████████| 71/71 [00:11<00:00, 5.92it/s]\n100%|██████████| 71/71 [00:11<00:00, 5.93it/s]\n 0%| | 0/19 [00:00<?, ?it/s]\n 5%|▌ | 1/19 [00:00<00:02, 7.50it/s]\n 11%|█ | 2/19 [00:00<00:02, 7.45it/s]\n 16%|█▌ | 3/19 [00:00<00:02, 7.43it/s]\n 21%|██ | 4/19 [00:00<00:02, 7.43it/s]\n 26%|██▋ | 5/19 [00:00<00:01, 7.42it/s]\n 32%|███▏ | 6/19 [00:00<00:01, 7.41it/s]\n 37%|███▋ | 7/19 [00:00<00:01, 7.39it/s]\n 42%|████▏ | 8/19 [00:01<00:01, 7.39it/s]\n 47%|████▋ | 9/19 [00:01<00:01, 7.39it/s]\n 53%|█████▎ | 10/19 [00:01<00:01, 7.39it/s]\n 58%|█████▊ | 11/19 [00:01<00:01, 7.39it/s]\n 63%|██████▎ | 12/19 [00:01<00:00, 7.38it/s]\n 68%|██████▊ | 13/19 [00:01<00:00, 7.38it/s]\n 74%|███████▎ | 14/19 [00:01<00:00, 7.38it/s]\n 79%|███████▉ | 15/19 [00:02<00:00, 7.38it/s]\n 84%|████████▍ | 16/19 [00:02<00:00, 7.38it/s]\n 89%|████████▉ | 17/19 [00:02<00:00, 7.39it/s]\n 95%|█████████▍| 18/19 [00:02<00:00, 7.39it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.39it/s]\n100%|██████████| 19/19 [00:02<00:00, 7.39it/s]", "metrics": { "predict_time": 16.244511, "total_time": 16.225901 }, "output": [ "https://pbxt.replicate.delivery/DOsrWlgqcLbxGRdTIwEZJ4E9uABEl3BrlSS3P2aOYzXboKcE/out-0.png" ], "started_at": "2023-10-22T10:15:57.758237Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zdic7xdbzmyjxrcd6mo6o4xvp4", "cancel": "https://api.replicate.com/v1/predictions/zdic7xdbzmyjxrcd6mo6o4xvp4/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 52950 Prompt: european woman, plastic coat, futuristic chinese restaurant, modern skyrise, mahogany, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/71 [00:00<?, ?it/s] 1%|▏ | 1/71 [00:00<00:11, 5.99it/s] 3%|▎ | 2/71 [00:00<00:11, 5.97it/s] 4%|▍ | 3/71 [00:00<00:11, 5.96it/s] 6%|▌ | 4/71 [00:00<00:11, 5.96it/s] 7%|▋ | 5/71 [00:00<00:11, 5.95it/s] 8%|▊ | 6/71 [00:01<00:10, 5.95it/s] 10%|▉ | 7/71 [00:01<00:10, 5.94it/s] 11%|█▏ | 8/71 [00:01<00:10, 5.94it/s] 13%|█▎ | 9/71 [00:01<00:10, 5.93it/s] 14%|█▍ | 10/71 [00:01<00:10, 5.94it/s] 15%|█▌ | 11/71 [00:01<00:10, 5.94it/s] 17%|█▋ | 12/71 [00:02<00:09, 5.94it/s] 18%|█▊ | 13/71 [00:02<00:09, 5.94it/s] 20%|█▉ | 14/71 [00:02<00:09, 5.94it/s] 21%|██ | 15/71 [00:02<00:09, 5.93it/s] 23%|██▎ | 16/71 [00:02<00:09, 5.93it/s] 24%|██▍ | 17/71 [00:02<00:09, 5.94it/s] 25%|██▌ | 18/71 [00:03<00:08, 5.93it/s] 27%|██▋ | 19/71 [00:03<00:08, 5.93it/s] 28%|██▊ | 20/71 [00:03<00:08, 5.93it/s] 30%|██▉ | 21/71 [00:03<00:08, 5.93it/s] 31%|███ | 22/71 [00:03<00:08, 5.93it/s] 32%|███▏ | 23/71 [00:03<00:08, 5.93it/s] 34%|███▍ | 24/71 [00:04<00:07, 5.93it/s] 35%|███▌ | 25/71 [00:04<00:07, 5.93it/s] 37%|███▋ | 26/71 [00:04<00:07, 5.92it/s] 38%|███▊ | 27/71 [00:04<00:07, 5.93it/s] 39%|███▉ | 28/71 [00:04<00:07, 5.93it/s] 41%|████ | 29/71 [00:04<00:07, 5.93it/s] 42%|████▏ | 30/71 [00:05<00:06, 5.93it/s] 44%|████▎ | 31/71 [00:05<00:06, 5.93it/s] 45%|████▌ | 32/71 [00:05<00:06, 5.92it/s] 46%|████▋ | 33/71 [00:05<00:06, 5.93it/s] 48%|████▊ | 34/71 [00:05<00:06, 5.93it/s] 49%|████▉ | 35/71 [00:05<00:06, 5.92it/s] 51%|█████ | 36/71 [00:06<00:05, 5.92it/s] 52%|█████▏ | 37/71 [00:06<00:05, 5.93it/s] 54%|█████▎ | 38/71 [00:06<00:05, 5.93it/s] 55%|█████▍ | 39/71 [00:06<00:05, 5.92it/s] 56%|█████▋ | 40/71 [00:06<00:05, 5.93it/s] 58%|█████▊ | 41/71 [00:06<00:05, 5.93it/s] 59%|█████▉ | 42/71 [00:07<00:04, 5.93it/s] 61%|██████ | 43/71 [00:07<00:04, 5.93it/s] 62%|██████▏ | 44/71 [00:07<00:04, 5.93it/s] 63%|██████▎ | 45/71 [00:07<00:04, 5.93it/s] 65%|██████▍ | 46/71 [00:07<00:04, 5.93it/s] 66%|██████▌ | 47/71 [00:07<00:04, 5.93it/s] 68%|██████▊ | 48/71 [00:08<00:03, 5.93it/s] 69%|██████▉ | 49/71 [00:08<00:03, 5.93it/s] 70%|███████ | 50/71 [00:08<00:03, 5.92it/s] 72%|███████▏ | 51/71 [00:08<00:03, 5.92it/s] 73%|███████▎ | 52/71 [00:08<00:03, 5.92it/s] 75%|███████▍ | 53/71 [00:08<00:03, 5.93it/s] 76%|███████▌ | 54/71 [00:09<00:02, 5.92it/s] 77%|███████▋ | 55/71 [00:09<00:02, 5.93it/s] 79%|███████▉ | 56/71 [00:09<00:02, 5.93it/s] 80%|████████ | 57/71 [00:09<00:02, 5.92it/s] 82%|████████▏ | 58/71 [00:09<00:02, 5.93it/s] 83%|████████▎ | 59/71 [00:09<00:02, 5.93it/s] 85%|████████▍ | 60/71 [00:10<00:01, 5.93it/s] 86%|████████▌ | 61/71 [00:10<00:01, 5.93it/s] 87%|████████▋ | 62/71 [00:10<00:01, 5.92it/s] 89%|████████▊ | 63/71 [00:10<00:01, 5.92it/s] 90%|█████████ | 64/71 [00:10<00:01, 5.92it/s] 92%|█████████▏| 65/71 [00:10<00:01, 5.92it/s] 93%|█████████▎| 66/71 [00:11<00:00, 5.92it/s] 94%|█████████▍| 67/71 [00:11<00:00, 5.93it/s] 96%|█████████▌| 68/71 [00:11<00:00, 5.92it/s] 97%|█████████▋| 69/71 [00:11<00:00, 5.92it/s] 99%|█████████▊| 70/71 [00:11<00:00, 5.92it/s] 100%|██████████| 71/71 [00:11<00:00, 5.92it/s] 100%|██████████| 71/71 [00:11<00:00, 5.93it/s] 0%| | 0/19 [00:00<?, ?it/s] 5%|▌ | 1/19 [00:00<00:02, 7.50it/s] 11%|█ | 2/19 [00:00<00:02, 7.45it/s] 16%|█▌ | 3/19 [00:00<00:02, 7.43it/s] 21%|██ | 4/19 [00:00<00:02, 7.43it/s] 26%|██▋ | 5/19 [00:00<00:01, 7.42it/s] 32%|███▏ | 6/19 [00:00<00:01, 7.41it/s] 37%|███▋ | 7/19 [00:00<00:01, 7.39it/s] 42%|████▏ | 8/19 [00:01<00:01, 7.39it/s] 47%|████▋ | 9/19 [00:01<00:01, 7.39it/s] 53%|█████▎ | 10/19 [00:01<00:01, 7.39it/s] 58%|█████▊ | 11/19 [00:01<00:01, 7.39it/s] 63%|██████▎ | 12/19 [00:01<00:00, 7.38it/s] 68%|██████▊ | 13/19 [00:01<00:00, 7.38it/s] 74%|███████▎ | 14/19 [00:01<00:00, 7.38it/s] 79%|███████▉ | 15/19 [00:02<00:00, 7.38it/s] 84%|████████▍ | 16/19 [00:02<00:00, 7.38it/s] 89%|████████▉ | 17/19 [00:02<00:00, 7.39it/s] 95%|█████████▍| 18/19 [00:02<00:00, 7.39it/s] 100%|██████████| 19/19 [00:02<00:00, 7.39it/s] 100%|██████████| 19/19 [00:02<00:00, 7.39it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDte5wei3bazrql7orc6qfh7n4zeStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 576
- prompt
- young woman walking past a racing car, futuristic gas station, robot dog, raining, night city, futuristic, palm trees, medium-shot, in the style of TOK, crisp, sharp
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.9
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- cropped, low quality, lowres, deformed
- prompt_strength
- 0.85
- num_inference_steps
- 110
{ "width": 1024, "height": 576, "prompt": "young woman walking past a racing car, futuristic gas station, robot dog, raining, night city, futuristic, palm trees, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 110 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 576, prompt: "young woman walking past a racing car, futuristic gas station, robot dog, raining, night city, futuristic, palm trees, medium-shot, in the style of TOK, crisp, sharp", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.9, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "cropped, low quality, lowres, deformed", prompt_strength: 0.85, num_inference_steps: 110 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 576, "prompt": "young woman walking past a racing car, futuristic gas station, robot dog, raining, night city, futuristic, palm trees, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 110 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 576, "prompt": "young woman walking past a racing car, futuristic gas station, robot dog, raining, night city, futuristic, palm trees, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 110 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T10:21:07.150230Z", "created_at": "2023-10-22T10:20:47.691620Z", "data_removed": false, "error": null, "id": "te5wei3bazrql7orc6qfh7n4ze", "input": { "width": 1024, "height": 576, "prompt": "young woman walking past a racing car, futuristic gas station, robot dog, raining, night city, futuristic, palm trees, medium-shot, in the style of TOK, crisp, sharp", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.9, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "cropped, low quality, lowres, deformed", "prompt_strength": 0.85, "num_inference_steps": 110 }, "logs": "Using seed: 31662\nPrompt: young woman walking past a racing car, futuristic gas station, robot dog, raining, night city, futuristic, palm trees, medium-shot, in the style of <s0><s1>, crisp, sharp\ntxt2img mode\n 0%| | 0/87 [00:00<?, ?it/s]\n 1%| | 1/87 [00:00<00:14, 5.97it/s]\n 2%|▏ | 2/87 [00:00<00:14, 5.95it/s]\n 3%|▎ | 3/87 [00:00<00:14, 5.94it/s]\n 5%|▍ | 4/87 [00:00<00:13, 5.94it/s]\n 6%|▌ | 5/87 [00:00<00:13, 5.93it/s]\n 7%|▋ | 6/87 [00:01<00:13, 5.93it/s]\n 8%|▊ | 7/87 [00:01<00:13, 5.92it/s]\n 9%|▉ | 8/87 [00:01<00:13, 5.93it/s]\n 10%|█ | 9/87 [00:01<00:13, 5.93it/s]\n 11%|█▏ | 10/87 [00:01<00:13, 5.92it/s]\n 13%|█▎ | 11/87 [00:01<00:12, 5.92it/s]\n 14%|█▍ | 12/87 [00:02<00:12, 5.92it/s]\n 15%|█▍ | 13/87 [00:02<00:12, 5.92it/s]\n 16%|█▌ | 14/87 [00:02<00:12, 5.92it/s]\n 17%|█▋ | 15/87 [00:02<00:12, 5.93it/s]\n 18%|█▊ | 16/87 [00:02<00:11, 5.93it/s]\n 20%|█▉ | 17/87 [00:02<00:11, 5.92it/s]\n 21%|██ | 18/87 [00:03<00:11, 5.92it/s]\n 22%|██▏ | 19/87 [00:03<00:11, 5.92it/s]\n 23%|██▎ | 20/87 [00:03<00:11, 5.92it/s]\n 24%|██▍ | 21/87 [00:03<00:11, 5.92it/s]\n 25%|██▌ | 22/87 [00:03<00:10, 5.92it/s]\n 26%|██▋ | 23/87 [00:03<00:10, 5.91it/s]\n 28%|██▊ | 24/87 [00:04<00:10, 5.92it/s]\n 29%|██▊ | 25/87 [00:04<00:10, 5.92it/s]\n 30%|██▉ | 26/87 [00:04<00:10, 5.92it/s]\n 31%|███ | 27/87 [00:04<00:10, 5.92it/s]\n 32%|███▏ | 28/87 [00:04<00:09, 5.92it/s]\n 33%|███▎ | 29/87 [00:04<00:09, 5.92it/s]\n 34%|███▍ | 30/87 [00:05<00:09, 5.92it/s]\n 36%|███▌ | 31/87 [00:05<00:09, 5.92it/s]\n 37%|███▋ | 32/87 [00:05<00:09, 5.91it/s]\n 38%|███▊ | 33/87 [00:05<00:09, 5.92it/s]\n 39%|███▉ | 34/87 [00:05<00:08, 5.92it/s]\n 40%|████ | 35/87 [00:05<00:08, 5.92it/s]\n 41%|████▏ | 36/87 [00:06<00:08, 5.92it/s]\n 43%|████▎ | 37/87 [00:06<00:08, 5.92it/s]\n 44%|████▎ | 38/87 [00:06<00:08, 5.92it/s]\n 45%|████▍ | 39/87 [00:06<00:08, 5.92it/s]\n 46%|████▌ | 40/87 [00:06<00:07, 5.92it/s]\n 47%|████▋ | 41/87 [00:06<00:07, 5.92it/s]\n 48%|████▊ | 42/87 [00:07<00:07, 5.92it/s]\n 49%|████▉ | 43/87 [00:07<00:07, 5.91it/s]\n 51%|█████ | 44/87 [00:07<00:07, 5.92it/s]\n 52%|█████▏ | 45/87 [00:07<00:07, 5.91it/s]\n 53%|█████▎ | 46/87 [00:07<00:06, 5.91it/s]\n 54%|█████▍ | 47/87 [00:07<00:06, 5.92it/s]\n 55%|█████▌ | 48/87 [00:08<00:06, 5.92it/s]\n 