kazdatahelp
/
tql
- Public
- 15 runs
-
H100
Prediction
kazdatahelp/tql:0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347ID18cq1ebf0srm40chms2tv7476cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- TQL is a Shar Pei
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 4:5
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "TQL is a Shar Pei", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run kazdatahelp/tql using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "kazdatahelp/tql:0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347", { input: { model: "dev", prompt: "TQL is a Shar Pei", lora_scale: 1, num_outputs: 1, aspect_ratio: "4:5", output_format: "png", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run kazdatahelp/tql using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "kazdatahelp/tql:0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347", input={ "model": "dev", "prompt": "TQL is a Shar Pei", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run kazdatahelp/tql using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347", "input": { "model": "dev", "prompt": "TQL is a Shar Pei", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-31T02:31:13.816793Z", "created_at": "2024-08-31T02:30:53.958000Z", "data_removed": false, "error": null, "id": "18cq1ebf0srm40chms2tv7476c", "input": { "model": "dev", "prompt": "TQL is a Shar Pei", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 29244\nPrompt: TQL is a Shar Pei\ntxt2img mode\nUsing dev model\nfree=9333979631616\nDownloading weights\n2024-08-31T02:30:54Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmptxwcp40z/weights url=https://replicate.delivery/yhqm/JVFnfMxaNQ3fJ0XUU6NHf5imcdvhzJ3zfFsjpt1B4KJznLgNB/trained_model.tar\n2024-08-31T02:30:56Z | INFO | [ Complete ] dest=/tmp/tmptxwcp40z/weights size=\"172 MB\" total_elapsed=2.151s url=https://replicate.delivery/yhqm/JVFnfMxaNQ3fJ0XUU6NHf5imcdvhzJ3zfFsjpt1B4KJznLgNB/trained_model.tar\nDownloaded weights in 2.18s\nLoaded LoRAs in 11.80s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.85it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.46it/s]\n 11%|█ | 3/28 [00:00<00:05, 4.18it/s]\n 14%|█▍ | 4/28 [00:00<00:05, 4.05it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.99it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.96it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.94it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.91it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.90it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.90it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.90it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.89it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.88it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.88it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.89it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.88it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.88it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.88it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.89it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.88it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.87it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.88it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.88it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.88it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.87it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.88it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.88it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.88it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.91it/s]", "metrics": { "predict_time": 19.84921951, "total_time": 19.858793 }, "output": [ "https://replicate.delivery/yhqm/QfzbvlfOOuldVUJ2GsmxY3ldK9FKP9DPyaSGjFjMgb6xJDYTA/out-0.png" ], "started_at": "2024-08-31T02:30:53.967573Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/18cq1ebf0srm40chms2tv7476c", "cancel": "https://api.replicate.com/v1/predictions/18cq1ebf0srm40chms2tv7476c/cancel" }, "version": "0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347" }
Generated inUsing seed: 29244 Prompt: TQL is a Shar Pei txt2img mode Using dev model free=9333979631616 Downloading weights 2024-08-31T02:30:54Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmptxwcp40z/weights url=https://replicate.delivery/yhqm/JVFnfMxaNQ3fJ0XUU6NHf5imcdvhzJ3zfFsjpt1B4KJznLgNB/trained_model.tar 2024-08-31T02:30:56Z | INFO | [ Complete ] dest=/tmp/tmptxwcp40z/weights size="172 MB" total_elapsed=2.151s url=https://replicate.delivery/yhqm/JVFnfMxaNQ3fJ0XUU6NHf5imcdvhzJ3zfFsjpt1B4KJznLgNB/trained_model.tar Downloaded weights in 2.18s Loaded LoRAs in 11.80s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.85it/s] 7%|▋ | 2/28 [00:00<00:05, 4.46it/s] 11%|█ | 3/28 [00:00<00:05, 4.18it/s] 14%|█▍ | 4/28 [00:00<00:05, 4.05it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.99it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.96it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.94it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.91it/s] 32%|███▏ | 9/28 [00:02<00:04, 3.90it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.90it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.90it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.89it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.88it/s] 50%|█████ | 14/28 [00:03<00:03, 3.88it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.89it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.88it/s] 61%|██████ | 17/28 [00:04<00:02, 3.88it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.88it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.89it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.88it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.87it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.88it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.88it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.88it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.87it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.88it/s] 96%|█████████▋| 27/28 [00:06<00:00, 3.88it/s] 100%|██████████| 28/28 [00:07<00:00, 3.88it/s] 100%|██████████| 28/28 [00:07<00:00, 3.91it/s]
Prediction
