Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lightweight-ai/test_sk2ig_f using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lightweight-ai/test_sk2ig_f:82a04a0ad53cac48c1db8a25e082ff3f266a386a398cc50d60b8f0dd0518442b",
{
input: {
seed: 88456,
image: "https://replicate.delivery/pbxt/MqSQLpdaQBnj9kxWbJMfh4rYSyHJuhOtI7uACtN6XTXnAvXx/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg",
prompt: "a rose",
style_name: "Pixel art",
hed_enabled: true,
canny_enabled: false,
guidance_scale: 3.5,
negative_prompt: "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
num_inference_steps: 28,
controlnet_conditioning_scale: 0.45
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lightweight-ai/test_sk2ig_f using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lightweight-ai/test_sk2ig_f:82a04a0ad53cac48c1db8a25e082ff3f266a386a398cc50d60b8f0dd0518442b",
input={
"seed": 88456,
"image": "https://replicate.delivery/pbxt/MqSQLpdaQBnj9kxWbJMfh4rYSyHJuhOtI7uACtN6XTXnAvXx/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg",
"prompt": "a rose",
"style_name": "Pixel art",
"hed_enabled": True,
"canny_enabled": False,
"guidance_scale": 3.5,
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
"num_inference_steps": 28,
"controlnet_conditioning_scale": 0.45
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lightweight-ai/test_sk2ig_f using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "82a04a0ad53cac48c1db8a25e082ff3f266a386a398cc50d60b8f0dd0518442b",
"input": {
"seed": 88456,
"image": "https://replicate.delivery/pbxt/MqSQLpdaQBnj9kxWbJMfh4rYSyHJuhOtI7uACtN6XTXnAvXx/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg",
"prompt": "a rose",
"style_name": "Pixel art",
"hed_enabled": true,
"canny_enabled": false,
"guidance_scale": 3.5,
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
"num_inference_steps": 28,
"controlnet_conditioning_scale": 0.45
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-04-16T07:19:00.962018Z",
"created_at": "2025-04-16T07:17:04.248000Z",
"data_removed": false,
"error": null,
"id": "s94x7ptyf1rm80cp7ntv7azjec",
"input": {
"seed": 88456,
"image": "https://replicate.delivery/pbxt/MqSQLpdaQBnj9kxWbJMfh4rYSyHJuhOtI7uACtN6XTXnAvXx/aa96dadef832b0af3ecbefea17fc8acc%20%28Copy%29.jpg",
"prompt": "a rose",
"style_name": "Pixel art",
"hed_enabled": true,
"canny_enabled": false,
"guidance_scale": 3.5,
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
"num_inference_steps": 28,
"controlnet_conditioning_scale": 0.45
},
"logs": "`height` and `width` have to be divisible by 16 but are 1030 and 736. Dimensions will be resized accordingly\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:13, 1.94it/s]\n 7%|▋ | 2/28 [00:00<00:09, 2.73it/s]\n 11%|█ | 3/28 [00:01<00:09, 2.60it/s]\n 14%|█▍ | 4/28 [00:01<00:09, 2.55it/s]\n 18%|█▊ | 5/28 [00:01<00:09, 2.52it/s]\n 21%|██▏ | 6/28 [00:02<00:08, 2.50it/s]\n 25%|██▌ | 7/28 [00:02<00:08, 2.49it/s]\n 29%|██▊ | 8/28 [00:03<00:08, 2.49it/s]\n 32%|███▏ | 9/28 [00:03<00:07, 2.48it/s]\n 36%|███▌ | 10/28 [00:04<00:07, 2.48it/s]\n 39%|███▉ | 11/28 [00:04<00:06, 2.47it/s]\n 43%|████▎ | 12/28 [00:04<00:06, 2.47it/s]\n 46%|████▋ | 13/28 [00:05<00:06, 2.47it/s]\n 50%|█████ | 14/28 [00:05<00:05, 2.47it/s]\n 54%|█████▎ | 15/28 [00:06<00:05, 2.47it/s]\n 57%|█████▋ | 16/28 [00:06<00:04, 2.47it/s]\n 61%|██████ | 17/28 [00:06<00:04, 2.47it/s]\n 64%|██████▍ | 18/28 [00:07<00:04, 2.47it/s]\n 68%|██████▊ | 19/28 [00:07<00:03, 2.47it/s]\n 71%|███████▏ | 20/28 [00:08<00:03, 2.47it/s]\n 75%|███████▌ | 21/28 [00:08<00:02, 2.47it/s]\n 79%|███████▊ | 22/28 [00:08<00:02, 2.47it/s]\n 82%|████████▏ | 23/28 [00:09<00:02, 2.46it/s]\n 86%|████████▌ | 24/28 [00:09<00:01, 2.46it/s]\n 89%|████████▉ | 25/28 [00:10<00:01, 2.46it/s]\n 93%|█████████▎| 26/28 [00:10<00:00, 2.46it/s]\n 96%|█████████▋| 27/28 [00:10<00:00, 2.46it/s]\n100%|██████████| 28/28 [00:11<00:00, 2.46it/s]\n100%|██████████| 28/28 [00:11<00:00, 2.47it/s]\n출력 이미지가 /tmp/outpaint_output.png에 저장되었습니다.",
