lucataco/controlnet-tile

Controlnet v1.1 - Tile Version

Shiba stable diffusion model

bigcode/tiny_starcoder_py

lmsys/vicuna-13b-v1.3

lmsys/vicuna-7b-v1.3

Salesforce/codegen2-1B

Salesforce/xgen-7b-8k-base

Realistic Vision V3.0 with VAE

Realistic Vision V4.0

CLIP Interrogator (for faster inference)
A working wsrglow model

RiversHaveWings Stable Diffusion Upscaler

Real-ESRGAN with optional face correction and adjustable upscale (for larger images)
Animate Your Personalized Text-to-Image Diffusion Models

Segments an audio recording based on who is speaking (on A100)

Meta's Llama 2 7b Chat - GPTQ

Meta's Llama 2 13b Chat - GPTQ

Stability AI's FreeWilly2

Implementation of Realistic Vision v5.1 with VAE

Practical face restoration algorithm for *old photos* or *AI-generated faces* (for larger images)

SDXL v1.0 - A text-to-image generative AI model that creates beautiful images
Prediction
lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869cIDv5tigvdbnzgkeidvqzxs6jh4geStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/JwoCrAGhRpzYM5f2hfwQq0wxm62dBfv5NJIXG7bRtIC0cJiJ/dog_sm.png", "scale": 16, "strength": 1, "num_inference_steps": 32 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", { input: { image: "https://replicate.delivery/pbxt/JwoCrAGhRpzYM5f2hfwQq0wxm62dBfv5NJIXG7bRtIC0cJiJ/dog_sm.png", scale: 16, strength: 1, num_inference_steps: 32 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", input={ "image": "https://replicate.delivery/pbxt/JwoCrAGhRpzYM5f2hfwQq0wxm62dBfv5NJIXG7bRtIC0cJiJ/dog_sm.png", "scale": 16, "strength": 1, "num_inference_steps": 32 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", "input": { "image": "https://replicate.delivery/pbxt/JwoCrAGhRpzYM5f2hfwQq0wxm62dBfv5NJIXG7bRtIC0cJiJ/dog_sm.png", "scale": 16, "strength": 1, "num_inference_steps": 32 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Loading...
{ "completed_at": "2023-11-27T02:29:27.887683Z", "created_at": "2023-11-27T02:29:17.881994Z", "data_removed": false, "error": null, "id": "v5tigvdbnzgkeidvqzxs6jh4ge", "input": { "image": "https://replicate.delivery/pbxt/JwoCrAGhRpzYM5f2hfwQq0wxm62dBfv5NJIXG7bRtIC0cJiJ/dog_sm.png", "scale": 16, "strength": 1, "num_inference_steps": 32 }, "logs": "Using seed: 1885155035\nResizing to 1024\n 0%| | 0/32 [00:00<?, ?it/s]\n 3%|▎ | 1/32 [00:00<00:14, 2.21it/s]\n 6%|▋ | 2/32 [00:00<00:09, 3.12it/s]\n 9%|▉ | 3/32 [00:00<00:08, 3.58it/s]\n 12%|█▎ | 4/32 [00:01<00:07, 3.85it/s]\n 16%|█▌ | 5/32 [00:01<00:06, 4.03it/s]\n 19%|█▉ | 6/32 [00:01<00:06, 4.14it/s]\n 22%|██▏ | 7/32 [00:01<00:05, 4.21it/s]\n 25%|██▌ | 8/32 [00:02<00:05, 4.26it/s]\n 28%|██▊ | 9/32 [00:02<00:05, 4.29it/s]\n 31%|███▏ | 10/32 [00:02<00:05, 4.31it/s]\n 34%|███▍ | 11/32 [00:02<00:04, 4.33it/s]\n 38%|███▊ | 12/32 [00:02<00:04, 4.34it/s]\n 41%|████ | 13/32 [00:03<00:04, 4.35it/s]\n 44%|████▍ | 14/32 [00:03<00:04, 4.34it/s]\n 47%|████▋ | 15/32 [00:03<00:03, 4.35it/s]\n 50%|█████ | 16/32 [00:03<00:03, 4.35it/s]\n 53%|█████▎ | 17/32 [00:04<00:03, 4.35it/s]\n 56%|█████▋ | 18/32 [00:04<00:03, 4.35it/s]\n 59%|█████▉ | 19/32 [00:04<00:02, 4.35it/s]\n 62%|██████▎ | 20/32 [00:04<00:02, 4.35it/s]\n 66%|██████▌ | 21/32 [00:05<00:02, 4.36it/s]\n 69%|██████▉ | 22/32 [00:05<00:02, 4.35it/s]\n 72%|███████▏ | 23/32 [00:05<00:02, 4.35it/s]\n 75%|███████▌ | 24/32 [00:05<00:01, 4.35it/s]\n 78%|███████▊ | 25/32 [00:05<00:01, 4.35it/s]\n 81%|████████▏ | 26/32 [00:06<00:01, 4.35it/s]\n 84%|████████▍ | 27/32 [00:06<00:01, 4.35it/s]\n 88%|████████▊ | 28/32 [00:06<00:00, 4.35it/s]\n 91%|█████████ | 29/32 [00:06<00:00, 4.35it/s]\n 94%|█████████▍| 30/32 [00:07<00:00, 