56%|█████▋ | 49/87 [00:08<00:06, 5.92it/s]\n 57%|█████▋ | 50/87 [00:08<00:06, 5.91it/s]\n 59%|█████▊ | 51/87 [00:08<00:06, 5.92it/s]\n 60%|█████▉ | 52/87 [00:08<00:05, 5.91it/s]\n 61%|██████ | 53/87 [00:08<00:05, 5.91it/s]\n 62%|██████▏ | 54/87 [00:09<00:05, 5.91it/s]\n 63%|██████▎ | 55/87 [00:09<00:05, 5.91it/s]\n 64%|██████▍ | 56/87 [00:09<00:05, 5.91it/s]\n 66%|██████▌ | 57/87 [00:09<00:05, 5.91it/s]\n 67%|██████▋ | 58/87 [00:09<00:04, 5.91it/s]\n 68%|██████▊ | 59/87 [00:09<00:04, 5.91it/s]\n 69%|██████▉ | 60/87 [00:10<00:04, 5.90it/s]\n 70%|███████ | 61/87 [00:10<00:04, 5.91it/s]\n 71%|███████▏ | 62/87 [00:10<00:04, 5.91it/s]\n 72%|███████▏ | 63/87 [00:10<00:04, 5.91it/s]\n 74%|███████▎ | 64/87 [00:10<00:03, 5.91it/s]\n 75%|███████▍ | 65/87 [00:10<00:03, 5.91it/s]\n 76%|███████▌ | 66/87 [00:11<00:03, 5.91it/s]\n 77%|███████▋ | 67/87 [00:11<00:03, 5.91it/s]\n 78%|███████▊ | 68/87 [00:11<00:03, 5.91it/s]\n 79%|███████▉ | 69/87 [00:11<00:03, 5.91it/s]\n 80%|████████ | 70/87 [00:11<00:02, 5.92it/s]\n 82%|████████▏ | 71/87 [00:11<00:02, 5.91it/s]\n 83%|████████▎ | 72/87 [00:12<00:02, 5.91it/s]\n 84%|████████▍ | 73/87 [00:12<00:02, 5.91it/s]\n 85%|████████▌ | 74/87 [00:12<00:02, 5.91it/s]\n 86%|████████▌ | 75/87 [00:12<00:02, 5.91it/s]\n 87%|████████▋ | 76/87 [00:12<00:01, 5.91it/s]\n 89%|████████▊ | 77/87 [00:13<00:01, 5.91it/s]\n 90%|████████▉ | 78/87 [00:13<00:01, 5.91it/s]\n 91%|█████████ | 79/87 [00:13<00:01, 5.91it/s]\n 92%|█████████▏| 80/87 [00:13<00:01, 5.91it/s]\n 93%|█████████▎| 81/87 [00:13<00:01, 5.91it/s]\n 94%|█████████▍| 82/87 [00:13<00:00, 5.91it/s]\n 95%|█████████▌| 83/87 [00:14<00:00, 5.91it/s]\n 97%|█████████▋| 84/87 [00:14<00:00, 5.91it/s]\n 98%|█████████▊| 85/87 [00:14<00:00, 5.91it/s]\n 99%|█████████▉| 86/87 [00:14<00:00, 5.91it/s]\n100%|██████████| 87/87 [00:14<00:00, 5.91it/s]\n100%|██████████| 87/87 [00:14<00:00, 5.92it/s]\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:02, 7.48it/s]\n 9%|▊ | 2/23 [00:00<00:02, 7.40it/s]\n 13%|█▎ | 3/23 [00:00<00:02, 7.39it/s]\n 17%|█▋ | 4/23 [00:00<00:02, 7.38it/s]\n 22%|██▏ | 5/23 [00:00<00:02, 7.37it/s]\n 26%|██▌ | 6/23 [00:00<00:02, 7.38it/s]\n 30%|███ | 7/23 [00:00<00:02, 7.37it/s]\n 35%|███▍ | 8/23 [00:01<00:02, 7.37it/s]\n 39%|███▉ | 9/23 [00:01<00:01, 7.37it/s]\n 43%|████▎ | 10/23 [00:01<00:01, 7.37it/s]\n 48%|████▊ | 11/23 [00:01<00:01, 7.38it/s]\n 52%|█████▏ | 12/23 [00:01<00:01, 7.37it/s]\n 57%|█████▋ | 13/23 [00:01<00:01, 7.35it/s]\n 61%|██████ | 14/23 [00:01<00:01, 7.36it/s]\n 65%|██████▌ | 15/23 [00:02<00:01, 7.37it/s]\n 70%|██████▉ | 16/23 [00:02<00:00, 7.37it/s]\n 74%|███████▍ | 17/23 [00:02<00:00, 7.37it/s]\n 78%|███████▊ | 18/23 [00:02<00:00, 7.38it/s]\n 83%|████████▎ | 19/23 [00:02<00:00, 7.37it/s]\n 87%|████████▋ | 20/23 [00:02<00:00, 7.38it/s]\n 91%|█████████▏| 21/23 [00:02<00:00, 7.37it/s]\n 96%|█████████▌| 22/23 [00:02<00:00, 7.37it/s]\n100%|██████████| 23/23 [00:03<00:00, 7.37it/s]\n100%|██████████| 23/23 [00:03<00:00, 7.37it/s]", "metrics": { "predict_time": 19.498764, "total_time": 19.45861 }, "output": [ "https://pbxt.replicate.delivery/0GgPIe7gODQ7dCbwqeIAPDQNZzCx9qWT7wfwB38ykdIkMVhjA/out-0.png" ], "started_at": "2023-10-22T10:20:47.651466Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/te5wei3bazrql7orc6qfh7n4ze", "cancel": "https://api.replicate.com/v1/predictions/te5wei3bazrql7orc6qfh7n4ze/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 31662 Prompt: young woman walking past a racing car, futuristic gas station, robot dog, raining, night city, futuristic, palm trees, medium-shot, in the style of <s0><s1>, crisp, sharp txt2img mode 0%| | 0/87 [00:00<?, ?it/s] 1%| | 1/87 [00:00<00:14, 5.97it/s] 2%|▏ | 2/87 [00:00<00:14, 5.95it/s] 3%|▎ | 3/87 [00:00<00:14, 5.94it/s] 5%|▍ | 4/87 [00:00<00:13, 5.94it/s] 6%|▌ | 5/87 [00:00<00:13, 5.93it/s] 7%|▋ | 6/87 [00:01<00:13, 5.93it/s] 8%|▊ | 7/87 [00:01<00:13, 5.92it/s] 9%|▉ | 8/87 [00:01<00:13, 5.93it/s] 10%|█ | 9/87 [00:01<00:13, 5.93it/s] 11%|█▏ | 10/87 [00:01<00:13, 5.92it/s] 13%|█▎ | 11/87 [00:01<00:12, 5.92it/s] 14%|█▍ | 12/87 [00:02<00:12, 5.92it/s] 15%|█▍ | 13/87 [00:02<00:12, 5.92it/s] 16%|█▌ | 14/87 [00:02<00:12, 5.92it/s] 17%|█▋ | 15/87 [00:02<00:12, 5.93it/s] 18%|█▊ | 16/87 [00:02<00:11, 5.93it/s] 20%|█▉ | 17/87 [00:02<00:11, 5.92it/s] 21%|██ | 18/87 [00:03<00:11, 5.92it/s] 22%|██▏ | 19/87 [00:03<00:11, 5.92it/s] 23%|██▎ | 20/87 [00:03<00:11, 5.92it/s] 24%|██▍ | 21/87 [00:03<00:11, 5.92it/s] 25%|██▌ | 22/87 [00:03<00:10, 5.92it/s] 26%|██▋ | 23/87 [00:03<00:10, 5.91it/s] 28%|██▊ | 24/87 [00:04<00:10, 5.92it/s] 29%|██▊ | 25/87 [00:04<00:10, 5.92it/s] 30%|██▉ | 26/87 [00:04<00:10, 5.92it/s] 31%|███ | 27/87 [00:04<00:10, 5.92it/s] 32%|███▏ | 28/87 [00:04<00:09, 5.92it/s] 33%|███▎ | 29/87 [00:04<00:09, 5.92it/s] 34%|███▍ | 30/87 [00:05<00:09, 5.92it/s] 36%|███▌ | 31/87 [00:05<00:09, 5.92it/s] 37%|███▋ | 32/87 [00:05<00:09, 5.91it/s] 38%|███▊ | 33/87 [00:05<00:09, 5.92it/s] 39%|███▉ | 34/87 [00:05<00:08, 5.92it/s] 40%|████ | 35/87 [00:05<00:08, 5.92it/s] 41%|████▏ | 36/87 [00:06<00:08, 5.92it/s] 43%|████▎ | 37/87 [00:06<00:08, 5.92it/s] 44%|████▎ | 38/87 [00:06<00:08, 5.92it/s] 45%|████▍ | 39/87 [00:06<00:08, 5.92it/s] 46%|████▌ | 40/87 [00:06<00:07, 5.92it/s] 47%|████▋ | 41/87 [00:06<00:07, 5.92it/s] 48%|████▊ | 42/87 [00:07<00:07, 5.92it/s] 49%|████▉ | 43/87 [00:07<00:07, 5.91it/s] 51%|█████ | 44/87 [00:07<00:07, 5.92it/s] 52%|█████▏ | 45/87 [00:07<00:07, 5.91it/s] 53%|█████▎ | 46/87 [00:07<00:06, 5.91it/s] 54%|█████▍ | 47/87 [00:07<00:06, 5.92it/s] 55%|█████▌ | 48/87 [00:08<00:06, 5.92it/s] 56%|█████▋ | 49/87 [00:08<00:06, 5.92it/s] 57%|█████▋ | 50/87 [00:08<00:06, 5.91it/s] 59%|█████▊ | 51/87 [00:08<00:06, 5.92it/s] 60%|█████▉ | 52/87 [00:08<00:05, 5.91it/s] 61%|██████ | 53/87 [00:08<00:05, 5.91it/s] 62%|██████▏ | 54/87 [00:09<00:05, 5.91it/s] 63%|██████▎ | 55/87 [00:09<00:05, 5.91it/s] 64%|██████▍ | 56/87 [00:09<00:05, 5.91it/s] 66%|██████▌ | 57/87 [00:09<00:05, 5.91it/s] 67%|██████▋ | 58/87 [00:09<00:04, 5.91it/s] 68%|██████▊ | 59/87 [00:09<00:04, 5.91it/s] 69%|██████▉ | 60/87 [00:10<00:04, 5.90it/s] 70%|███████ | 61/87 [00:10<00:04, 5.91it/s] 71%|███████▏ | 62/87 [00:10<00:04, 5.91it/s] 72%|███████▏ | 63/87 [00:10<00:04, 5.91it/s] 74%|███████▎ | 64/87 [00:10<00:03, 5.91it/s] 75%|███████▍ | 65/87 [00:10<00:03, 5.91it/s] 76%|███████▌ | 66/87 [00:11<00:03, 5.91it/s] 77%|███████▋ | 67/87 [00:11<00:03, 5.91it/s] 78%|███████▊ | 68/87 [00:11<00:03, 5.91it/s] 79%|███████▉ | 69/87 [00:11<00:03, 5.91it/s] 80%|████████ | 70/87 [00:11<00:02, 5.92it/s] 82%|████████▏ | 71/87 [00:11<00:02, 5.91it/s] 83%|████████▎ | 72/87 [00:12<00:02, 5.91it/s] 84%|████████▍ | 73/87 [00:12<00:02, 5.91it/s] 85%|████████▌ | 74/87 [00:12<00:02, 5.91it/s] 86%|████████▌ | 75/87 [00:12<00:02, 5.91it/s] 87%|████████▋ | 76/87 [00:12<00:01, 5.91it/s] 89%|████████▊ | 77/87 [00:13<00:01, 5.91it/s] 90%|████████▉ | 78/87 [00:13<00:01, 5.91it/s] 91%|█████████ | 79/87 [00:13<00:01, 5.91it/s] 92%|█████████▏| 80/87 [00:13<00:01, 5.91it/s] 93%|█████████▎| 81/87 [00:13<00:01, 5.91it/s] 94%|█████████▍| 82/87 [00:13<00:00, 5.91it/s] 95%|█████████▌| 83/87 [00:14<00:00, 5.91it/s] 97%|█████████▋| 84/87 [00:14<00:00, 5.91it/s] 98%|█████████▊| 85/87 [00:14<00:00, 5.91it/s] 99%|█████████▉| 86/87 [00:14<00:00, 5.91it/s] 100%|██████████| 87/87 [00:14<00:00, 5.91it/s] 100%|██████████| 87/87 [00:14<00:00, 5.92it/s] 0%| | 0/23 [00:00<?, ?it/s] 4%|▍ | 1/23 [00:00<00:02, 7.48it/s] 9%|▊ | 2/23 [00:00<00:02, 7.40it/s] 13%|█▎ | 3/23 [00:00<00:02, 7.39it/s] 17%|█▋ | 4/23 [00:00<00:02, 7.38it/s] 22%|██▏ | 5/23 [00:00<00:02, 7.37it/s] 26%|██▌ | 6/23 [00:00<00:02, 7.38it/s] 30%|███ | 7/23 [00:00<00:02, 7.37it/s] 35%|███▍ | 8/23 [00:01<00:02, 7.37it/s] 39%|███▉ | 9/23 [00:01<00:01, 7.37it/s] 43%|████▎ | 10/23 [00:01<00:01, 7.37it/s] 48%|████▊ | 11/23 [00:01<00:01, 7.38it/s] 52%|█████▏ | 12/23 [00:01<00:01, 7.37it/s] 57%|█████▋ | 13/23 [00:01<00:01, 7.35it/s] 61%|██████ | 14/23 [00:01<00:01, 7.36it/s] 65%|██████▌ | 15/23 [00:02<00:01, 7.37it/s] 70%|██████▉ | 16/23 [00:02<00:00, 7.37it/s] 74%|███████▍ | 17/23 [00:02<00:00, 7.37it/s] 78%|███████▊ | 18/23 [00:02<00:00, 7.38it/s] 83%|████████▎ | 19/23 [00:02<00:00, 7.37it/s] 87%|████████▋ | 20/23 [00:02<00:00, 7.38it/s] 91%|█████████▏| 21/23 [00:02<00:00, 7.37it/s] 96%|█████████▌| 22/23 [00:02<00:00, 7.37it/s] 100%|██████████| 23/23 [00:03<00:00, 7.37it/s] 100%|██████████| 23/23 [00:03<00:00, 7.37it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDs3dw7xtba75bwzqw2qpn2fsib4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 800
- height
- 1024
- prompt
- caucasian worker, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK
- refine
- base_image_refiner
- scheduler
- K_EULER
- lora_scale
- 0.95
