Readme
Prompt Prefix: “A sketchnote in the style of TOK”
Generates hand-drawn sketchnotes with great detail. Prompt Prefix: “A sketchnote in the style of TOK”
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run justmalhar/flux-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"justmalhar/flux-sketchnotes:749e44eb2d6a1f19a965cb48aba61ec131a8dc42e4d71759d462686aaf41c429",
{
input: {
model: "dev",
width: 1080,
height: 1080,
prompt: "A sketchnote in the style of TOK with man explaining supervised vs unsupervised machine learning algorithms, arrows, green black tone, white background ",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "1:1",
output_format: "jpg",
guidance_scale: 3.5,
output_quality: 100,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run justmalhar/flux-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"justmalhar/flux-sketchnotes:749e44eb2d6a1f19a965cb48aba61ec131a8dc42e4d71759d462686aaf41c429",
input={
"model": "dev",
"width": 1080,
"height": 1080,
"prompt": "A sketchnote in the style of TOK with man explaining supervised vs unsupervised machine learning algorithms, arrows, green black tone, white background ",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "jpg",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run justmalhar/flux-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "justmalhar/flux-sketchnotes:749e44eb2d6a1f19a965cb48aba61ec131a8dc42e4d71759d462686aaf41c429",
"input": {
"model": "dev",
"width": 1080,
"height": 1080,
"prompt": "A sketchnote in the style of TOK with man explaining supervised vs unsupervised machine learning algorithms, arrows, green black tone, white background ",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "jpg",
"guidance_scale": 3.5,
"output_quality": 100,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-19T12:45:31.004836Z",
"created_at": "2024-08-19T12:43:59.768000Z",
"data_removed": false,
"error": null,
"id": "e3cqs53dk1rm20chdanbws1f0g",
"input": {
"model": "dev",
"width": 1080,
"height": 1080,
"prompt": "A sketchnote in the style of TOK with man explaining supervised vs unsupervised machine learning algorithms, arrows, green black tone, white background ",
"lora_scale": 1,
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "jpg",
"guidance_scale": 3.5,
"output_quality": 100,
"num_inference_steps": 28
},
"logs": "Using seed: 35184\nPrompt: A sketchnote in the style of TOK with man explaining supervised vs unsupervised machine learning algorithms, arrows, green black tone, white background\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nEnsuring enough disk space...\nFree disk space: 9586469498880\nDownloading weights\n2024-08-19T12:44:50Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/93f5ad2c6b2326fe url=https://replicate.delivery/yhqm/e9sBWcEWKkWrJaXImYHkCeKiFc5hwn2HrWBY1a4gedY9FcomA/trained_model.tar\n2024-08-19T12:44:51Z | INFO | [ Complete ] dest=/src/weights-cache/93f5ad2c6b2326fe size=\"172 MB\" total_elapsed=1.441s url=https://replicate.delivery/yhqm/e9sBWcEWKkWrJaXImYHkCeKiFc5hwn2HrWBY1a4gedY9FcomA/trained_model.tar\nb''\nDownloaded weights in 1.469226598739624 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:27, 1.02s/it]\n 7%|▋ | 2/28 [00:01<00:23, 1.12it/s]\n 11%|█ | 3/28 [00:02<00:23, 1.05it/s]\n 14%|█▍ | 4/28 [00:03<00:23, 1.02it/s]\n 18%|█▊ | 5/28 [00:04<00:22, 1.00it/s]\n 21%|██▏ | 6/28 [00:05<00:22, 1.01s/it]\n 25%|██▌ | 7/28 [00:06<00:21, 1.01s/it]\n 29%|██▊ | 8/28 [00:07<00:20, 1.02s/it]\n 32%|███▏ | 9/28 [00:08<00:19, 1.02s/it]\n 36%|███▌ | 10/28 [00:10<00:18, 1.02s/it]\n 39%|███▉ | 11/28 [00:11<00:17, 1.02s/it]\n 43%|████▎ | 12/28 [00:12<00:16, 1.03s/it]\n 46%|████▋ | 13/28 [00:13<00:15, 1.03s/it]\n 50%|█████ | 14/28 [00:14<00:14, 1.03s/it]\n 54%|█████▎ | 15/28 [00:15<00:13, 1.03s/it]\n 57%|█████▋ | 16/28 [00:16<00:12, 1.03s/it]\n 61%|██████ | 17/28 [00:17<00:11, 1.03s/it]\n 64%|██████▍ | 18/28 [00:18<00:10, 1.03s/it]\n 68%|██████▊ | 19/28 [00:19<00:09, 1.03s/it]\n 71%|███████▏ | 20/28 [00:20<00:08, 1.03s/it]\n 75%|███████▌ | 21/28 [00:21<00:07, 1.03s/it]\n 79%|███████▊ | 22/28 [00:22<00:06, 1.03s/it]\n 82%|████████▏ | 23/28 [00:23<00:05, 1.03s/it]\n 86%|████████▌ | 24/28 [00:24<00:04, 1.03s/it]\n 89%|████████▉ | 25/28 [00:25<00:03, 1.03s/it]\n 93%|█████████▎| 26/28 [00:26<00:02, 1.03s/it]\n 96%|█████████▋| 27/28 [00:27<00:01, 1.03s/it]\n100%|██████████| 28/28 [00:28<00:00, 1.03s/it]\n100%|██████████| 28/28 [00:28<00:00, 1.02s/it]",
"metrics": {
"predict_time": 41.064993984,
"total_time": 91.236836
},
"output": [
"https://replicate.delivery/yhqm/kBiBGD5HftWLVqKrtouDWmgQ2pkIRe4brd3mxLAcgLNqBPUTA/out-0.jpg",
"https://replicate.delivery/yhqm/T61WBe59uPUzAKdAppZcDVGeK0vOwPAeYEwkZeGO2tfXN4haC/out-1.jpg",
"https://replicate.delivery/yhqm/DITe0ARRnwwqBq2JFTc39TsQbGpgyrIutIEwDMWYnZK1gHqJA/out-2.jpg",
"https://replicate.delivery/yhqm/XW4agYGmqRo7MRVx7YTBtRkmge2Ey6jQaeZsrmeAOQOUDeQNB/out-3.jpg"
],
"started_at": "2024-08-19T12:44:49.939842Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/e3cqs53dk1rm20chdanbws1f0g",
"cancel": "https://api.replicate.com/v1/predictions/e3cqs53dk1rm20chdanbws1f0g/cancel"
},
"version": "749e44eb2d6a1f19a965cb48aba61ec131a8dc42e4d71759d462686aaf41c429"
}
Using seed: 35184
Prompt: A sketchnote in the style of TOK with man explaining supervised vs unsupervised machine learning algorithms, arrows, green black tone, white background
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9586469498880
Downloading weights
2024-08-19T12:44:50Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/93f5ad2c6b2326fe url=https://replicate.delivery/yhqm/e9sBWcEWKkWrJaXImYHkCeKiFc5hwn2HrWBY1a4gedY9FcomA/trained_model.tar
2024-08-19T12:44:51Z | INFO | [ Complete ] dest=/src/weights-cache/93f5ad2c6b2326fe size="172 MB" total_elapsed=1.441s url=https://replicate.delivery/yhqm/e9sBWcEWKkWrJaXImYHkCeKiFc5hwn2HrWBY1a4gedY9FcomA/trained_model.tar
b''
Downloaded weights in 1.469226598739624 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:01<00:27, 1.02s/it]
7%|▋ | 2/28 [00:01<00:23, 1.12it/s]
11%|█ | 3/28 [00:02<00:23, 1.05it/s]
14%|█▍ | 4/28 [00:03<00:23, 1.02it/s]
18%|█▊ | 5/28 [00:04<00:22, 1.00it/s]
21%|██▏ | 6/28 [00:05<00:22, 1.01s/it]
25%|██▌ | 7/28 [00:06<00:21, 1.01s/it]
29%|██▊ | 8/28 [00:07<00:20, 1.02s/it]
32%|███▏ | 9/28 [00:08<00:19, 1.02s/it]
36%|███▌ | 10/28 [00:10<00:18, 1.02s/it]
39%|███▉ | 11/28 [00:11<00:17, 1.02s/it]
43%|████▎ | 12/28 [00:12<00:16, 1.03s/it]
46%|████▋ | 13/28 [00:13<00:15, 1.03s/it]
50%|█████ | 14/28 [00:14<00:14, 1.03s/it]
54%|█████▎ | 15/28 [00:15<00:13, 1.03s/it]
57%|█████▋ | 16/28 [00:16<00:12, 1.03s/it]
61%|██████ | 17/28 [00:17<00:11, 1.03s/it]
64%|██████▍ | 18/28 [00:18<00:10, 1.03s/it]
68%|██████▊ | 19/28 [00:19<00:09, 1.03s/it]
71%|███████▏ | 20/28 [00:20<00:08, 1.03s/it]
75%|███████▌ | 21/28 [00:21<00:07, 1.03s/it]
79%|███████▊ | 22/28 [00:22<00:06, 1.03s/it]
82%|████████▏ | 23/28 [00:23<00:05, 1.03s/it]
86%|████████▌ | 24/28 [00:24<00:04, 1.03s/it]
89%|████████▉ | 25/28 [00:25<00:03, 1.03s/it]
93%|█████████▎| 26/28 [00:26<00:02, 1.03s/it]
96%|█████████▋| 27/28 [00:27<00:01, 1.03s/it]
100%|██████████| 28/28 [00:28<00:00, 1.03s/it]
100%|██████████| 28/28 [00:28<00:00, 1.02s/it]
This model costs approximately $0.040 to run on Replicate, or 25 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 27 seconds.
