jd7h / luciddreamer

High-Fidelity Text-to-3D Generation via Interval Score Matching

  • Public
  • 70 runs
  • GitHub
  • Paper
  • License

Run time and cost

This model costs approximately $0.83 to run on Replicate, or 1 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.

This model runs on Nvidia A40 (Large) GPU hardware. Predictions typically complete within 20 minutes.

Readme

LucidDreamer is a text-to-3D generation framework for distilling high-fidelity textures and shapes from pretrained 2D diffusion models.

Paper and abstract

The recent advancements in text-to-3D generation mark a significant milestone in generative models, unlocking new possibilities for creating imaginative 3D assets across various real-world scenarios. While recent advancements in text-to-3D generation have shown promise, they often fall short in rendering detailed and high-quality 3D models. This problem is especially prevalent as many methods base themselves on Score Distillation Sampling (SDS). This paper identifies a notable deficiency in SDS, that it brings inconsistent and low-quality updating direction for the 3D model, causing the over-smoothing effect. To address this, we propose a novel approach called Interval Score Matching (ISM). ISM employs deterministic diffusing trajectories and utilizes interval-based score matching to counteract over-smoothing. Furthermore, we incorporate 3D Gaussian Splatting into our text-to-3D generation pipeline. Extensive experiments show that our model largely outperforms the state-of-the-art in quality and training efficiency.

@misc{EnVision2023luciddreamer,
      title={LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching}, 
      author={Yixun Liang and Xin Yang and Jiantao Lin and Haodong Li and Xiaogang Xu and Yingcong Chen},
      year={2023},
      eprint={2311.11284},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For the most up-to-date information about this model, see the original repository.