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 800, "height": 1024, "prompt": "caucasian worker, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 800, height: 1024, prompt: "caucasian worker, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", refine: "base_image_refiner", scheduler: "K_EULER", lora_scale: 0.95, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 800, "height": 1024, "prompt": "caucasian worker, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 800, "height": 1024, "prompt": "caucasian worker, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T10:33:27.249627Z", "created_at": "2023-10-22T10:33:05.151050Z", "data_removed": false, "error": null, "id": "s3dw7xtba75bwzqw2qpn2fsib4", "input": { "width": 800, "height": 1024, "prompt": "caucasian worker, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 44825\nPrompt: caucasian worker, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/70 [00:00<?, ?it/s]\n 1%|▏ | 1/70 [00:00<00:15, 4.31it/s]\n 3%|▎ | 2/70 [00:00<00:15, 4.30it/s]\n 4%|▍ | 3/70 [00:00<00:15, 4.28it/s]\n 6%|▌ | 4/70 [00:00<00:15, 4.27it/s]\n 7%|▋ | 5/70 [00:01<00:15, 4.27it/s]\n 9%|▊ | 6/70 [00:01<00:14, 4.27it/s]\n 10%|█ | 7/70 [00:01<00:14, 4.27it/s]\n 11%|█▏ | 8/70 [00:01<00:14, 4.27it/s]\n 13%|█▎ | 9/70 [00:02<00:14, 4.27it/s]\n 14%|█▍ | 10/70 [00:02<00:14, 4.27it/s]\n 16%|█▌ | 11/70 [00:02<00:13, 4.26it/s]\n 17%|█▋ | 12/70 [00:02<00:13, 4.27it/s]\n 19%|█▊ | 13/70 [00:03<00:13, 4.27it/s]\n 20%|██ | 14/70 [00:03<00:13, 4.26it/s]\n 21%|██▏ | 15/70 [00:03<00:12, 4.25it/s]\n 23%|██▎ | 16/70 [00:03<00:12, 4.24it/s]\n 24%|██▍ | 17/70 [00:03<00:12, 4.25it/s]\n 26%|██▌ | 18/70 [00:04<00:12, 4.25it/s]\n 27%|██▋ | 19/70 [00:04<00:11, 4.26it/s]\n 29%|██▊ | 20/70 [00:04<00:11, 4.26it/s]\n 30%|███ | 21/70 [00:04<00:11, 4.27it/s]\n 31%|███▏ | 22/70 [00:05<00:11, 4.26it/s]\n 33%|███▎ | 23/70 [00:05<00:11, 4.26it/s]\n 34%|███▍ | 24/70 [00:05<00:10, 4.26it/s]\n 36%|███▌ | 25/70 [00:05<00:10, 4.26it/s]\n 37%|███▋ | 26/70 [00:06<00:10, 4.26it/s]\n 39%|███▊ | 27/70 [00:06<00:10, 4.26it/s]\n 40%|████ | 28/70 [00:06<00:09, 4.26it/s]\n 41%|████▏ | 29/70 [00:06<00:09, 4.26it/s]\n 43%|████▎ | 30/70 [00:07<00:09, 4.26it/s]\n 44%|████▍ | 31/70 [00:07<00:09, 4.26it/s]\n 46%|████▌ | 32/70 [00:07<00:08, 4.26it/s]\n 47%|████▋ | 33/70 [00:07<00:08, 4.27it/s]\n 49%|████▊ | 34/70 [00:07<00:08, 4.27it/s]\n 50%|█████ | 35/70 [00:08<00:08, 4.27it/s]\n 51%|█████▏ | 36/70 [00:08<00:07, 4.27it/s]\n 53%|█████▎ | 37/70 [00:08<00:07, 4.27it/s]\n 54%|█████▍ | 38/70 [00:08<00:07, 4.26it/s]\n 56%|█████▌ | 39/70 [00:09<00:07, 4.26it/s]\n 57%|█████▋ | 40/70 [00:09<00:07, 4.27it/s]\n 59%|█████▊ | 41/70 [00:09<00:06, 4.27it/s]\n 60%|██████ | 42/70 [00:09<00:06, 4.26it/s]\n 61%|██████▏ | 43/70 [00:10<00:06, 4.27it/s]\n 63%|██████▎ | 44/70 [00:10<00:06, 4.26it/s]\n 64%|██████▍ | 45/70 [00:10<00:05, 4.26it/s]\n 66%|██████▌ | 46/70 [00:10<00:05, 4.26it/s]\n 67%|██████▋ | 47/70 [00:11<00:05, 4.26it/s]\n 69%|██████▊ | 48/70 [00:11<00:05, 4.26it/s]\n 70%|███████ | 49/70 [00:11<00:04, 4.26it/s]\n 71%|███████▏ | 50/70 [00:11<00:04, 4.26it/s]\n 73%|███████▎ | 51/70 [00:11<00:04, 4.26it/s]\n 74%|███████▍ | 52/70 [00:12<00:04, 4.26it/s]\n 76%|███████▌ | 53/70 [00:12<00:03, 4.26it/s]\n 77%|███████▋ | 54/70 [00:12<00:03, 4.27it/s]\n 79%|███████▊ | 55/70 [00:12<00:03, 4.26it/s]\n 80%|████████ | 56/70 [00:13<00:03, 4.26it/s]\n 81%|████████▏ | 57/70 [00:13<00:03, 4.25it/s]\n 83%|████████▎ | 58/70 [00:13<00:02, 4.25it/s]\n 84%|████████▍ | 59/70 [00:13<00:02, 4.25it/s]\n 86%|████████▌ | 60/70 [00:14<00:02, 4.25it/s]\n 87%|████████▋ | 61/70 [00:14<00:02, 4.25it/s]\n 89%|████████▊ | 62/70 [00:14<00:01, 4.25it/s]\n 90%|█████████ | 63/70 [00:14<00:01, 4.25it/s]\n 91%|█████████▏| 64/70 [00:15<00:01, 4.25it/s]\n 93%|█████████▎| 65/70 [00:15<00:01, 4.25it/s]\n 94%|█████████▍| 66/70 [00:15<00:00, 4.25it/s]\n 96%|█████████▌| 67/70 [00:15<00:00, 4.26it/s]\n 97%|█████████▋| 68/70 [00:15<00:00, 4.26it/s]\n 99%|█████████▊| 69/70 [00:16<00:00, 4.26it/s]\n100%|██████████| 70/70 [00:16<00:00, 4.25it/s]\n100%|██████████| 70/70 [00:16<00:00, 4.26it/s]\n 0%| | 0/21 [00:00<?, ?it/s]\n 5%|▍ | 1/21 [00:00<00:03, 5.56it/s]\n 10%|▉ | 2/21 [00:00<00:03, 5.52it/s]\n 14%|█▍ | 3/21 [00:00<00:03, 5.52it/s]\n 19%|█▉ | 4/21 [00:00<00:03, 5.50it/s]\n 24%|██▍ | 5/21 [00:00<00:02, 5.48it/s]\n 29%|██▊ | 6/21 [00:01<00:02, 5.47it/s]\n 33%|███▎ | 7/21 [00:01<00:02, 5.46it/s]\n 38%|███▊ | 8/21 [00:01<00:02, 5.46it/s]\n 43%|████▎ | 9/21 [00:01<00:02, 5.47it/s]\n 48%|████▊ | 10/21 [00:01<00:02, 5.47it/s]\n 52%|█████▏ | 11/21 [00:02<00:01, 5.47it/s]\n 57%|█████▋ | 12/21 [00:02<00:01, 5.47it/s]\n 62%|██████▏ | 13/21 [00:02<00:01, 5.46it/s]\n 67%|██████▋ | 14/21 [00:02<00:01, 5.46it/s]\n 71%|███████▏ | 15/21 [00:02<00:01, 5.47it/s]\n 76%|███████▌ | 16/21 [00:02<00:00, 5.48it/s]\n 81%|████████ | 17/21 [00:03<00:00, 5.48it/s]\n 86%|████████▌ | 18/21 [00:03<00:00, 5.48it/s]\n 90%|█████████ | 19/21 [00:03<00:00, 5.48it/s]\n 95%|█████████▌| 20/21 [00:03<00:00, 5.48it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.48it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.48it/s]", "metrics": { "predict_time": 22.090501, "total_time": 22.098577 }, "output": [ "https://pbxt.replicate.delivery/PGwlh8VLhAKoDd7ULe6JhS6fGf5WMPDtDN0nD8HrI9XtjVhjA/out-0.png" ], "started_at": "2023-10-22T10:33:05.159126Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/s3dw7xtba75bwzqw2qpn2fsib4", "cancel": "https://api.replicate.com/v1/predictions/s3dw7xtba75bwzqw2qpn2fsib4/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 44825 Prompt: caucasian worker, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of <s0><s1> txt2img mode 0%| | 0/70 [00:00<?, ?it/s] 1%|▏ | 1/70 [00:00<00:15, 4.31it/s] 3%|▎ | 2/70 [00:00<00:15, 4.30it/s] 4%|▍ | 3/70 [00:00<00:15, 4.28it/s] 6%|▌ | 4/70 [00:00<00:15, 4.27it/s] 7%|▋ | 5/70 [00:01<00:15, 4.27it/s] 9%|▊ | 6/70 [00:01<00:14, 4.27it/s] 10%|█ | 7/70 [00:01<00:14, 4.27it/s] 11%|█▏ | 8/70 [00:01<00:14, 4.27it/s] 13%|█▎ | 9/70 [00:02<00:14, 4.27it/s] 14%|█▍ | 10/70 [00:02<00:14, 4.27it/s] 16%|█▌ | 11/70 [00:02<00:13, 4.26it/s] 17%|█▋ | 12/70 [00:02<00:13, 4.27it/s] 19%|█▊ | 13/70 [00:03<00:13, 4.27it/s] 20%|██ | 14/70 [00:03<00:13, 4.26it/s] 21%|██▏ | 15/70 [00:03<00:12, 4.25it/s] 23%|██▎ | 16/70 [00:03<00:12, 4.24it/s] 24%|██▍ | 17/70 [00:03<00:12, 4.25it/s] 26%|██▌ | 18/70 [00:04<00:12, 4.25it/s] 27%|██▋ | 19/70 [00:04<00:11, 4.26it/s] 29%|██▊ | 20/70 [00:04<00:11, 4.26it/s] 30%|███ | 21/70 [00:04<00:11, 4.27it/s] 31%|███▏ | 22/70 [00:05<00:11, 4.26it/s] 33%|███▎ | 23/70 [00:05<00:11, 4.26it/s] 34%|███▍ | 24/70 [00:05<00:10, 4.26it/s] 36%|███▌ | 25/70 [00:05<00:10, 4.26it/s] 37%|███▋ | 26/70 [00:06<00:10, 4.26it/s] 39%|███▊ | 27/70 [00:06<00:10, 4.26it/s] 40%|████ | 28/70 [00:06<00:09, 4.26it/s] 41%|████▏ | 29/70 [00:06<00:09, 4.26it/s] 43%|████▎ | 30/70 [00:07<00:09, 4.26it/s] 44%|████▍ | 31/70 [00:07<00:09, 4.26it/s] 46%|████▌ | 32/70 [00:07<00:08, 4.26it/s] 47%|████▋ | 33/70 [00:07<00:08, 4.27it/s] 49%|████▊ | 34/70 [00:07<00:08, 4.27it/s] 50%|█████ | 35/70 [00:08<00:08, 4.27it/s] 51%|█████▏ | 36/70 [00:08<00:07, 4.27it/s] 53%|█████▎ | 37/70 [00:08<00:07, 4.27it/s] 54%|█████▍ | 38/70 [00:08<00:07, 4.26it/s] 56%|█████▌ | 39/70 [00:09<00:07, 4.26it/s] 57%|█████▋ | 40/70 [00:09<00:07, 4.27it/s] 59%|█████▊ | 41/70 [00:09<00:06, 4.27it/s] 60%|██████ | 42/70 [00:09<00:06, 4.26it/s] 61%|██████▏ | 43/70 [00:10<00:06, 4.27it/s] 63%|██████▎ | 44/70 [00:10<00:06, 4.26it/s] 64%|██████▍ | 45/70 [00:10<00:05, 4.26it/s] 66%|██████▌ | 46/70 [00:10<00:05, 4.26it/s] 67%|██████▋ | 47/70 [00:11<00:05, 4.26it/s] 69%|██████▊ | 48/70 [00:11<00:05, 4.26it/s] 70%|███████ | 49/70 [00:11<00:04, 4.26it/s] 71%|███████▏ | 50/70 [00:11<00:04, 4.26it/s] 73%|███████▎ | 51/70 [00:11<00:04, 4.26it/s] 74%|███████▍ | 52/70 [00:12<00:04, 4.26it/s] 76%|███████▌ | 53/70 [00:12<00:03, 4.26it/s] 77%|███████▋ | 54/70 [00:12<00:03, 4.27it/s] 79%|███████▊ | 55/70 [00:12<00:03, 4.26it/s] 80%|████████ | 56/70 [00:13<00:03, 4.26it/s] 81%|████████▏ | 57/70 [00:13<00:03, 4.25it/s] 83%|████████▎ | 58/70 [00:13<00:02, 4.25it/s] 84%|████████▍ | 59/70 [00:13<00:02, 4.25it/s] 86%|████████▌ | 60/70 [00:14<00:02, 4.25it/s] 87%|████████▋ | 61/70 [00:14<00:02, 4.25it/s] 89%|████████▊ | 62/70 [00:14<00:01, 4.25it/s] 90%|█████████ | 63/70 [00:14<00:01, 4.25it/s] 91%|█████████▏| 64/70 [00:15<00:01, 4.25it/s] 93%|█████████▎| 65/70 [00:15<00:01, 4.25it/s] 94%|█████████▍| 66/70 [00:15<00:00, 4.25it/s] 96%|█████████▌| 67/70 [00:15<00:00, 4.26it/s] 97%|█████████▋| 68/70 [00:15<00:00, 4.26it/s] 99%|█████████▊| 69/70 [00:16<00:00, 4.26it/s] 100%|██████████| 70/70 [00:16<00:00, 4.25it/s] 100%|██████████| 70/70 [00:16<00:00, 4.26it/s] 0%| | 0/21 [00:00<?, ?it/s] 5%|▍ | 1/21 [00:00<00:03, 5.56it/s] 10%|▉ | 2/21 [00:00<00:03, 5.52it/s] 14%|█▍ | 3/21 [00:00<00:03, 5.52it/s] 19%|█▉ | 4/21 [00:00<00:03, 5.50it/s] 24%|██▍ | 5/21 [00:00<00:02, 5.48it/s] 29%|██▊ | 6/21 [00:01<00:02, 5.47it/s] 33%|███▎ | 7/21 [00:01<00:02, 5.46it/s] 38%|███▊ | 8/21 [00:01<00:02, 5.46it/s] 43%|████▎ | 9/21 [00:01<00:02, 5.47it/s] 48%|████▊ | 10/21 [00:01<00:02, 5.47it/s] 52%|█████▏ | 11/21 [00:02<00:01, 5.47it/s] 57%|█████▋ | 12/21 [00:02<00:01, 5.47it/s] 62%|██████▏ | 13/21 [00:02<00:01, 5.46it/s] 67%|██████▋ | 14/21 [00:02<00:01, 5.46it/s] 71%|███████▏ | 15/21 [00:02<00:01, 5.47it/s] 76%|███████▌ | 16/21 [00:02<00:00, 5.48it/s] 81%|████████ | 17/21 [00:03<00:00, 5.48it/s] 86%|████████▌ | 18/21 [00:03<00:00, 5.48it/s] 90%|█████████ | 19/21 [00:03<00:00, 5.48it/s] 95%|█████████▌| 20/21 [00:03<00:00, 5.48it/s] 100%|██████████| 21/21 [00:03<00:00, 5.48it/s] 100%|██████████| 21/21 [00:03<00:00, 5.48it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDidca6nlbq5buvbkcellwhqku6uStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @jbilckeInput
- width
- 800
- height
- 1024
- prompt
- afro-american woman, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK
- refine
- base_image_refiner
- scheduler
- K_EULER
- lora_scale
- 0.95