4.35it/s]\n 97%|█████████▋| 31/32 [00:07<00:00, 4.35it/s]\n100%|██████████| 32/32 [00:07<00:00, 4.35it/s]\n100%|██████████| 32/32 [00:07<00:00, 4.23it/s]", "metrics": { "predict_time": 9.971312, "total_time": 10.005689 }, "output": "https://replicate.delivery/pbxt/Lb5ati7OIcZyJ50QbbBZ4yeAEkBsF1Ih6zbBrSjdHV3DiNeRA/output.png", "started_at": "2023-11-27T02:29:17.916371Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/v5tigvdbnzgkeidvqzxs6jh4ge", "cancel": "https://api.replicate.com/v1/predictions/v5tigvdbnzgkeidvqzxs6jh4ge/cancel" }, "version": "f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c" }
Generated inUsing seed: 1885155035 Resizing to 1024 0%| | 0/32 [00:00<?, ?it/s] 3%|▎ | 1/32 [00:00<00:14, 2.21it/s] 6%|▋ | 2/32 [00:00<00:09, 3.12it/s] 9%|▉ | 3/32 [00:00<00:08, 3.58it/s] 12%|█▎ | 4/32 [00:01<00:07, 3.85it/s] 16%|█▌ | 5/32 [00:01<00:06, 4.03it/s] 19%|█▉ | 6/32 [00:01<00:06, 4.14it/s] 22%|██▏ | 7/32 [00:01<00:05, 4.21it/s] 25%|██▌ | 8/32 [00:02<00:05, 4.26it/s] 28%|██▊ | 9/32 [00:02<00:05, 4.29it/s] 31%|███▏ | 10/32 [00:02<00:05, 4.31it/s] 34%|███▍ | 11/32 [00:02<00:04, 4.33it/s] 38%|███▊ | 12/32 [00:02<00:04, 4.34it/s] 41%|████ | 13/32 [00:03<00:04, 4.35it/s] 44%|████▍ | 14/32 [00:03<00:04, 4.34it/s] 47%|████▋ | 15/32 [00:03<00:03, 4.35it/s] 50%|█████ | 16/32 [00:03<00:03, 4.35it/s] 53%|█████▎ | 17/32 [00:04<00:03, 4.35it/s] 56%|█████▋ | 18/32 [00:04<00:03, 4.35it/s] 59%|█████▉ | 19/32 [00:04<00:02, 4.35it/s] 62%|██████▎ | 20/32 [00:04<00:02, 4.35it/s] 66%|██████▌ | 21/32 [00:05<00:02, 4.36it/s] 69%|██████▉ | 22/32 [00:05<00:02, 4.35it/s] 72%|███████▏ | 23/32 [00:05<00:02, 4.35it/s] 75%|███████▌ | 24/32 [00:05<00:01, 4.35it/s] 78%|███████▊ | 25/32 [00:05<00:01, 4.35it/s] 81%|████████▏ | 26/32 [00:06<00:01, 4.35it/s] 84%|████████▍ | 27/32 [00:06<00:01, 4.35it/s] 88%|████████▊ | 28/32 [00:06<00:00, 4.35it/s] 91%|█████████ | 29/32 [00:06<00:00, 4.35it/s] 94%|█████████▍| 30/32 [00:07<00:00, 4.35it/s] 97%|█████████▋| 31/32 [00:07<00:00, 4.35it/s] 100%|██████████| 32/32 [00:07<00:00, 4.35it/s] 100%|██████████| 32/32 [00:07<00:00, 4.23it/s]
Prediction
lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869cIDn2xbqalb6jq467mm4v4qzmxoouStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/JwoDHQ0gIgBPeiXQPiAI0s7NVFkRxDLwXie51LIhDBYWIvBe/ship.jpg", "scale": 2, "strength": 0.15, "num_inference_steps": 32 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", { input: { image: "https://replicate.delivery/pbxt/JwoDHQ0gIgBPeiXQPiAI0s7NVFkRxDLwXie51LIhDBYWIvBe/ship.jpg", scale: 2, strength: 0.15, num_inference_steps: 32 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", input={ "image": "https://replicate.delivery/pbxt/JwoDHQ0gIgBPeiXQPiAI0s7NVFkRxDLwXie51LIhDBYWIvBe/ship.jpg", "scale": 2, "strength": 0.15, "num_inference_steps": 32 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", "input": { "image": "https://replicate.delivery/pbxt/JwoDHQ0gIgBPeiXQPiAI0s7NVFkRxDLwXie51LIhDBYWIvBe/ship.jpg", "scale": 2, "strength": 0.15, "num_inference_steps": 32 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Loading...