kazdatahelp/tql:0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347ID4y0tmfmzthrm00chmvbat3bjecStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- TQL is one happy Shar Pei
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 4:5
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "TQL is one happy Shar Pei ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run kazdatahelp/tql using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "kazdatahelp/tql:0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347", { input: { model: "dev", prompt: "TQL is one happy Shar Pei ", lora_scale: 1, num_outputs: 1, aspect_ratio: "4:5", output_format: "png", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run kazdatahelp/tql using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "kazdatahelp/tql:0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347", input={ "model": "dev", "prompt": "TQL is one happy Shar Pei ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run kazdatahelp/tql using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347", "input": { "model": "dev", "prompt": "TQL is one happy Shar Pei ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-31T05:09:48.146884Z", "created_at": "2024-08-31T05:09:29.172000Z", "data_removed": false, "error": null, "id": "4y0tmfmzthrm00chmvbat3bjec", "input": { "model": "dev", "prompt": "TQL is one happy Shar Pei ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "4:5", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 2527\nPrompt: TQL is one happy Shar Pei\ntxt2img mode\nUsing dev model\nfree=9969756315648\nDownloading weights\n2024-08-31T05:09:29Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmplq9wu0t6/weights url=https://replicate.delivery/yhqm/JVFnfMxaNQ3fJ0XUU6NHf5imcdvhzJ3zfFsjpt1B4KJznLgNB/trained_model.tar\n2024-08-31T05:09:32Z | INFO | [ Complete ] dest=/tmp/tmplq9wu0t6/weights size=\"172 MB\" total_elapsed=3.558s url=https://replicate.delivery/yhqm/JVFnfMxaNQ3fJ0XUU6NHf5imcdvhzJ3zfFsjpt1B4KJznLgNB/trained_model.tar\nDownloaded weights in 3.59s\nLoaded LoRAs in 10.88s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:06, 3.87it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.44it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.17it/s]\n 14%|█▍ | 4/28 [00:00<00:05, 4.05it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.98it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.94it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.93it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.92it/s]\n 32%|███▏ | 9/28 [00:02<00:04, 3.90it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.89it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.89it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.89it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.88it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.88it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.88it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.88it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.88it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.87it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.88it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.88it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.88it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.87it/s]\n 82%|████████▏ | 23/28 [00:05<00:01, 3.88it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.89it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.88it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.88it/s]\n 96%|█████████▋| 27/28 [00:06<00:00, 3.88it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.88it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.91it/s]", "metrics": { "predict_time": 18.966586177, "total_time": 18.974884 }, "output": [ "https://replicate.delivery/yhqm/Sszcxq9Mp24SCVOMQKVRfeuDfehd1H1Ff1hmNxdWOaYYzrAbC/out-0.png" ], "started_at": "2024-08-31T05:09:29.180298Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4y0tmfmzthrm00chmvbat3bjec", "cancel": "https://api.replicate.com/v1/predictions/4y0tmfmzthrm00chmvbat3bjec/cancel" }, "version": "0aae2cf66cf44bad3a19837c2cd82d847d1bd04b3676a187b6c8768bd4903347" }
Generated inUsing seed: 2527 Prompt: TQL is one happy Shar Pei txt2img mode Using dev model free=9969756315648 Downloading weights 2024-08-31T05:09:29Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmplq9wu0t6/weights url=https://replicate.delivery/yhqm/JVFnfMxaNQ3fJ0XUU6NHf5imcdvhzJ3zfFsjpt1B4KJznLgNB/trained_model.tar 2024-08-31T05:09:32Z | INFO | [ Complete ] dest=/tmp/tmplq9wu0t6/weights size="172 MB" total_elapsed=3.558s url=https://replicate.delivery/yhqm/JVFnfMxaNQ3fJ0XUU6NHf5imcdvhzJ3zfFsjpt1B4KJznLgNB/trained_model.tar Downloaded weights in 3.59s Loaded LoRAs in 10.88s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:06, 3.87it/s] 7%|▋ | 2/28 [00:00<00:05, 4.44it/s] 11%|█ | 3/28 [00:00<00:06, 4.17it/s] 14%|█▍ | 4/28 [00:00<00:05, 4.05it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.98it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.94it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.93it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.92it/s] 32%|███▏ | 9/28 [00:02<00:04, 3.90it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.89it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.89it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.89it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.88it/s] 50%|█████ | 14/28 [00:03<00:03, 3.88it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.88it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.88it/s] 61%|██████ | 17/28 [00:04<00:02, 3.88it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.87it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.88it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.88it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.88it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.87it/s] 82%|████████▏ | 23/28 [00:05<00:01, 3.88it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.89it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.88it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.88it/s] 96%|█████████▋| 27/28 [00:06<00:00, 3.88it/s] 100%|██████████| 28/28 [00:07<00:00, 3.88it/s] 100%|██████████| 28/28 [00:07<00:00, 3.91it/s]
Want to make some of these yourself?
Run this model