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 800, "height": 1024, "prompt": "afro-american woman, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 800, height: 1024, prompt: "afro-american woman, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", refine: "base_image_refiner", scheduler: "K_EULER", lora_scale: 0.95, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 800, "height": 1024, "prompt": "afro-american woman, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 800, "height": 1024, "prompt": "afro-american woman, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T10:34:20.077667Z", "created_at": "2023-10-22T10:33:57.817533Z", "data_removed": false, "error": null, "id": "idca6nlbq5buvbkcellwhqku6u", "input": { "width": 800, "height": 1024, "prompt": "afro-american woman, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of TOK", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 24389\nPrompt: afro-american woman, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/70 [00:00<?, ?it/s]\n 1%|▏ | 1/70 [00:00<00:15, 4.32it/s]\n 3%|▎ | 2/70 [00:00<00:15, 4.30it/s]\n 4%|▍ | 3/70 [00:00<00:15, 4.30it/s]\n 6%|▌ | 4/70 [00:00<00:15, 4.30it/s]\n 7%|▋ | 5/70 [00:01<00:15, 4.30it/s]\n 9%|▊ | 6/70 [00:01<00:14, 4.30it/s]\n 10%|█ | 7/70 [00:01<00:14, 4.29it/s]\n 11%|█▏ | 8/70 [00:01<00:14, 4.29it/s]\n 13%|█▎ | 9/70 [00:02<00:14, 4.29it/s]\n 14%|█▍ | 10/70 [00:02<00:14, 4.28it/s]\n 16%|█▌ | 11/70 [00:02<00:13, 4.28it/s]\n 17%|█▋ | 12/70 [00:02<00:13, 4.28it/s]\n 19%|█▊ | 13/70 [00:03<00:13, 4.28it/s]\n 20%|██ | 14/70 [00:03<00:13, 4.28it/s]\n 21%|██▏ | 15/70 [00:03<00:12, 4.28it/s]\n 23%|██▎ | 16/70 [00:03<00:12, 4.28it/s]\n 24%|██▍ | 17/70 [00:03<00:12, 4.28it/s]\n 26%|██▌ | 18/70 [00:04<00:12, 4.28it/s]\n 27%|██▋ | 19/70 [00:04<00:11, 4.28it/s]\n 29%|██▊ | 20/70 [00:04<00:11, 4.28it/s]\n 30%|███ | 21/70 [00:04<00:11, 4.28it/s]\n 31%|███▏ | 22/70 [00:05<00:11, 4.28it/s]\n 33%|███▎ | 23/70 [00:05<00:10, 4.28it/s]\n 34%|███▍ | 24/70 [00:05<00:10, 4.28it/s]\n 36%|███▌ | 25/70 [00:05<00:10, 4.28it/s]\n 37%|███▋ | 26/70 [00:06<00:10, 4.27it/s]\n 39%|███▊ | 27/70 [00:06<00:10, 4.27it/s]\n 40%|████ | 28/70 [00:06<00:09, 4.27it/s]\n 41%|████▏ | 29/70 [00:06<00:09, 4.27it/s]\n 43%|████▎ | 30/70 [00:07<00:09, 4.27it/s]\n 44%|████▍ | 31/70 [00:07<00:09, 4.27it/s]\n 46%|████▌ | 32/70 [00:07<00:08, 4.27it/s]\n 47%|████▋ | 33/70 [00:07<00:08, 4.27it/s]\n 49%|████▊ | 34/70 [00:07<00:08, 4.27it/s]\n 50%|█████ | 35/70 [00:08<00:08, 4.27it/s]\n 51%|█████▏ | 36/70 [00:08<00:07, 4.27it/s]\n 53%|█████▎ | 37/70 [00:08<00:07, 4.27it/s]\n 54%|█████▍ | 38/70 [00:08<00:07, 4.26it/s]\n 56%|█████▌ | 39/70 [00:09<00:07, 4.27it/s]\n 57%|█████▋ | 40/70 [00:09<00:07, 4.26it/s]\n 59%|█████▊ | 41/70 [00:09<00:06, 4.26it/s]\n 60%|██████ | 42/70 [00:09<00:06, 4.26it/s]\n 61%|██████▏ | 43/70 [00:10<00:06, 4.27it/s]\n 63%|██████▎ | 44/70 [00:10<00:06, 4.27it/s]\n 64%|██████▍ | 45/70 [00:10<00:05, 4.26it/s]\n 66%|██████▌ | 46/70 [00:10<00:05, 4.26it/s]\n 67%|██████▋ | 47/70 [00:10<00:05, 4.26it/s]\n 69%|██████▊ | 48/70 [00:11<00:05, 4.26it/s]\n 70%|███████ | 49/70 [00:11<00:04, 4.26it/s]\n 71%|███████▏ | 50/70 [00:11<00:04, 4.27it/s]\n 73%|███████▎ | 51/70 [00:11<00:04, 4.27it/s]\n 74%|███████▍ | 52/70 [00:12<00:04, 4.27it/s]\n 76%|███████▌ | 53/70 [00:12<00:03, 4.26it/s]\n 77%|███████▋ | 54/70 [00:12<00:03, 4.26it/s]\n 79%|███████▊ | 55/70 [00:12<00:03, 4.26it/s]\n 80%|████████ | 56/70 [00:13<00:03, 4.26it/s]\n 81%|████████▏ | 57/70 [00:13<00:03, 4.26it/s]\n 83%|████████▎ | 58/70 [00:13<00:02, 4.26it/s]\n 84%|████████▍ | 59/70 [00:13<00:02, 4.26it/s]\n 86%|████████▌ | 60/70 [00:14<00:02, 4.26it/s]\n 87%|████████▋ | 61/70 [00:14<00:02, 4.26it/s]\n 89%|████████▊ | 62/70 [00:14<00:01, 4.26it/s]\n 90%|█████████ | 63/70 [00:14<00:01, 4.26it/s]\n 91%|█████████▏| 64/70 [00:14<00:01, 4.26it/s]\n 93%|█████████▎| 65/70 [00:15<00:01, 4.26it/s]\n 94%|█████████▍| 66/70 [00:15<00:00, 4.27it/s]\n 96%|█████████▌| 67/70 [00:15<00:00, 4.27it/s]\n 97%|█████████▋| 68/70 [00:15<00:00, 4.26it/s]\n 99%|█████████▊| 69/70 [00:16<00:00, 4.26it/s]\n100%|██████████| 70/70 [00:16<00:00, 4.27it/s]\n100%|██████████| 70/70 [00:16<00:00, 4.27it/s]\n 0%| | 0/21 [00:00<?, ?it/s]\n 5%|▍ | 1/21 [00:00<00:03, 5.57it/s]\n 10%|▉ | 2/21 [00:00<00:03, 5.53it/s]\n 14%|█▍ | 3/21 [00:00<00:03, 5.51it/s]\n 19%|█▉ | 4/21 [00:00<00:03, 5.51it/s]\n 24%|██▍ | 5/21 [00:00<00:02, 5.50it/s]\n 29%|██▊ | 6/21 [00:01<00:02, 5.50it/s]\n 33%|███▎ | 7/21 [00:01<00:02, 5.50it/s]\n 38%|███▊ | 8/21 [00:01<00:02, 5.51it/s]\n 43%|████▎ | 9/21 [00:01<00:02, 5.51it/s]\n 48%|████▊ | 10/21 [00:01<00:01, 5.51it/s]\n 52%|█████▏ | 11/21 [00:01<00:01, 5.51it/s]\n 57%|█████▋ | 12/21 [00:02<00:01, 5.50it/s]\n 62%|██████▏ | 13/21 [00:02<00:01, 5.50it/s]\n 67%|██████▋ | 14/21 [00:02<00:01, 5.49it/s]\n 71%|███████▏ | 15/21 [00:02<00:01, 5.50it/s]\n 76%|███████▌ | 16/21 [00:02<00:00, 5.50it/s]\n 81%|████████ | 17/21 [00:03<00:00, 5.50it/s]\n 86%|████████▌ | 18/21 [00:03<00:00, 5.49it/s]\n 90%|█████████ | 19/21 [00:03<00:00, 5.49it/s]\n 95%|█████████▌| 20/21 [00:03<00:00, 5.49it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.49it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.50it/s]", "metrics": { "predict_time": 22.22649, "total_time": 22.260134 }, "output": [ "https://pbxt.replicate.delivery/KfyLO39TQDwfeJJ3VhhhbvIzP31RAuWbmpGpz1eciWYsKrCHB/out-0.png" ], "started_at": "2023-10-22T10:33:57.851177Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/idca6nlbq5buvbkcellwhqku6u", "cancel": "https://api.replicate.com/v1/predictions/idca6nlbq5buvbkcellwhqku6u/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 24389 Prompt: afro-american woman, futuristic, portrait, working clothes, futuristic power plant, palm trees, japanese neon sign, morning sun, in the style of <s0><s1> txt2img mode 0%| | 0/70 [00:00<?, ?it/s] 1%|▏ | 1/70 [00:00<00:15, 4.32it/s] 3%|▎ | 2/70 [00:00<00:15, 4.30it/s] 4%|▍ | 3/70 [00:00<00:15, 4.30it/s] 6%|▌ | 4/70 [00:00<00:15, 4.30it/s] 7%|▋ | 5/70 [00:01<00:15, 4.30it/s] 9%|▊ | 6/70 [00:01<00:14, 4.30it/s] 10%|█ | 7/70 [00:01<00:14, 4.29it/s] 11%|█▏ | 8/70 [00:01<00:14, 4.29it/s] 13%|█▎ | 9/70 [00:02<00:14, 4.29it/s] 14%|█▍ | 10/70 [00:02<00:14, 4.28it/s] 16%|█▌ | 11/70 [00:02<00:13, 4.28it/s] 17%|█▋ | 12/70 [00:02<00:13, 4.28it/s] 19%|█▊ | 13/70 [00:03<00:13, 4.28it/s] 20%|██ | 14/70 [00:03<00:13, 4.28it/s] 21%|██▏ | 15/70 [00:03<00:12, 4.28it/s] 23%|██▎ | 16/70 [00:03<00:12, 4.28it/s] 24%|██▍ | 17/70 [00:03<00:12, 4.28it/s] 26%|██▌ | 18/70 [00:04<00:12, 4.28it/s] 27%|██▋ | 19/70 [00:04<00:11, 4.28it/s] 29%|██▊ | 20/70 [00:04<00:11, 4.28it/s] 30%|███ | 21/70 [00:04<00:11, 4.28it/s] 31%|███▏ | 22/70 [00:05<00:11, 4.28it/s] 33%|███▎ | 23/70 [00:05<00:10, 4.28it/s] 34%|███▍ | 24/70 [00:05<00:10, 4.28it/s] 36%|███▌ | 25/70 [00:05<00:10, 4.28it/s] 37%|███▋ | 26/70 [00:06<00:10, 4.27it/s] 39%|███▊ | 27/70 [00:06<00:10, 4.27it/s] 40%|████ | 28/70 [00:06<00:09, 4.27it/s] 41%|████▏ | 29/70 [00:06<00:09, 4.27it/s] 43%|████▎ | 30/70 [00:07<00:09, 4.27it/s] 44%|████▍ | 31/70 [00:07<00:09, 4.27it/s] 46%|████▌ | 32/70 [00:07<00:08, 4.27it/s] 47%|████▋ | 33/70 [00:07<00:08, 4.27it/s] 49%|████▊ | 34/70 [00:07<00:08, 4.27it/s] 50%|█████ | 35/70 [00:08<00:08, 4.27it/s] 51%|█████▏ | 36/70 [00:08<00:07, 4.27it/s] 53%|█████▎ | 37/70 [00:08<00:07, 4.27it/s] 54%|█████▍ | 38/70 [00:08<00:07, 4.26it/s] 56%|█████▌ | 39/70 [00:09<00:07, 4.27it/s] 57%|█████▋ | 40/70 [00:09<00:07, 4.26it/s] 59%|█████▊ | 41/70 [00:09<00:06, 4.26it/s] 60%|██████ | 42/70 [00:09<00:06, 4.26it/s] 61%|██████▏ | 43/70 [00:10<00:06, 4.27it/s] 63%|██████▎ | 44/70 [00:10<00:06, 4.27it/s] 64%|██████▍ | 45/70 [00:10<00:05, 4.26it/s] 66%|██████▌ | 46/70 [00:10<00:05, 4.26it/s] 67%|██████▋ | 47/70 [00:10<00:05, 4.26it/s] 69%|██████▊ | 48/70 [00:11<00:05, 4.26it/s] 70%|███████ | 49/70 [00:11<00:04, 4.26it/s] 71%|███████▏ | 50/70 [00:11<00:04, 4.27it/s] 73%|███████▎ | 51/70 [00:11<00:04, 4.27it/s] 74%|███████▍ | 52/70 [00:12<00:04, 4.27it/s] 76%|███████▌ | 53/70 [00:12<00:03, 4.26it/s] 77%|███████▋ | 54/70 [00:12<00:03, 4.26it/s] 79%|███████▊ | 55/70 [00:12<00:03, 4.26it/s] 80%|████████ | 56/70 [00:13<00:03, 4.26it/s] 81%|████████▏ | 57/70 [00:13<00:03, 4.26it/s] 83%|████████▎ | 58/70 [00:13<00:02, 4.26it/s] 84%|████████▍ | 59/70 [00:13<00:02, 4.26it/s] 86%|████████▌ | 60/70 [00:14<00:02, 4.26it/s] 87%|████████▋ | 61/70 [00:14<00:02, 4.26it/s] 89%|████████▊ | 62/70 [00:14<00:01, 4.26it/s] 90%|█████████ | 63/70 [00:14<00:01, 4.26it/s] 91%|█████████▏| 64/70 [00:14<00:01, 4.26it/s] 93%|█████████▎| 65/70 [00:15<00:01, 4.26it/s] 94%|█████████▍| 66/70 [00:15<00:00, 4.27it/s] 96%|█████████▌| 67/70 [00:15<00:00, 4.27it/s] 97%|█████████▋| 68/70 [00:15<00:00, 4.26it/s] 99%|█████████▊| 69/70 [00:16<00:00, 4.26it/s] 100%|██████████| 70/70 [00:16<00:00, 4.27it/s] 100%|██████████| 70/70 [00:16<00:00, 4.27it/s] 0%| | 0/21 [00:00<?, ?it/s] 5%|▍ | 1/21 [00:00<00:03, 5.57it/s] 10%|▉ | 2/21 [00:00<00:03, 5.53it/s] 14%|█▍ | 3/21 [00:00<00:03, 5.51it/s] 19%|█▉ | 4/21 [00:00<00:03, 5.51it/s] 24%|██▍ | 5/21 [00:00<00:02, 5.50it/s] 29%|██▊ | 6/21 [00:01<00:02, 5.50it/s] 33%|███▎ | 7/21 [00:01<00:02, 5.50it/s] 38%|███▊ | 8/21 [00:01<00:02, 5.51it/s] 43%|████▎ | 9/21 [00:01<00:02, 5.51it/s] 48%|████▊ | 10/21 [00:01<00:01, 5.51it/s] 52%|█████▏ | 11/21 [00:01<00:01, 5.51it/s] 57%|█████▋ | 12/21 [00:02<00:01, 5.50it/s] 62%|██████▏ | 13/21 [00:02<00:01, 5.50it/s] 67%|██████▋ | 14/21 [00:02<00:01, 5.49it/s] 71%|███████▏ | 15/21 [00:02<00:01, 5.50it/s] 76%|███████▌ | 16/21 [00:02<00:00, 5.50it/s] 81%|████████ | 17/21 [00:03<00:00, 5.50it/s] 86%|████████▌ | 18/21 [00:03<00:00, 5.49it/s] 90%|█████████ | 19/21 [00:03<00:00, 5.49it/s] 95%|█████████▌| 20/21 [00:03<00:00, 5.49it/s] 100%|██████████| 21/21 [00:03<00:00, 5.49it/s] 100%|██████████| 21/21 [00:03<00:00, 5.50it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDjykxvwlbagkeybokfpl5kmqlkqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 800
- height
- 1024
- prompt
- in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, light orange and light brown, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic
- refine
- base_image_refiner
- scheduler
- K_EULER
- lora_scale
- 0.95