{ "completed_at": "2023-11-27T02:29:58.826983Z", "created_at": "2023-11-27T02:29:44.034766Z", "data_removed": false, "error": null, "id": "n2xbqalb6jq467mm4v4qzmxoou", "input": { "image": "https://replicate.delivery/pbxt/JwoDHQ0gIgBPeiXQPiAI0s7NVFkRxDLwXie51LIhDBYWIvBe/ship.jpg", "scale": 2, "strength": 0.15, "num_inference_steps": 32 }, "logs": "Using seed: 2042068625\nResizing to 2048\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:03<00:10, 3.62s/it]\n 50%|█████ | 2/4 [00:05<00:05, 2.56s/it]\n 75%|███████▌ | 3/4 [00:07<00:02, 2.22s/it]\n100%|██████████| 4/4 [00:09<00:00, 2.06s/it]\n100%|██████████| 4/4 [00:09<00:00, 2.27s/it]", "metrics": { "predict_time": 14.734585, "total_time": 14.792217 }, "output": "https://replicate.delivery/pbxt/Aw8ucvkmTD6lJNYgDu6wYCX28lNglGNR66Y0XfFtKQzSiNeRA/output.png", "started_at": "2023-11-27T02:29:44.092398Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/n2xbqalb6jq467mm4v4qzmxoou", "cancel": "https://api.replicate.com/v1/predictions/n2xbqalb6jq467mm4v4qzmxoou/cancel" }, "version": "f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c" }
Generated inUsing seed: 2042068625 Resizing to 2048 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:03<00:10, 3.62s/it] 50%|█████ | 2/4 [00:05<00:05, 2.56s/it] 75%|███████▌ | 3/4 [00:07<00:02, 2.22s/it] 100%|██████████| 4/4 [00:09<00:00, 2.06s/it] 100%|██████████| 4/4 [00:09<00:00, 2.27s/it]
Prediction
lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869cIDval22ftbhvxmwy2wxjqigjciruStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/JwoE4MuPxHRUaAfRxRwXa3ZzEgJMTaD7dDkR3vowOYQv79cy/mouse.png", "scale": 2, "strength": 0.15, "num_inference_steps": 32 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", { input: { image: "https://replicate.delivery/pbxt/JwoE4MuPxHRUaAfRxRwXa3ZzEgJMTaD7dDkR3vowOYQv79cy/mouse.png", scale: 2, strength: 0.15, num_inference_steps: 32 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", input={ "image": "https://replicate.delivery/pbxt/JwoE4MuPxHRUaAfRxRwXa3ZzEgJMTaD7dDkR3vowOYQv79cy/mouse.png", "scale": 2, "strength": 0.15, "num_inference_steps": 32 } ) # To access the file URL: print(output.url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output.read())
To learn more, take a look at the guide on getting started with Python.
Run lucataco/controlnet-tile using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/controlnet-tile:f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c", "input": { "image": "https://replicate.delivery/pbxt/JwoE4MuPxHRUaAfRxRwXa3ZzEgJMTaD7dDkR3vowOYQv79cy/mouse.png", "scale": 2, "strength": 0.15, "num_inference_steps": 32 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Loading...
{ "completed_at": "2023-11-27T02:30:49.304164Z", "created_at": "2023-11-27T02:30:34.049085Z", "data_removed": false, "error": null, "id": "val22ftbhvxmwy2wxjqigjciru", "input": { "image": "https://replicate.delivery/pbxt/JwoE4MuPxHRUaAfRxRwXa3ZzEgJMTaD7dDkR3vowOYQv79cy/mouse.png", "scale": 2, "strength": 0.15, "num_inference_steps": 32 }, "logs": "Using seed: 158979762\nResizing to 2048\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:03<00:10, 3.59s/it]\n 50%|█████ | 2/4 [00:05<00:05, 2.53s/it]\n 75%|███████▌ | 3/4 [00:07<00:02, 2.20s/it]\n100%|██████████| 4/4 [00:08<00:00, 2.04s/it]\n100%|██████████| 4/4 [00:08<00:00, 2.24s/it]", "metrics": { "predict_time": 15.221605, "total_time": 15.255079 }, "output": "https://replicate.delivery/pbxt/yXHcVVF2xFrME1TdKziq5Q6cHeI4fAcbwXIeJHqeUcsjVsxHB/output.png", "started_at": "2023-11-27T02:30:34.082559Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/val22ftbhvxmwy2wxjqigjciru", "cancel": "https://api.replicate.com/v1/predictions/val22ftbhvxmwy2wxjqigjciru/cancel" }, "version": "f688ff774c27a4843c819c9264c0f949925970bb278669ed9140364c8389869c" }
Generated inUsing seed: 158979762 Resizing to 2048 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:03<00:10, 3.59s/it] 50%|█████ | 2/4 [00:05<00:05, 2.53s/it] 75%|███████▌ | 3/4 [00:07<00:02, 2.20s/it] 100%|██████████| 4/4 [00:08<00:00, 2.04s/it] 100%|██████████| 4/4 [00:08<00:00, 2.24s/it]
Want to make some of these yourself?
Run this model