Prompt Prefix: “A sketchnote in the style of TOK”
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 35184
Prompt: A sketchnote in the style of TOK with man explaining supervised vs unsupervised machine learning algorithms, arrows, green black tone, white background
txt2img mode
Using dev model
Loading LoRA weights
Ensuring enough disk space...
Free disk space: 9586469498880
Downloading weights
2024-08-19T12:44:50Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/93f5ad2c6b2326fe url=https://replicate.delivery/yhqm/e9sBWcEWKkWrJaXImYHkCeKiFc5hwn2HrWBY1a4gedY9FcomA/trained_model.tar
2024-08-19T12:44:51Z | INFO | [ Complete ] dest=/src/weights-cache/93f5ad2c6b2326fe size="172 MB" total_elapsed=1.441s url=https://replicate.delivery/yhqm/e9sBWcEWKkWrJaXImYHkCeKiFc5hwn2HrWBY1a4gedY9FcomA/trained_model.tar
b''
Downloaded weights in 1.469226598739624 seconds
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:01<00:27, 1.02s/it]
7%|▋ | 2/28 [00:01<00:23, 1.12it/s]
11%|█ | 3/28 [00:02<00:23, 1.05it/s]
14%|█▍ | 4/28 [00:03<00:23, 1.02it/s]
18%|█▊ | 5/28 [00:04<00:22, 1.00it/s]
21%|██▏ | 6/28 [00:05<00:22, 1.01s/it]
25%|██▌ | 7/28 [00:06<00:21, 1.01s/it]
29%|██▊ | 8/28 [00:07<00:20, 1.02s/it]
32%|███▏ | 9/28 [00:08<00:19, 1.02s/it]
36%|███▌ | 10/28 [00:10<00:18, 1.02s/it]
39%|███▉ | 11/28 [00:11<00:17, 1.02s/it]
43%|████▎ | 12/28 [00:12<00:16, 1.03s/it]
46%|████▋ | 13/28 [00:13<00:15, 1.03s/it]
50%|█████ | 14/28 [00:14<00:14, 1.03s/it]
54%|█████▎ | 15/28 [00:15<00:13, 1.03s/it]
57%|█████▋ | 16/28 [00:16<00:12, 1.03s/it]
61%|██████ | 17/28 [00:17<00:11, 1.03s/it]
64%|██████▍ | 18/28 [00:18<00:10, 1.03s/it]
68%|██████▊ | 19/28 [00:19<00:09, 1.03s/it]
71%|███████▏ | 20/28 [00:20<00:08, 1.03s/it]
75%|███████▌ | 21/28 [00:21<00:07, 1.03s/it]
79%|███████▊ | 22/28 [00:22<00:06, 1.03s/it]
82%|████████▏ | 23/28 [00:23<00:05, 1.03s/it]
86%|████████▌ | 24/28 [00:24<00:04, 1.03s/it]
89%|████████▉ | 25/28 [00:25<00:03, 1.03s/it]
93%|█████████▎| 26/28 [00:26<00:02, 1.03s/it]
96%|█████████▋| 27/28 [00:27<00:01, 1.03s/it]
100%|██████████| 28/28 [00:28<00:00, 1.03s/it]
100%|██████████| 28/28 [00:28<00:00, 1.02s/it]