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 800, "height": 1024, "prompt": "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, light orange and light brown, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 800, height: 1024, prompt: "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, light orange and light brown, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic", refine: "base_image_refiner", scheduler: "K_EULER", lora_scale: 0.95, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 800, "height": 1024, "prompt": "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, light orange and light brown, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 800, "height": 1024, "prompt": "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, light orange and light brown, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T11:23:01.729705Z", "created_at": "2023-10-22T11:22:40.531051Z", "data_removed": false, "error": null, "id": "jykxvwlbagkeybokfpl5kmqlkq", "input": { "width": 800, "height": 1024, "prompt": "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, light orange and light brown, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 29289\nPrompt: in the style of <s0><s1>, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, light orange and light brown, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic\ntxt2img mode\n 0%| | 0/70 [00:00<?, ?it/s]\n 1%|▏ | 1/70 [00:00<00:15, 4.52it/s]\n 3%|▎ | 2/70 [00:00<00:15, 4.50it/s]\n 4%|▍ | 3/70 [00:00<00:14, 4.49it/s]\n 6%|▌ | 4/70 [00:00<00:14, 4.48it/s]\n 7%|▋ | 5/70 [00:01<00:14, 4.48it/s]\n 9%|▊ | 6/70 [00:01<00:14, 4.48it/s]\n 10%|█ | 7/70 [00:01<00:14, 4.48it/s]\n 11%|█▏ | 8/70 [00:01<00:13, 4.47it/s]\n 13%|█▎ | 9/70 [00:02<00:13, 4.47it/s]\n 14%|█▍ | 10/70 [00:02<00:13, 4.47it/s]\n 16%|█▌ | 11/70 [00:02<00:13, 4.47it/s]\n 17%|█▋ | 12/70 [00:02<00:12, 4.47it/s]\n 19%|█▊ | 13/70 [00:02<00:12, 4.47it/s]\n 20%|██ | 14/70 [00:03<00:12, 4.47it/s]\n 21%|██▏ | 15/70 [00:03<00:12, 4.47it/s]\n 23%|██▎ | 16/70 [00:03<00:12, 4.46it/s]\n 24%|██▍ | 17/70 [00:03<00:11, 4.47it/s]\n 26%|██▌ | 18/70 [00:04<00:11, 4.46it/s]\n 27%|██▋ | 19/70 [00:04<00:11, 4.47it/s]\n 29%|██▊ | 20/70 [00:04<00:11, 4.47it/s]\n 30%|███ | 21/70 [00:04<00:10, 4.47it/s]\n 31%|███▏ | 22/70 [00:04<00:10, 4.47it/s]\n 33%|███▎ | 23/70 [00:05<00:10, 4.47it/s]\n 34%|███▍ | 24/70 [00:05<00:10, 4.46it/s]\n 36%|███▌ | 25/70 [00:05<00:10, 4.46it/s]\n 37%|███▋ | 26/70 [00:05<00:09, 4.46it/s]\n 39%|███▊ | 27/70 [00:06<00:09, 4.46it/s]\n 40%|████ | 28/70 [00:06<00:09, 4.46it/s]\n 41%|████▏ | 29/70 [00:06<00:09, 4.46it/s]\n 43%|████▎ | 30/70 [00:06<00:08, 4.46it/s]\n 44%|████▍ | 31/70 [00:06<00:08, 4.46it/s]\n 46%|████▌ | 32/70 [00:07<00:08, 4.46it/s]\n 47%|████▋ | 33/70 [00:07<00:08, 4.46it/s]\n 49%|████▊ | 34/70 [00:07<00:08, 4.46it/s]\n 50%|█████ | 35/70 [00:07<00:07, 4.46it/s]\n 51%|█████▏ | 36/70 [00:08<00:07, 4.46it/s]\n 53%|█████▎ | 37/70 [00:08<00:07, 4.46it/s]\n 54%|█████▍ | 38/70 [00:08<00:07, 4.46it/s]\n 56%|█████▌ | 39/70 [00:08<00:06, 4.46it/s]\n 57%|█████▋ | 40/70 [00:08<00:06, 4.46it/s]\n 59%|█████▊ | 41/70 [00:09<00:06, 4.46it/s]\n 60%|██████ | 42/70 [00:09<00:06, 4.46it/s]\n 61%|██████▏ | 43/70 [00:09<00:06, 4.46it/s]\n 63%|██████▎ | 44/70 [00:09<00:05, 4.46it/s]\n 64%|██████▍ | 45/70 [00:10<00:05, 4.46it/s]\n 66%|██████▌ | 46/70 [00:10<00:05, 4.46it/s]\n 67%|██████▋ | 47/70 [00:10<00:05, 4.46it/s]\n 69%|██████▊ | 48/70 [00:10<00:04, 4.46it/s]\n 70%|███████ | 49/70 [00:10<00:04, 4.46it/s]\n 71%|███████▏ | 50/70 [00:11<00:04, 4.46it/s]\n 73%|███████▎ | 51/70 [00:11<00:04, 4.46it/s]\n 74%|███████▍ | 52/70 [00:11<00:04, 4.46it/s]\n 76%|███████▌ | 53/70 [00:11<00:03, 4.46it/s]\n 77%|███████▋ | 54/70 [00:12<00:03, 4.46it/s]\n 79%|███████▊ | 55/70 [00:12<00:03, 4.46it/s]\n 80%|████████ | 56/70 [00:12<00:03, 4.46it/s]\n 81%|████████▏ | 57/70 [00:12<00:02, 4.46it/s]\n 83%|████████▎ | 58/70 [00:12<00:02, 4.45it/s]\n 84%|████████▍ | 59/70 [00:13<00:02, 4.46it/s]\n 86%|████████▌ | 60/70 [00:13<00:02, 4.46it/s]\n 87%|████████▋ | 61/70 [00:13<00:02, 4.45it/s]\n 89%|████████▊ | 62/70 [00:13<00:01, 4.45it/s]\n 90%|█████████ | 63/70 [00:14<00:01, 4.46it/s]\n 91%|█████████▏| 64/70 [00:14<00:01, 4.46it/s]\n 93%|█████████▎| 65/70 [00:14<00:01, 4.46it/s]\n 94%|█████████▍| 66/70 [00:14<00:00, 4.45it/s]\n 96%|█████████▌| 67/70 [00:15<00:00, 4.45it/s]\n 97%|█████████▋| 68/70 [00:15<00:00, 4.45it/s]\n 99%|█████████▊| 69/70 [00:15<00:00, 4.46it/s]\n100%|██████████| 70/70 [00:15<00:00, 4.45it/s]\n100%|██████████| 70/70 [00:15<00:00, 4.46it/s]\n 0%| | 0/21 [00:00<?, ?it/s]\n 5%|▍ | 1/21 [00:00<00:03, 5.72it/s]\n 10%|▉ | 2/21 [00:00<00:03, 5.69it/s]\n 14%|█▍ | 3/21 [00:00<00:03, 5.69it/s]\n 19%|█▉ | 4/21 [00:00<00:02, 5.68it/s]\n 24%|██▍ | 5/21 [00:00<00:02, 5.68it/s]\n 29%|██▊ | 6/21 [00:01<00:02, 5.67it/s]\n 33%|███▎ | 7/21 [00:01<00:02, 5.67it/s]\n 38%|███▊ | 8/21 [00:01<00:02, 5.66it/s]\n 43%|████▎ | 9/21 [00:01<00:02, 5.67it/s]\n 48%|████▊ | 10/21 [00:01<00:01, 5.67it/s]\n 52%|█████▏ | 11/21 [00:01<00:01, 5.67it/s]\n 57%|█████▋ | 12/21 [00:02<00:01, 5.66it/s]\n 62%|██████▏ | 13/21 [00:02<00:01, 5.66it/s]\n 67%|██████▋ | 14/21 [00:02<00:01, 5.66it/s]\n 71%|███████▏ | 15/21 [00:02<00:01, 5.66it/s]\n 76%|███████▌ | 16/21 [00:02<00:00, 5.67it/s]\n 81%|████████ | 17/21 [00:02<00:00, 5.67it/s]\n 86%|████████▌ | 18/21 [00:03<00:00, 5.66it/s]\n 90%|█████████ | 19/21 [00:03<00:00, 5.65it/s]\n 95%|█████████▌| 20/21 [00:03<00:00, 5.66it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.65it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.67it/s]", "metrics": { "predict_time": 21.200261, "total_time": 21.198654 }, "output": [ "https://pbxt.replicate.delivery/VzebRJl9LsyFekciRsvMiy89AsCxNO4JPkWCqpkk8HRUgrwRA/out-0.png" ], "started_at": "2023-10-22T11:22:40.529444Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jykxvwlbagkeybokfpl5kmqlkq", "cancel": "https://api.replicate.com/v1/predictions/jykxvwlbagkeybokfpl5kmqlkq/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 29289 Prompt: in the style of <s0><s1>, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, light orange and light brown, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic txt2img mode 0%| | 0/70 [00:00<?, ?it/s] 1%|▏ | 1/70 [00:00<00:15, 4.52it/s] 3%|▎ | 2/70 [00:00<00:15, 4.50it/s] 4%|▍ | 3/70 [00:00<00:14, 4.49it/s] 6%|▌ | 4/70 [00:00<00:14, 4.48it/s] 7%|▋ | 5/70 [00:01<00:14, 4.48it/s] 9%|▊ | 6/70 [00:01<00:14, 4.48it/s] 10%|█ | 7/70 [00:01<00:14, 4.48it/s] 11%|█▏ | 8/70 [00:01<00:13, 4.47it/s] 13%|█▎ | 9/70 [00:02<00:13, 4.47it/s] 14%|█▍ | 10/70 [00:02<00:13, 4.47it/s] 16%|█▌ | 11/70 [00:02<00:13, 4.47it/s] 17%|█▋ | 12/70 [00:02<00:12, 4.47it/s] 19%|█▊ | 13/70 [00:02<00:12, 4.47it/s] 20%|██ | 14/70 [00:03<00:12, 4.47it/s] 21%|██▏ | 15/70 [00:03<00:12, 4.47it/s] 23%|██▎ | 16/70 [00:03<00:12, 4.46it/s] 24%|██▍ | 17/70 [00:03<00:11, 4.47it/s] 26%|██▌ | 18/70 [00:04<00:11, 4.46it/s] 27%|██▋ | 19/70 [00:04<00:11, 4.47it/s] 29%|██▊ | 20/70 [00:04<00:11, 4.47it/s] 30%|███ | 21/70 [00:04<00:10, 4.47it/s] 31%|███▏ | 22/70 [00:04<00:10, 4.47it/s] 33%|███▎ | 23/70 [00:05<00:10, 4.47it/s] 34%|███▍ | 24/70 [00:05<00:10, 4.46it/s] 36%|███▌ | 25/70 [00:05<00:10, 4.46it/s] 37%|███▋ | 26/70 [00:05<00:09, 4.46it/s] 39%|███▊ | 27/70 [00:06<00:09, 4.46it/s] 40%|████ | 28/70 [00:06<00:09, 4.46it/s] 41%|████▏ | 29/70 [00:06<00:09, 4.46it/s] 43%|████▎ | 30/70 [00:06<00:08, 4.46it/s] 44%|████▍ | 31/70 [00:06<00:08, 4.46it/s] 46%|████▌ | 32/70 [00:07<00:08, 4.46it/s] 47%|████▋ | 33/70 [00:07<00:08, 4.46it/s] 49%|████▊ | 34/70 [00:07<00:08, 4.46it/s] 50%|█████ | 35/70 [00:07<00:07, 4.46it/s] 51%|█████▏ | 36/70 [00:08<00:07, 4.46it/s] 53%|█████▎ | 37/70 [00:08<00:07, 4.46it/s] 54%|█████▍ | 38/70 [00:08<00:07, 4.46it/s] 56%|█████▌ | 39/70 [00:08<00:06, 4.46it/s] 57%|█████▋ | 40/70 [00:08<00:06, 4.46it/s] 59%|█████▊ | 41/70 [00:09<00:06, 4.46it/s] 60%|██████ | 42/70 [00:09<00:06, 4.46it/s] 61%|██████▏ | 43/70 [00:09<00:06, 4.46it/s] 63%|██████▎ | 44/70 [00:09<00:05, 4.46it/s] 64%|██████▍ | 45/70 [00:10<00:05, 4.46it/s] 66%|██████▌ | 46/70 [00:10<00:05, 4.46it/s] 67%|██████▋ | 47/70 [00:10<00:05, 4.46it/s] 69%|██████▊ | 48/70 [00:10<00:04, 4.46it/s] 70%|███████ | 49/70 [00:10<00:04, 4.46it/s] 71%|███████▏ | 50/70 [00:11<00:04, 4.46it/s] 73%|███████▎ | 51/70 [00:11<00:04, 4.46it/s] 74%|███████▍ | 52/70 [00:11<00:04, 4.46it/s] 76%|███████▌ | 53/70 [00:11<00:03, 4.46it/s] 77%|███████▋ | 54/70 [00:12<00:03, 4.46it/s] 79%|███████▊ | 55/70 [00:12<00:03, 4.46it/s] 80%|████████ | 56/70 [00:12<00:03, 4.46it/s] 81%|████████▏ | 57/70 [00:12<00:02, 4.46it/s] 83%|████████▎ | 58/70 [00:12<00:02, 4.45it/s] 84%|████████▍ | 59/70 [00:13<00:02, 4.46it/s] 86%|████████▌ | 60/70 [00:13<00:02, 4.46it/s] 87%|████████▋ | 61/70 [00:13<00:02, 4.45it/s] 89%|████████▊ | 62/70 [00:13<00:01, 4.45it/s] 90%|█████████ | 63/70 [00:14<00:01, 4.46it/s] 91%|█████████▏| 64/70 [00:14<00:01, 4.46it/s] 93%|█████████▎| 65/70 [00:14<00:01, 4.46it/s] 94%|█████████▍| 66/70 [00:14<00:00, 4.45it/s] 96%|█████████▌| 67/70 [00:15<00:00, 4.45it/s] 97%|█████████▋| 68/70 [00:15<00:00, 4.45it/s] 99%|█████████▊| 69/70 [00:15<00:00, 4.46it/s] 100%|██████████| 70/70 [00:15<00:00, 4.45it/s] 100%|██████████| 70/70 [00:15<00:00, 4.46it/s] 0%| | 0/21 [00:00<?, ?it/s] 5%|▍ | 1/21 [00:00<00:03, 5.72it/s] 10%|▉ | 2/21 [00:00<00:03, 5.69it/s] 14%|█▍ | 3/21 [00:00<00:03, 5.69it/s] 19%|█▉ | 4/21 [00:00<00:02, 5.68it/s] 24%|██▍ | 5/21 [00:00<00:02, 5.68it/s] 29%|██▊ | 6/21 [00:01<00:02, 5.67it/s] 33%|███▎ | 7/21 [00:01<00:02, 5.67it/s] 38%|███▊ | 8/21 [00:01<00:02, 5.66it/s] 43%|████▎ | 9/21 [00:01<00:02, 5.67it/s] 48%|████▊ | 10/21 [00:01<00:01, 5.67it/s] 52%|█████▏ | 11/21 [00:01<00:01, 5.67it/s] 57%|█████▋ | 12/21 [00:02<00:01, 5.66it/s] 62%|██████▏ | 13/21 [00:02<00:01, 5.66it/s] 67%|██████▋ | 14/21 [00:02<00:01, 5.66it/s] 71%|███████▏ | 15/21 [00:02<00:01, 5.66it/s] 76%|███████▌ | 16/21 [00:02<00:00, 5.67it/s] 81%|████████ | 17/21 [00:02<00:00, 5.67it/s] 86%|████████▌ | 18/21 [00:03<00:00, 5.66it/s] 90%|█████████ | 19/21 [00:03<00:00, 5.65it/s] 95%|█████████▌| 20/21 [00:03<00:00, 5.66it/s] 100%|██████████| 21/21 [00:03<00:00, 5.65it/s] 100%|██████████| 21/21 [00:03<00:00, 5.67it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDote4rtlbqthleftcvx3yzjs7k4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 800
- height
- 1024
- prompt
- in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic, futuristic, sci-fi
- refine
- base_image_refiner
- scheduler
- K_EULER
- lora_scale
- 0.95