"metrics": {
"predict_time": 13.154753338999999,
"total_time": 116.714018
},
"output": [
"https://replicate.delivery/xezq/AD5EoH0h3xLfHq7R0ikddpW4YelplRNM3wYDph70XD8kvQjUA/outpaint_output.png"
],
"started_at": "2025-04-16T07:18:47.807264Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-53dx7hzl5ypzcabfnzfjbyjk277m6p6hb5z7cooffizkftr4nwpq",
"get": "https://api.replicate.com/v1/predictions/s94x7ptyf1rm80cp7ntv7azjec",
"cancel": "https://api.replicate.com/v1/predictions/s94x7ptyf1rm80cp7ntv7azjec/cancel"
},
"version": "82a04a0ad53cac48c1db8a25e082ff3f266a386a398cc50d60b8f0dd0518442b"
}
`height` and `width` have to be divisible by 16 but are 1030 and 736. Dimensions will be resized accordingly
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:13, 1.94it/s]
7%|▋ | 2/28 [00:00<00:09, 2.73it/s]
11%|█ | 3/28 [00:01<00:09, 2.60it/s]
14%|█▍ | 4/28 [00:01<00:09, 2.55it/s]
18%|█▊ | 5/28 [00:01<00:09, 2.52it/s]
21%|██▏ | 6/28 [00:02<00:08, 2.50it/s]
25%|██▌ | 7/28 [00:02<00:08, 2.49it/s]
29%|██▊ | 8/28 [00:03<00:08, 2.49it/s]
32%|███▏ | 9/28 [00:03<00:07, 2.48it/s]
36%|███▌ | 10/28 [00:04<00:07, 2.48it/s]
39%|███▉ | 11/28 [00:04<00:06, 2.47it/s]
43%|████▎ | 12/28 [00:04<00:06, 2.47it/s]
46%|████▋ | 13/28 [00:05<00:06, 2.47it/s]
50%|█████ | 14/28 [00:05<00:05, 2.47it/s]
54%|█████▎ | 15/28 [00:06<00:05, 2.47it/s]
57%|█████▋ | 16/28 [00:06<00:04, 2.47it/s]
61%|██████ | 17/28 [00:06<00:04, 2.47it/s]
64%|██████▍ | 18/28 [00:07<00:04, 2.47it/s]
68%|██████▊ | 19/28 [00:07<00:03, 2.47it/s]
71%|███████▏ | 20/28 [00:08<00:03, 2.47it/s]
75%|███████▌ | 21/28 [00:08<00:02, 2.47it/s]
79%|███████▊ | 22/28 [00:08<00:02, 2.47it/s]
82%|████████▏ | 23/28 [00:09<00:02, 2.46it/s]
86%|████████▌ | 24/28 [00:09<00:01, 2.46it/s]
89%|████████▉ | 25/28 [00:10<00:01, 2.46it/s]
93%|█████████▎| 26/28 [00:10<00:00, 2.46it/s]
96%|█████████▋| 27/28 [00:10<00:00, 2.46it/s]
100%|██████████| 28/28 [00:11<00:00, 2.46it/s]
100%|██████████| 28/28 [00:11<00:00, 2.47it/s]
출력 이미지가 /tmp/outpaint_output.png에 저장되었습니다.
This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
`height` and `width` have to be divisible by 16 but are 1030 and 736. Dimensions will be resized accordingly
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:13, 1.94it/s]
7%|▋ | 2/28 [00:00<00:09, 2.73it/s]
11%|█ | 3/28 [00:01<00:09, 2.60it/s]
14%|█▍ | 4/28 [00:01<00:09, 2.55it/s]
18%|█▊ | 5/28 [00:01<00:09, 2.52it/s]
21%|██▏ | 6/28 [00:02<00:08, 2.50it/s]
25%|██▌ | 7/28 [00:02<00:08, 2.49it/s]
29%|██▊ | 8/28 [00:03<00:08, 2.49it/s]
32%|███▏ | 9/28 [00:03<00:07, 2.48it/s]
36%|███▌ | 10/28 [00:04<00:07, 2.48it/s]
39%|███▉ | 11/28 [00:04<00:06, 2.47it/s]
43%|████▎ | 12/28 [00:04<00:06, 2.47it/s]
46%|████▋ | 13/28 [00:05<00:06, 2.47it/s]
50%|█████ | 14/28 [00:05<00:05, 2.47it/s]
54%|█████▎ | 15/28 [00:06<00:05, 2.47it/s]
57%|█████▋ | 16/28 [00:06<00:04, 2.47it/s]
61%|██████ | 17/28 [00:06<00:04, 2.47it/s]
64%|██████▍ | 18/28 [00:07<00:04, 2.47it/s]
68%|██████▊ | 19/28 [00:07<00:03, 2.47it/s]
71%|███████▏ | 20/28 [00:08<00:03, 2.47it/s]
75%|███████▌ | 21/28 [00:08<00:02, 2.47it/s]
79%|███████▊ | 22/28 [00:08<00:02, 2.47it/s]
82%|████████▏ | 23/28 [00:09<00:02, 2.46it/s]
86%|████████▌ | 24/28 [00:09<00:01, 2.46it/s]
89%|████████▉ | 25/28 [00:10<00:01, 2.46it/s]
93%|█████████▎| 26/28 [00:10<00:00, 2.46it/s]
96%|█████████▋| 27/28 [00:10<00:00, 2.46it/s]
100%|██████████| 28/28 [00:11<00:00, 2.46it/s]
100%|██████████| 28/28 [00:11<00:00, 2.47it/s]
출력 이미지가 /tmp/outpaint_output.png에 저장되었습니다.