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 800, "height": 1024, "prompt": "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 800, height: 1024, prompt: "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic, futuristic, sci-fi", refine: "base_image_refiner", scheduler: "K_EULER", lora_scale: 0.95, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 800, "height": 1024, "prompt": "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 800, "height": 1024, "prompt": "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T11:23:50.696110Z", "created_at": "2023-10-22T11:23:29.471005Z", "data_removed": false, "error": null, "id": "ote4rtlbqthleftcvx3yzjs7k4", "input": { "width": 800, "height": 1024, "prompt": "in the style of TOK, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 25647\nPrompt: in the style of <s0><s1>, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic, futuristic, sci-fi\ntxt2img mode\n 0%| | 0/70 [00:00<?, ?it/s]\n 1%|▏ | 1/70 [00:00<00:15, 4.50it/s]\n 3%|▎ | 2/70 [00:00<00:15, 4.49it/s]\n 4%|▍ | 3/70 [00:00<00:14, 4.48it/s]\n 6%|▌ | 4/70 [00:00<00:14, 4.47it/s]\n 7%|▋ | 5/70 [00:01<00:14, 4.47it/s]\n 9%|▊ | 6/70 [00:01<00:14, 4.48it/s]\n 10%|█ | 7/70 [00:01<00:14, 4.47it/s]\n 11%|█▏ | 8/70 [00:01<00:13, 4.47it/s]\n 13%|█▎ | 9/70 [00:02<00:13, 4.47it/s]\n 14%|█▍ | 10/70 [00:02<00:13, 4.47it/s]\n 16%|█▌ | 11/70 [00:02<00:13, 4.47it/s]\n 17%|█▋ | 12/70 [00:02<00:12, 4.47it/s]\n 19%|█▊ | 13/70 [00:02<00:12, 4.47it/s]\n 20%|██ | 14/70 [00:03<00:12, 4.47it/s]\n 21%|██▏ | 15/70 [00:03<00:12, 4.46it/s]\n 23%|██▎ | 16/70 [00:03<00:12, 4.46it/s]\n 24%|██▍ | 17/70 [00:03<00:11, 4.46it/s]\n 26%|██▌ | 18/70 [00:04<00:11, 4.46it/s]\n 27%|██▋ | 19/70 [00:04<00:11, 4.46it/s]\n 29%|██▊ | 20/70 [00:04<00:11, 4.46it/s]\n 30%|███ | 21/70 [00:04<00:10, 4.47it/s]\n 31%|███▏ | 22/70 [00:04<00:10, 4.47it/s]\n 33%|███▎ | 23/70 [00:05<00:10, 4.47it/s]\n 34%|███▍ | 24/70 [00:05<00:10, 4.47it/s]\n 36%|███▌ | 25/70 [00:05<00:10, 4.47it/s]\n 37%|███▋ | 26/70 [00:05<00:09, 4.47it/s]\n 39%|███▊ | 27/70 [00:06<00:09, 4.47it/s]\n 40%|████ | 28/70 [00:06<00:09, 4.47it/s]\n 41%|████▏ | 29/70 [00:06<00:09, 4.46it/s]\n 43%|████▎ | 30/70 [00:06<00:08, 4.47it/s]\n 44%|████▍ | 31/70 [00:06<00:08, 4.46it/s]\n 46%|████▌ | 32/70 [00:07<00:08, 4.47it/s]\n 47%|████▋ | 33/70 [00:07<00:08, 4.47it/s]\n 49%|████▊ | 34/70 [00:07<00:08, 4.47it/s]\n 50%|█████ | 35/70 [00:07<00:07, 4.47it/s]\n 51%|█████▏ | 36/70 [00:08<00:07, 4.47it/s]\n 53%|█████▎ | 37/70 [00:08<00:07, 4.47it/s]\n 54%|█████▍ | 38/70 [00:08<00:07, 4.47it/s]\n 56%|█████▌ | 39/70 [00:08<00:06, 4.46it/s]\n 57%|█████▋ | 40/70 [00:08<00:06, 4.46it/s]\n 59%|█████▊ | 41/70 [00:09<00:06, 4.46it/s]\n 60%|██████ | 42/70 [00:09<00:06, 4.46it/s]\n 61%|██████▏ | 43/70 [00:09<00:06, 4.46it/s]\n 63%|██████▎ | 44/70 [00:09<00:05, 4.46it/s]\n 64%|██████▍ | 45/70 [00:10<00:05, 4.46it/s]\n 66%|██████▌ | 46/70 [00:10<00:05, 4.46it/s]\n 67%|██████▋ | 47/70 [00:10<00:05, 4.46it/s]\n 69%|██████▊ | 48/70 [00:10<00:04, 4.46it/s]\n 70%|███████ | 49/70 [00:10<00:04, 4.46it/s]\n 71%|███████▏ | 50/70 [00:11<00:04, 4.46it/s]\n 73%|███████▎ | 51/70 [00:11<00:04, 4.46it/s]\n 74%|███████▍ | 52/70 [00:11<00:04, 4.46it/s]\n 76%|███████▌ | 53/70 [00:11<00:03, 4.46it/s]\n 77%|███████▋ | 54/70 [00:12<00:03, 4.46it/s]\n 79%|███████▊ | 55/70 [00:12<00:03, 4.46it/s]\n 80%|████████ | 56/70 [00:12<00:03, 4.46it/s]\n 81%|████████▏ | 57/70 [00:12<00:02, 4.46it/s]\n 83%|████████▎ | 58/70 [00:12<00:02, 4.45it/s]\n 84%|████████▍ | 59/70 [00:13<00:02, 4.46it/s]\n 86%|████████▌ | 60/70 [00:13<00:02, 4.46it/s]\n 87%|████████▋ | 61/70 [00:13<00:02, 4.46it/s]\n 89%|████████▊ | 62/70 [00:13<00:01, 4.46it/s]\n 90%|█████████ | 63/70 [00:14<00:01, 4.46it/s]\n 91%|█████████▏| 64/70 [00:14<00:01, 4.46it/s]\n 93%|█████████▎| 65/70 [00:14<00:01, 4.46it/s]\n 94%|█████████▍| 66/70 [00:14<00:00, 4.46it/s]\n 96%|█████████▌| 67/70 [00:15<00:00, 4.46it/s]\n 97%|█████████▋| 68/70 [00:15<00:00, 4.46it/s]\n 99%|█████████▊| 69/70 [00:15<00:00, 4.46it/s]\n100%|██████████| 70/70 [00:15<00:00, 4.46it/s]\n100%|██████████| 70/70 [00:15<00:00, 4.46it/s]\n 0%| | 0/21 [00:00<?, ?it/s]\n 5%|▍ | 1/21 [00:00<00:03, 5.75it/s]\n 10%|▉ | 2/21 [00:00<00:03, 5.70it/s]\n 14%|█▍ | 3/21 [00:00<00:03, 5.68it/s]\n 19%|█▉ | 4/21 [00:00<00:02, 5.68it/s]\n 24%|██▍ | 5/21 [00:00<00:02, 5.68it/s]\n 29%|██▊ | 6/21 [00:01<00:02, 5.68it/s]\n 33%|███▎ | 7/21 [00:01<00:02, 5.67it/s]\n 38%|███▊ | 8/21 [00:01<00:02, 5.67it/s]\n 43%|████▎ | 9/21 [00:01<00:02, 5.67it/s]\n 48%|████▊ | 10/21 [00:01<00:01, 5.66it/s]\n 52%|█████▏ | 11/21 [00:01<00:01, 5.66it/s]\n 57%|█████▋ | 12/21 [00:02<00:01, 5.66it/s]\n 62%|██████▏ | 13/21 [00:02<00:01, 5.66it/s]\n 67%|██████▋ | 14/21 [00:02<00:01, 5.66it/s]\n 71%|███████▏ | 15/21 [00:02<00:01, 5.67it/s]\n 76%|███████▌ | 16/21 [00:02<00:00, 5.66it/s]\n 81%|████████ | 17/21 [00:02<00:00, 5.66it/s]\n 86%|████████▌ | 18/21 [00:03<00:00, 5.66it/s]\n 90%|█████████ | 19/21 [00:03<00:00, 5.66it/s]\n 95%|█████████▌| 20/21 [00:03<00:00, 5.66it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.67it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.67it/s]", "metrics": { "predict_time": 21.227952, "total_time": 21.225105 }, "output": [ "https://pbxt.replicate.delivery/0mvdto6ne008ZiAbZjS5BMnLhEWYeMfq4UZ4EdVYe7cUEuCHB/out-0.png" ], "started_at": "2023-10-22T11:23:29.468158Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ote4rtlbqthleftcvx3yzjs7k4", "cancel": "https://api.replicate.com/v1/predictions/ote4rtlbqthleftcvx3yzjs7k4/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 25647 Prompt: in the style of <s0><s1>, portrait of a woman, standing in a solar power plant, work clothes, palm trees, cold and detached atmosphere, otherworldly, sportscar in the background, golden blazer, sky scrappers in the background, enigmatic, futuristic, sci-fi txt2img mode 0%| | 0/70 [00:00<?, ?it/s] 1%|▏ | 1/70 [00:00<00:15, 4.50it/s] 3%|▎ | 2/70 [00:00<00:15, 4.49it/s] 4%|▍ | 3/70 [00:00<00:14, 4.48it/s] 6%|▌ | 4/70 [00:00<00:14, 4.47it/s] 7%|▋ | 5/70 [00:01<00:14, 4.47it/s] 9%|▊ | 6/70 [00:01<00:14, 4.48it/s] 10%|█ | 7/70 [00:01<00:14, 4.47it/s] 11%|█▏ | 8/70 [00:01<00:13, 4.47it/s] 13%|█▎ | 9/70 [00:02<00:13, 4.47it/s] 14%|█▍ | 10/70 [00:02<00:13, 4.47it/s] 16%|█▌ | 11/70 [00:02<00:13, 4.47it/s] 17%|█▋ | 12/70 [00:02<00:12, 4.47it/s] 19%|█▊ | 13/70 [00:02<00:12, 4.47it/s] 20%|██ | 14/70 [00:03<00:12, 4.47it/s] 21%|██▏ | 15/70 [00:03<00:12, 4.46it/s] 23%|██▎ | 16/70 [00:03<00:12, 4.46it/s] 24%|██▍ | 17/70 [00:03<00:11, 4.46it/s] 26%|██▌ | 18/70 [00:04<00:11, 4.46it/s] 27%|██▋ | 19/70 [00:04<00:11, 4.46it/s] 29%|██▊ | 20/70 [00:04<00:11, 4.46it/s] 30%|███ | 21/70 [00:04<00:10, 4.47it/s] 31%|███▏ | 22/70 [00:04<00:10, 4.47it/s] 33%|███▎ | 23/70 [00:05<00:10, 4.47it/s] 34%|███▍ | 24/70 [00:05<00:10, 4.47it/s] 36%|███▌ | 25/70 [00:05<00:10, 4.47it/s] 37%|███▋ | 26/70 [00:05<00:09, 4.47it/s] 39%|███▊ | 27/70 [00:06<00:09, 4.47it/s] 40%|████ | 28/70 [00:06<00:09, 4.47it/s] 41%|████▏ | 29/70 [00:06<00:09, 4.46it/s] 43%|████▎ | 30/70 [00:06<00:08, 4.47it/s] 44%|████▍ | 31/70 [00:06<00:08, 4.46it/s] 46%|████▌ | 32/70 [00:07<00:08, 4.47it/s] 47%|████▋ | 33/70 [00:07<00:08, 4.47it/s] 49%|████▊ | 34/70 [00:07<00:08, 4.47it/s] 50%|█████ | 35/70 [00:07<00:07, 4.47it/s] 51%|█████▏ | 36/70 [00:08<00:07, 4.47it/s] 53%|█████▎ | 37/70 [00:08<00:07, 4.47it/s] 54%|█████▍ | 38/70 [00:08<00:07, 4.47it/s] 56%|█████▌ | 39/70 [00:08<00:06, 4.46it/s] 57%|█████▋ | 40/70 [00:08<00:06, 4.46it/s] 59%|█████▊ | 41/70 [00:09<00:06, 4.46it/s] 60%|██████ | 42/70 [00:09<00:06, 4.46it/s] 61%|██████▏ | 43/70 [00:09<00:06, 4.46it/s] 63%|██████▎ | 44/70 [00:09<00:05, 4.46it/s] 64%|██████▍ | 45/70 [00:10<00:05, 4.46it/s] 66%|██████▌ | 46/70 [00:10<00:05, 4.46it/s] 67%|██████▋ | 47/70 [00:10<00:05, 4.46it/s] 69%|██████▊ | 48/70 [00:10<00:04, 4.46it/s] 70%|███████ | 49/70 [00:10<00:04, 4.46it/s] 71%|███████▏ | 50/70 [00:11<00:04, 4.46it/s] 73%|███████▎ | 51/70 [00:11<00:04, 4.46it/s] 74%|███████▍ | 52/70 [00:11<00:04, 4.46it/s] 76%|███████▌ | 53/70 [00:11<00:03, 4.46it/s] 77%|███████▋ | 54/70 [00:12<00:03, 4.46it/s] 79%|███████▊ | 55/70 [00:12<00:03, 4.46it/s] 80%|████████ | 56/70 [00:12<00:03, 4.46it/s] 81%|████████▏ | 57/70 [00:12<00:02, 4.46it/s] 83%|████████▎ | 58/70 [00:12<00:02, 4.45it/s] 84%|████████▍ | 59/70 [00:13<00:02, 4.46it/s] 86%|████████▌ | 60/70 [00:13<00:02, 4.46it/s] 87%|████████▋ | 61/70 [00:13<00:02, 4.46it/s] 89%|████████▊ | 62/70 [00:13<00:01, 4.46it/s] 90%|█████████ | 63/70 [00:14<00:01, 4.46it/s] 91%|█████████▏| 64/70 [00:14<00:01, 4.46it/s] 93%|█████████▎| 65/70 [00:14<00:01, 4.46it/s] 94%|█████████▍| 66/70 [00:14<00:00, 4.46it/s] 96%|█████████▌| 67/70 [00:15<00:00, 4.46it/s] 97%|█████████▋| 68/70 [00:15<00:00, 4.46it/s] 99%|█████████▊| 69/70 [00:15<00:00, 4.46it/s] 100%|██████████| 70/70 [00:15<00:00, 4.46it/s] 100%|██████████| 70/70 [00:15<00:00, 4.46it/s] 0%| | 0/21 [00:00<?, ?it/s] 5%|▍ | 1/21 [00:00<00:03, 5.75it/s] 10%|▉ | 2/21 [00:00<00:03, 5.70it/s] 14%|█▍ | 3/21 [00:00<00:03, 5.68it/s] 19%|█▉ | 4/21 [00:00<00:02, 5.68it/s] 24%|██▍ | 5/21 [00:00<00:02, 5.68it/s] 29%|██▊ | 6/21 [00:01<00:02, 5.68it/s] 33%|███▎ | 7/21 [00:01<00:02, 5.67it/s] 38%|███▊ | 8/21 [00:01<00:02, 5.67it/s] 43%|████▎ | 9/21 [00:01<00:02, 5.67it/s] 48%|████▊ | 10/21 [00:01<00:01, 5.66it/s] 52%|█████▏ | 11/21 [00:01<00:01, 5.66it/s] 57%|█████▋ | 12/21 [00:02<00:01, 5.66it/s] 62%|██████▏ | 13/21 [00:02<00:01, 5.66it/s] 67%|██████▋ | 14/21 [00:02<00:01, 5.66it/s] 71%|███████▏ | 15/21 [00:02<00:01, 5.67it/s] 76%|███████▌ | 16/21 [00:02<00:00, 5.66it/s] 81%|████████ | 17/21 [00:02<00:00, 5.66it/s] 86%|████████▌ | 18/21 [00:03<00:00, 5.66it/s] 90%|█████████ | 19/21 [00:03<00:00, 5.66it/s] 95%|█████████▌| 20/21 [00:03<00:00, 5.66it/s] 100%|██████████| 21/21 [00:03<00:00, 5.67it/s] 100%|██████████| 21/21 [00:03<00:00, 5.67it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDweougp3b53h4x2dtb6m2hxdp6mStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 800
- prompt
- in the style of TOK, portrait of a european woman, green hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi
- refine
- base_image_refiner
- scheduler
- K_EULER
- lora_scale
- 0.95
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 1024, "height": 800, "prompt": "in the style of TOK, portrait of a european woman, green hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 800, prompt: "in the style of TOK, portrait of a european woman, green hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", refine: "base_image_refiner", scheduler: "K_EULER", lora_scale: 0.95, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 800, "prompt": "in the style of TOK, portrait of a european woman, green hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 800, "prompt": "in the style of TOK, portrait of a european woman, green hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T11:25:30.808403Z", "created_at": "2023-10-22T11:25:09.362586Z", "data_removed": false, "error": null, "id": "weougp3b53h4x2dtb6m2hxdp6m", "input": { "width": 1024, "height": 800, "prompt": "in the style of TOK, portrait of a european woman, green hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 25189\nPrompt: in the style of <s0><s1>, portrait of a european woman, green hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi\ntxt2img mode\n 0%| | 0/70 [00:00<?, ?it/s]\n 1%|▏ | 1/70 [00:00<00:16, 4.27it/s]\n 3%|▎ | 2/70 [00:00<00:15, 4.41it/s]\n 4%|▍ | 3/70 [00:00<00:15, 4.44it/s]\n 6%|▌ | 4/70 [00:00<00:14, 4.45it/s]\n 7%|▋ | 5/70 [00:01<00:14, 4.46it/s]\n 9%|▊ | 6/70 [00:01<00:14, 4.47it/s]\n 10%|█ | 7/70 [00:01<00:14, 4.48it/s]\n 11%|█▏ | 8/70 [00:01<00:13, 4.48it/s]\n 13%|█▎ | 9/70 [00:02<00:13, 4.48it/s]\n 14%|█▍ | 10/70 [00:02<00:13, 4.47it/s]\n 16%|█▌ | 11/70 [00:02<00:13, 4.47it/s]\n 17%|█▋ | 12/70 [00:02<00:12, 4.47it/s]\n 19%|█▊ | 13/70 [00:02<00:12, 4.47it/s]\n 20%|██ | 14/70 [00:03<00:12, 4.47it/s]\n 21%|██▏ | 15/70 [00:03<00:12, 4.47it/s]\n 23%|██▎ | 16/70 [00:03<00:12, 4.47it/s]\n 24%|██▍ | 17/70 [00:03<00:11, 4.47it/s]\n 26%|██▌ | 18/70 [00:04<00:11, 4.47it/s]\n 27%|██▋ | 19/70 [00:04<00:11, 4.47it/s]\n 29%|██▊ | 20/70 [00:04<00:11, 4.47it/s]\n 30%|███ | 21/70 [00:04<00:10, 4.47it/s]\n 31%|███▏ | 22/70 [00:04<00:10, 4.47it/s]\n 33%|███▎ | 23/70 [00:05<00:10, 4.47it/s]\n 34%|███▍ | 24/70 [00:05<00:10, 4.47it/s]\n 36%|███▌ | 25/70 [00:05<00:10, 4.47it/s]\n 37%|███▋ | 26/70 [00:05<00:09, 4.47it/s]\n 39%|███▊ | 27/70 [00:06<00:09, 4.47it/s]\n 40%|████ | 28/70 [00:06<00:09, 4.47it/s]\n 41%|████▏ | 29/70 [00:06<00:09, 4.47it/s]\n 43%|████▎ | 30/70 [00:06<00:08, 4.47it/s]\n 44%|████▍ | 31/70 [00:06<00:08, 4.47it/s]\n 46%|████▌ | 32/70 [00:07<00:08, 4.47it/s]\n 47%|████▋ | 33/70 [00:07<00:08, 4.47it/s]\n 49%|████▊ | 34/70 [00:07<00:08, 4.47it/s]\n 50%|█████ | 35/70 [00:07<00:07, 4.47it/s]\n 51%|█████▏ | 36/70 [00:08<00:07, 4.47it/s]\n 53%|█████▎ | 37/70 [00:08<00:07, 4.47it/s]\n 54%|█████▍ | 38/70 [00:08<00:07, 4.47it/s]\n 56%|█████▌ | 39/70 [00:08<00:06, 4.47it/s]\n 57%|█████▋ | 40/70 [00:08<00:06, 4.46it/s]\n 59%|█████▊ | 41/70 [00:09<00:06, 4.46it/s]\n 60%|██████ | 42/70 [00:09<00:06, 4.46it/s]\n 61%|██████▏ | 43/70 [00:09<00:06, 4.46it/s]\n 63%|██████▎ | 44/70 [00:09<00:05, 4.46it/s]\n 64%|██████▍ | 45/70 [00:10<00:05, 4.46it/s]\n 66%|██████▌ | 46/70 [00:10<00:05, 4.46it/s]\n 67%|██████▋ | 47/70 [00:10<00:05, 4.46it/s]\n 69%|██████▊ | 48/70 [00:10<00:04, 4.46it/s]\n 70%|███████ | 49/70 [00:10<00:04, 4.46it/s]\n 71%|███████▏ | 50/70 [00:11<00:04, 4.46it/s]\n 73%|███████▎ | 51/70 [00:11<00:04, 4.46it/s]\n 74%|███████▍ | 52/70 [00:11<00:04, 4.46it/s]\n 76%|███████▌ | 53/70 [00:11<00:03, 4.46it/s]\n 77%|███████▋ | 54/70 [00:12<00:03, 4.45it/s]\n 79%|███████▊ | 55/70 [00:12<00:03, 4.46it/s]\n 80%|████████ | 56/70 [00:12<00:03, 4.46it/s]\n 81%|████████▏ | 57/70 [00:12<00:02, 4.46it/s]\n 83%|████████▎ | 58/70 [00:12<00:02, 4.46it/s]\n 84%|████████▍ | 59/70 [00:13<00:02, 4.46it/s]\n 86%|████████▌ | 60/70 [00:13<00:02, 4.46it/s]\n 87%|████████▋ | 61/70 [00:13<00:02, 4.46it/s]\n 89%|████████▊ | 62/70 [00:13<00:01, 4.46it/s]\n 90%|█████████ | 63/70 [00:14<00:01, 4.46it/s]\n 91%|█████████▏| 64/70 [00:14<00:01, 4.46it/s]\n 93%|█████████▎| 65/70 [00:14<00:01, 4.46it/s]\n 94%|█████████▍| 66/70 [00:14<00:00, 4.45it/s]\n 96%|█████████▌| 67/70 [00:15<00:00, 4.46it/s]\n 97%|█████████▋| 68/70 [00:15<00:00, 4.46it/s]\n 99%|█████████▊| 69/70 [00:15<00:00, 4.46it/s]\n100%|██████████| 70/70 [00:15<00:00, 4.46it/s]\n100%|██████████| 70/70 [00:15<00:00, 4.46it/s]\n 0%| | 0/21 [00:00<?, ?it/s]\n 5%|▍ | 1/21 [00:00<00:03, 5.53it/s]\n 10%|▉ | 2/21 [00:00<00:03, 5.67it/s]\n 14%|█▍ | 3/21 [00:00<00:03, 5.70it/s]\n 19%|█▉ | 4/21 [00:00<00:02, 5.72it/s]\n 24%|██▍ | 5/21 [00:00<00:02, 5.74it/s]\n 29%|██▊ | 6/21 [00:01<00:02, 5.74it/s]\n 33%|███▎ | 7/21 [00:01<00:02, 5.73it/s]\n 38%|███▊ | 8/21 [00:01<00:02, 5.75it/s]\n 43%|████▎ | 9/21 [00:01<00:02, 5.75it/s]\n 48%|████▊ | 10/21 [00:01<00:01, 5.75it/s]\n 52%|█████▏ | 11/21 [00:01<00:01, 5.75it/s]\n 57%|█████▋ | 12/21 [00:02<00:01, 5.74it/s]\n 62%|██████▏ | 13/21 [00:02<00:01, 5.74it/s]\n 67%|██████▋ | 14/21 [00:02<00:01, 5.75it/s]\n 71%|███████▏ | 15/21 [00:02<00:01, 5.75it/s]\n 76%|███████▌ | 16/21 [00:02<00:00, 5.75it/s]\n 81%|████████ | 17/21 [00:02<00:00, 5.75it/s]\n 86%|████████▌ | 18/21 [00:03<00:00, 5.75it/s]\n 90%|█████████ | 19/21 [00:03<00:00, 5.75it/s]\n 95%|█████████▌| 20/21 [00:03<00:00, 5.75it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.75it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.74it/s]", "metrics": { "predict_time": 21.467958, "total_time": 21.445817 }, "output": [ "https://pbxt.replicate.delivery/bcBpIIbK5lrhHVbW7tDazeqVlBafepAb582MYai21aZSFXhjA/out-0.png" ], "started_at": "2023-10-22T11:25:09.340445Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/weougp3b53h4x2dtb6m2hxdp6m", "cancel": "https://api.replicate.com/v1/predictions/weougp3b53h4x2dtb6m2hxdp6m/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 25189 Prompt: in the style of <s0><s1>, portrait of a european woman, green hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi txt2img mode 0%| | 0/70 [00:00<?, ?it/s] 1%|▏ | 1/70 [00:00<00:16, 4.27it/s] 3%|▎ | 2/70 [00:00<00:15, 4.41it/s] 4%|▍ | 3/70 [00:00<00:15, 4.44it/s] 6%|▌ | 4/70 [00:00<00:14, 4.45it/s] 7%|▋ | 5/70 [00:01<00:14, 4.46it/s] 9%|▊ | 6/70 [00:01<00:14, 4.47it/s] 10%|█ | 7/70 [00:01<00:14, 4.48it/s] 11%|█▏ | 8/70 [00:01<00:13, 4.48it/s] 13%|█▎ | 9/70 [00:02<00:13, 4.48it/s] 14%|█▍ | 10/70 [00:02<00:13, 4.47it/s] 16%|█▌ | 11/70 [00:02<00:13, 4.47it/s] 17%|█▋ | 12/70 [00:02<00:12, 4.47it/s] 19%|█▊ | 13/70 [00:02<00:12, 4.47it/s] 20%|██ | 14/70 [00:03<00:12, 4.47it/s] 21%|██▏ | 15/70 [00:03<00:12, 4.47it/s] 23%|██▎ | 16/70 [00:03<00:12, 4.47it/s] 24%|██▍ | 17/70 [00:03<00:11, 4.47it/s] 26%|██▌ | 18/70 [00:04<00:11, 4.47it/s] 27%|██▋ | 19/70 [00:04<00:11, 4.47it/s] 29%|██▊ | 20/70 [00:04<00:11, 4.47it/s] 30%|███ | 21/70 [00:04<00:10, 4.47it/s] 31%|███▏ | 22/70 [00:04<00:10, 4.47it/s] 33%|███▎ | 23/70 [00:05<00:10, 4.47it/s] 34%|███▍ | 24/70 [00:05<00:10, 4.47it/s] 36%|███▌ | 25/70 [00:05<00:10, 4.47it/s] 37%|███▋ | 26/70 [00:05<00:09, 4.47it/s] 39%|███▊ | 27/70 [00:06<00:09, 4.47it/s] 40%|████ | 28/70 [00:06<00:09, 4.47it/s] 41%|████▏ | 29/70 [00:06<00:09, 4.47it/s] 43%|████▎ | 30/70 [00:06<00:08, 4.47it/s] 44%|████▍ | 31/70 [00:06<00:08, 4.47it/s] 46%|████▌ | 32/70 [00:07<00:08, 4.47it/s] 47%|████▋ | 33/70 [00:07<00:08, 4.47it/s] 49%|████▊ | 34/70 [00:07<00:08, 4.47it/s] 50%|█████ | 35/70 [00:07<00:07, 4.47it/s] 51%|█████▏ | 36/70 [00:08<00:07, 4.47it/s] 53%|█████▎ | 37/70 [00:08<00:07, 4.47it/s] 54%|█████▍ | 38/70 [00:08<00:07, 4.47it/s] 56%|█████▌ | 39/70 [00:08<00:06, 4.47it/s] 57%|█████▋ | 40/70 [00:08<00:06, 4.46it/s] 59%|█████▊ | 41/70 [00:09<00:06, 4.46it/s] 60%|██████ | 42/70 [00:09<00:06, 4.46it/s] 61%|██████▏ | 43/70 [00:09<00:06, 4.46it/s] 63%|██████▎ | 44/70 [00:09<00:05, 4.46it/s] 64%|██████▍ | 45/70 [00:10<00:05, 4.46it/s] 66%|██████▌ | 46/70 [00:10<00:05, 4.46it/s] 67%|██████▋ | 47/70 [00:10<00:05, 4.46it/s] 69%|██████▊ | 48/70 [00:10<00:04, 4.46it/s] 70%|███████ | 49/70 [00:10<00:04, 4.46it/s] 71%|███████▏ | 50/70 [00:11<00:04, 4.46it/s] 73%|███████▎ | 51/70 [00:11<00:04, 4.46it/s] 74%|███████▍ | 52/70 [00:11<00:04, 4.46it/s] 76%|███████▌ | 53/70 [00:11<00:03, 4.46it/s] 77%|███████▋ | 54/70 [00:12<00:03, 4.45it/s] 79%|███████▊ | 55/70 [00:12<00:03, 4.46it/s] 80%|████████ | 56/70 [00:12<00:03, 4.46it/s] 81%|████████▏ | 57/70 [00:12<00:02, 4.46it/s] 83%|████████▎ | 58/70 [00:12<00:02, 4.46it/s] 84%|████████▍ | 59/70 [00:13<00:02, 4.46it/s] 86%|████████▌ | 60/70 [00:13<00:02, 4.46it/s] 87%|████████▋ | 61/70 [00:13<00:02, 4.46it/s] 89%|████████▊ | 62/70 [00:13<00:01, 4.46it/s] 90%|█████████ | 63/70 [00:14<00:01, 4.46it/s] 91%|█████████▏| 64/70 [00:14<00:01, 4.46it/s] 93%|█████████▎| 65/70 [00:14<00:01, 4.46it/s] 94%|█████████▍| 66/70 [00:14<00:00, 4.45it/s] 96%|█████████▌| 67/70 [00:15<00:00, 4.46it/s] 97%|█████████▋| 68/70 [00:15<00:00, 4.46it/s] 99%|█████████▊| 69/70 [00:15<00:00, 4.46it/s] 100%|██████████| 70/70 [00:15<00:00, 4.46it/s] 100%|██████████| 70/70 [00:15<00:00, 4.46it/s] 0%| | 0/21 [00:00<?, ?it/s] 5%|▍ | 1/21 [00:00<00:03, 5.53it/s] 10%|▉ | 2/21 [00:00<00:03, 5.67it/s] 14%|█▍ | 3/21 [00:00<00:03, 5.70it/s] 19%|█▉ | 4/21 [00:00<00:02, 5.72it/s] 24%|██▍ | 5/21 [00:00<00:02, 5.74it/s] 29%|██▊ | 6/21 [00:01<00:02, 5.74it/s] 33%|███▎ | 7/21 [00:01<00:02, 5.73it/s] 38%|███▊ | 8/21 [00:01<00:02, 5.75it/s] 43%|████▎ | 9/21 [00:01<00:02, 5.75it/s] 48%|████▊ | 10/21 [00:01<00:01, 5.75it/s] 52%|█████▏ | 11/21 [00:01<00:01, 5.75it/s] 57%|█████▋ | 12/21 [00:02<00:01, 5.74it/s] 62%|██████▏ | 13/21 [00:02<00:01, 5.74it/s] 67%|██████▋ | 14/21 [00:02<00:01, 5.75it/s] 71%|███████▏ | 15/21 [00:02<00:01, 5.75it/s] 76%|███████▌ | 16/21 [00:02<00:00, 5.75it/s] 81%|████████ | 17/21 [00:02<00:00, 5.75it/s] 86%|████████▌ | 18/21 [00:03<00:00, 5.75it/s] 90%|█████████ | 19/21 [00:03<00:00, 5.75it/s] 95%|█████████▌| 20/21 [00:03<00:00, 5.75it/s] 100%|██████████| 21/21 [00:03<00:00, 5.75it/s] 100%|██████████| 21/21 [00:03<00:00, 5.74it/s]
Prediction
jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294IDxjbha4dbojtsy35tafaedc3zimStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 800
- prompt
- in the style of TOK, portrait, european man, orange hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi
- refine
- base_image_refiner
- scheduler
- K_EULER
- lora_scale
- 0.95
- num_outputs
- 1
- guidance_scale
- 8.99
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 70
{ "width": 1024, "height": 800, "prompt": "in the style of TOK, portrait, european man, orange hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", { input: { width: 1024, height: 800, prompt: "in the style of TOK, portrait, european man, orange hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", refine: "base_image_refiner", scheduler: "K_EULER", lora_scale: 0.95, num_outputs: 1, guidance_scale: 8.99, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 70 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", input={ "width": 1024, "height": 800, "prompt": "in the style of TOK, portrait, european man, orange hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jbilcke/sdxl-cyberpunk-2077 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jbilcke/sdxl-cyberpunk-2077:6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294", "input": { "width": 1024, "height": 800, "prompt": "in the style of TOK, portrait, european man, orange hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-22T11:26:24.133020Z", "created_at": "2023-10-22T11:26:02.898461Z", "data_removed": false, "error": null, "id": "xjbha4dbojtsy35tafaedc3zim", "input": { "width": 1024, "height": 800, "prompt": "in the style of TOK, portrait, european man, orange hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi", "refine": "base_image_refiner", "scheduler": "K_EULER", "lora_scale": 0.95, "num_outputs": 1, "guidance_scale": 8.99, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 70 }, "logs": "Using seed: 5837\nPrompt: in the style of <s0><s1>, portrait, european man, orange hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi\ntxt2img mode\n 0%| | 0/70 [00:00<?, ?it/s]\n 1%|▏ | 1/70 [00:00<00:15, 4.53it/s]\n 3%|▎ | 2/70 [00:00<00:15, 4.52it/s]\n 4%|▍ | 3/70 [00:00<00:14, 4.51it/s]\n 6%|▌ | 4/70 [00:00<00:14, 4.50it/s]\n 7%|▋ | 5/70 [00:01<00:14, 4.48it/s]\n 9%|▊ | 6/70 [00:01<00:14, 4.49it/s]\n 10%|█ | 7/70 [00:01<00:14, 4.48it/s]\n 11%|█▏ | 8/70 [00:01<00:13, 4.48it/s]\n 13%|█▎ | 9/70 [00:02<00:13, 4.48it/s]\n 14%|█▍ | 10/70 [00:02<00:13, 4.48it/s]\n 16%|█▌ | 11/70 [00:02<00:13, 4.48it/s]\n 17%|█▋ | 12/70 [00:02<00:12, 4.47it/s]\n 19%|█▊ | 13/70 [00:02<00:12, 4.47it/s]\n 20%|██ | 14/70 [00:03<00:12, 4.47it/s]\n 21%|██▏ | 15/70 [00:03<00:12, 4.48it/s]\n 23%|██▎ | 16/70 [00:03<00:12, 4.47it/s]\n 24%|██▍ | 17/70 [00:03<00:11, 4.48it/s]\n 26%|██▌ | 18/70 [00:04<00:11, 4.47it/s]\n 27%|██▋ | 19/70 [00:04<00:11, 4.47it/s]\n 29%|██▊ | 20/70 [00:04<00:11, 4.47it/s]\n 30%|███ | 21/70 [00:04<00:10, 4.47it/s]\n 31%|███▏ | 22/70 [00:04<00:10, 4.47it/s]\n 33%|███▎ | 23/70 [00:05<00:10, 4.47it/s]\n 34%|███▍ | 24/70 [00:05<00:10, 4.47it/s]\n 36%|███▌ | 25/70 [00:05<00:10, 4.47it/s]\n 37%|███▋ | 26/70 [00:05<00:09, 4.47it/s]\n 39%|███▊ | 27/70 [00:06<00:09, 4.47it/s]\n 40%|████ | 28/70 [00:06<00:09, 4.47it/s]\n 41%|████▏ | 29/70 [00:06<00:09, 4.47it/s]\n 43%|████▎ | 30/70 [00:06<00:08, 4.47it/s]\n 44%|████▍ | 31/70 [00:06<00:08, 4.47it/s]\n 46%|████▌ | 32/70 [00:07<00:08, 4.47it/s]\n 47%|████▋ | 33/70 [00:07<00:08, 4.47it/s]\n 49%|████▊ | 34/70 [00:07<00:08, 4.47it/s]\n 50%|█████ | 35/70 [00:07<00:07, 4.47it/s]\n 51%|█████▏ | 36/70 [00:08<00:07, 4.47it/s]\n 53%|█████▎ | 37/70 [00:08<00:07, 4.47it/s]\n 54%|█████▍ | 38/70 [00:08<00:07, 4.47it/s]\n 56%|█████▌ | 39/70 [00:08<00:06, 4.46it/s]\n 57%|█████▋ | 40/70 [00:08<00:06, 4.47it/s]\n 59%|█████▊ | 41/70 [00:09<00:06, 4.47it/s]\n 60%|██████ | 42/70 [00:09<00:06, 4.47it/s]\n 61%|██████▏ | 43/70 [00:09<00:06, 4.47it/s]\n 63%|██████▎ | 44/70 [00:09<00:05, 4.47it/s]\n 64%|██████▍ | 45/70 [00:10<00:05, 4.47it/s]\n 66%|██████▌ | 46/70 [00:10<00:05, 4.47it/s]\n 67%|██████▋ | 47/70 [00:10<00:05, 4.47it/s]\n 69%|██████▊ | 48/70 [00:10<00:04, 4.47it/s]\n 70%|███████ | 49/70 [00:10<00:04, 4.47it/s]\n 71%|███████▏ | 50/70 [00:11<00:04, 4.47it/s]\n 73%|███████▎ | 51/70 [00:11<00:04, 4.46it/s]\n 74%|███████▍ | 52/70 [00:11<00:04, 4.46it/s]\n 76%|███████▌ | 53/70 [00:11<00:03, 4.46it/s]\n 77%|███████▋ | 54/70 [00:12<00:03, 4.46it/s]\n 79%|███████▊ | 55/70 [00:12<00:03, 4.46it/s]\n 80%|████████ | 56/70 [00:12<00:03, 4.46it/s]\n 81%|████████▏ | 57/70 [00:12<00:02, 4.46it/s]\n 83%|████████▎ | 58/70 [00:12<00:02, 4.46it/s]\n 84%|████████▍ | 59/70 [00:13<00:02, 4.46it/s]\n 86%|████████▌ | 60/70 [00:13<00:02, 4.46it/s]\n 87%|████████▋ | 61/70 [00:13<00:02, 4.46it/s]\n 89%|████████▊ | 62/70 [00:13<00:01, 4.46it/s]\n 90%|█████████ | 63/70 [00:14<00:01, 4.46it/s]\n 91%|█████████▏| 64/70 [00:14<00:01, 4.46it/s]\n 93%|█████████▎| 65/70 [00:14<00:01, 4.45it/s]\n 94%|█████████▍| 66/70 [00:14<00:00, 4.46it/s]\n 96%|█████████▌| 67/70 [00:14<00:00, 4.46it/s]\n 97%|█████████▋| 68/70 [00:15<00:00, 4.46it/s]\n 99%|█████████▊| 69/70 [00:15<00:00, 4.46it/s]\n100%|██████████| 70/70 [00:15<00:00, 4.46it/s]\n100%|██████████| 70/70 [00:15<00:00, 4.47it/s]\n 0%| | 0/21 [00:00<?, ?it/s]\n 5%|▍ | 1/21 [00:00<00:03, 5.83it/s]\n 10%|▉ | 2/21 [00:00<00:03, 5.78it/s]\n 14%|█▍ | 3/21 [00:00<00:03, 5.76it/s]\n 19%|█▉ | 4/21 [00:00<00:02, 5.77it/s]\n 24%|██▍ | 5/21 [00:00<00:02, 5.76it/s]\n 29%|██▊ | 6/21 [00:01<00:02, 5.76it/s]\n 33%|███▎ | 7/21 [00:01<00:02, 5.76it/s]\n 38%|███▊ | 8/21 [00:01<00:02, 5.76it/s]\n 43%|████▎ | 9/21 [00:01<00:02, 5.75it/s]\n 48%|████▊ | 10/21 [00:01<00:01, 5.75it/s]\n 52%|█████▏ | 11/21 [00:01<00:01, 5.75it/s]\n 57%|█████▋ | 12/21 [00:02<00:01, 5.75it/s]\n 62%|██████▏ | 13/21 [00:02<00:01, 5.75it/s]\n 67%|██████▋ | 14/21 [00:02<00:01, 5.75it/s]\n 71%|███████▏ | 15/21 [00:02<00:01, 5.75it/s]\n 76%|███████▌ | 16/21 [00:02<00:00, 5.74it/s]\n 81%|████████ | 17/21 [00:02<00:00, 5.74it/s]\n 86%|████████▌ | 18/21 [00:03<00:00, 5.74it/s]\n 90%|█████████ | 19/21 [00:03<00:00, 5.74it/s]\n 95%|█████████▌| 20/21 [00:03<00:00, 5.74it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.74it/s]\n100%|██████████| 21/21 [00:03<00:00, 5.75it/s]", "metrics": { "predict_time": 21.195078, "total_time": 21.234559 }, "output": [ "https://pbxt.replicate.delivery/ruo9Ss1meL2aOC57vLx0K0IJadHst4Uiz3qc6MKMek8fGXhjA/out-0.png" ], "started_at": "2023-10-22T11:26:02.937942Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xjbha4dbojtsy35tafaedc3zim", "cancel": "https://api.replicate.com/v1/predictions/xjbha4dbojtsy35tafaedc3zim/cancel" }, "version": "6e967109e2e554d5cd6a61891258e20eef7e68a1491ac8cd1328e19704e4b294" }
Generated inUsing seed: 5837 Prompt: in the style of <s0><s1>, portrait, european man, orange hair, standing in a solar power plant, work clothes, palm trees, sportscar in the background, golden blazer, sky scrappers in the background, futuristic, sci-fi txt2img mode 0%| | 0/70 [00:00<?, ?it/s] 1%|▏ | 1/70 [00:00<00:15, 4.53it/s] 3%|▎ | 2/70 [00:00<00:15, 4.52it/s] 4%|▍ | 3/70 [00:00<00:14, 4.51it/s] 6%|▌ | 4/70 [00:00<00:14, 4.50it/s] 7%|▋ | 5/70 [00:01<00:14, 4.48it/s] 9%|▊ | 6/70 [00:01<00:14, 4.49it/s] 10%|█ | 7/70 [00:01<00:14, 4.48it/s] 11%|█▏ | 8/70 [00:01<00:13, 4.48it/s] 13%|█▎ | 9/70 [00:02<00:13, 4.48it/s] 14%|█▍ | 10/70 [00:02<00:13, 4.48it/s] 16%|█▌ | 11/70 [00:02<00:13, 4.48it/s] 17%|█▋ | 12/70 [00:02<00:12, 4.47it/s] 19%|█▊ | 13/70 [00:02<00:12, 4.47it/s] 20%|██ | 14/70 [00:03<00:12, 4.47it/s] 21%|██▏ | 15/70 [00:03<00:12, 4.48it/s] 23%|██▎ | 16/70 [00:03<00:12, 4.47it/s] 24%|██▍ | 17/70 [00:03<00:11, 4.48it/s] 26%|██▌ | 18/70 [00:04<00:11, 4.47it/s] 27%|██▋ | 19/70 [00:04<00:11, 4.47it/s] 29%|██▊ | 20/70 [00:04<00:11, 4.47it/s] 30%|███ | 21/70 [00:04<00:10, 4.47it/s] 31%|███▏ | 22/70 [00:04<00:10, 4.47it/s] 33%|███▎ | 23/70 [00:05<00:10, 4.47it/s] 34%|███▍ | 24/70 [00:05<00:10, 4.47it/s] 36%|███▌ | 25/70 [00:05<00:10, 4.47it/s] 37%|███▋ | 26/70 [00:05<00:09, 4.47it/s] 39%|███▊ | 27/70 [00:06<00:09, 4.47it/s] 40%|████ | 28/70 [00:06<00:09, 4.47it/s] 41%|████▏ | 29/70 [00:06<00:09, 4.47it/s] 43%|████▎ | 30/70 [00:06<00:08, 4.47it/s] 44%|████▍ | 31/70 [00:06<00:08, 4.47it/s] 46%|████▌ | 32/70 [00:07<00:08, 4.47it/s] 47%|████▋ | 33/70 [00:07<00:08, 4.47it/s] 49%|████▊ | 34/70 [00:07<00:08, 4.47it/s] 50%|█████ | 35/70 [00:07<00:07, 4.47it/s] 51%|█████▏ | 36/70 [00:08<00:07, 4.47it/s] 53%|█████▎ | 37/70 [00:08<00:07, 4.47it/s] 54%|█████▍ | 38/70 [00:08<00:07, 4.47it/s] 56%|█████▌ | 39/70 [00:08<00:06, 4.46it/s] 57%|█████▋ | 40/70 [00:08<00:06, 4.47it/s] 59%|█████▊ | 41/70 [00:09<00:06, 4.47it/s] 60%|██████ | 42/70 [00:09<00:06, 4.47it/s] 61%|██████▏ | 43/70 [00:09<00:06, 4.47it/s] 63%|██████▎ | 44/70 [00:09<00:05, 4.47it/s] 64%|██████▍ | 45/70 [00:10<00:05, 4.47it/s] 66%|██████▌ | 46/70 [00:10<00:05, 4.47it/s] 67%|██████▋ | 47/70 [00:10<00:05, 4.47it/s] 69%|██████▊ | 48/70 [00:10<00:04, 4.47it/s] 70%|███████ | 49/70 [00:10<00:04, 4.47it/s] 71%|███████▏ | 50/70 [00:11<00:04, 4.47it/s] 73%|███████▎ | 51/70 [00:11<00:04, 4.46it/s] 74%|███████▍ | 52/70 [00:11<00:04, 4.46it/s] 76%|███████▌ | 53/70 [00:11<00:03, 4.46it/s] 77%|███████▋ | 54/70 [00:12<00:03, 4.46it/s] 79%|███████▊ | 55/70 [00:12<00:03, 4.46it/s] 80%|████████ | 56/70 [00:12<00:03, 4.46it/s] 81%|████████▏ | 57/70 [00:12<00:02, 4.46it/s] 83%|████████▎ | 58/70 [00:12<00:02, 4.46it/s] 84%|████████▍ | 59/70 [00:13<00:02, 4.46it/s] 86%|████████▌ | 60/70 [00:13<00:02, 4.46it/s] 87%|████████▋ | 61/70 [00:13<00:02, 4.46it/s] 89%|████████▊ | 62/70 [00:13<00:01, 4.46it/s] 90%|█████████ | 63/70 [00:14<00:01, 4.46it/s] 91%|█████████▏| 64/70 [00:14<00:01, 4.46it/s] 93%|█████████▎| 65/70 [00:14<00:01, 4.45it/s] 94%|█████████▍| 66/70 [00:14<00:00, 4.46it/s] 96%|█████████▌| 67/70 [00:14<00:00, 4.46it/s] 97%|█████████▋| 68/70 [00:15<00:00, 4.46it/s] 99%|█████████▊| 69/70 [00:15<00:00, 4.46it/s] 100%|██████████| 70/70 [00:15<00:00, 4.46it/s] 100%|██████████| 70/70 [00:15<00:00, 4.47it/s] 0%| | 0/21 [00:00<?, ?it/s] 5%|▍ | 1/21 [00:00<00:03, 5.83it/s] 10%|▉ | 2/21 [00:00<00:03, 5.78it/s] 14%|█▍ | 3/21 [00:00<00:03, 5.76it/s] 19%|█▉ | 4/21 [00:00<00:02, 5.77it/s] 24%|██▍ | 5/21 [00:00<00:02, 5.76it/s] 29%|██▊ | 6/21 [00:01<00:02, 5.76it/s] 33%|███▎ | 7/21 [00:01<00:02, 5.76it/s] 38%|███▊ | 8/21 [00:01<00:02, 5.76it/s] 43%|████▎ | 9/21 [00:01<00:02, 5.75it/s] 48%|████▊ | 10/21 [00:01<00:01, 5.75it/s] 52%|█████▏ | 11/21 [00:01<00:01, 5.75it/s] 57%|█████▋ | 12/21 [00:02<00:01, 5.75it/s] 62%|██████▏ | 13/21 [00:02<00:01, 5.75it/s] 67%|██████▋ | 14/21 [00:02<00:01, 5.75it/s] 71%|███████▏ | 15/21 [00:02<00:01, 5.75it/s] 76%|███████▌ | 16/21 [00:02<00:00, 5.74it/s] 81%|████████ | 17/21 [00:02<00:00, 5.74it/s] 86%|████████▌ | 18/21 [00:03<00:00, 5.74it/s] 90%|█████████ | 19/21 [00:03<00:00, 5.74it/s] 95%|█████████▌| 20/21 [00:03<00:00, 5.74it/s] 100%|██████████| 21/21 [00:03<00:00, 5.74it/s] 100%|██████████| 21/21 [00:03<00:00, 5.75it/s]
Want to make some of these yourself?
Run this model