marydotdev
/
sdxl-lego
- Public
- 1.6K runs
-
L40S
- SDXL fine-tune
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDyv3mlblboy5ezvb3m24mlapu2eStatusSucceededSourceAPIHardwareA40 (Large)Total durationCreatedInput
- prompt
- A lego astronaut riding a rainbow unicorn
{ "prompt": "A lego astronaut riding a rainbow unicorn" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { prompt: "A lego astronaut riding a rainbow unicorn" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "prompt": "A lego astronaut riding a rainbow unicorn" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "prompt": "A lego astronaut riding a rainbow unicorn" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-05T19:30:25.764843Z", "created_at": "2023-12-05T19:30:04.391813Z", "data_removed": false, "error": null, "id": "yv3mlblboy5ezvb3m24mlapu2e", "input": { "prompt": "A lego astronaut riding a rainbow unicorn" }, "logs": "Using seed: 14392\nEnsuring enough disk space...\nFree disk space: 1829433282560\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.895s (208 MB/s)\\nExtracted 186 MB in 0.070s (2.6 GB/s)\\n'\nDownloaded weights in 1.4066691398620605 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A lego astronaut riding a rainbow unicorn\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.67it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.66it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.66it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.66it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.66it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.66it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.66it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.65it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.65it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.65it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.65it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.64it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.64it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.64it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.64it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.64it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.64it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.64it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.66it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.66it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.66it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.66it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.66it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.66it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.66it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]", "metrics": { "predict_time": 16.973436, "total_time": 21.37303 }, "output": [ "https://replicate.delivery/pbxt/1kVXHJY8AxLjNlftcq6HAV1cludds7D7crGCPVZDZ5roYpfRA/out-0.png" ], "started_at": "2023-12-05T19:30:08.791407Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yv3mlblboy5ezvb3m24mlapu2e", "cancel": "https://api.replicate.com/v1/predictions/yv3mlblboy5ezvb3m24mlapu2e/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 14392 Ensuring enough disk space... Free disk space: 1829433282560 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.895s (208 MB/s)\nExtracted 186 MB in 0.070s (2.6 GB/s)\n' Downloaded weights in 1.4066691398620605 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A lego astronaut riding a rainbow unicorn txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.67it/s] 4%|▍ | 2/50 [00:00<00:13, 3.66it/s] 6%|▌ | 3/50 [00:00<00:12, 3.66it/s] 8%|▊ | 4/50 [00:01<00:12, 3.66it/s] 10%|█ | 5/50 [00:01<00:12, 3.66it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.66it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.66it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.66it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s] 20%|██ | 10/50 [00:02<00:10, 3.65it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.65it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s] 30%|███ | 15/50 [00:04<00:09, 3.65it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.65it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.64it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.64it/s] 40%|████ | 20/50 [00:05<00:08, 3.64it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.64it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.64it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.64it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s] 50%|█████ | 25/50 [00:06<00:06, 3.64it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s] 60%|██████ | 30/50 [00:08<00:05, 3.64it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.66it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s] 70%|███████ | 35/50 [00:09<00:04, 3.66it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.66it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s] 80%|████████ | 40/50 [00:10<00:02, 3.66it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.66it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.66it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.66it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.66it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s] 100%|██████████| 50/50 [00:13<00:00, 3.66it/s] 100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDzuc342lbezyg3hyonkl4zbqzluStatusSucceededSourceAPIHardwareA40 (Large)Total durationCreatedInput
- prompt
- a lego triceratops family
{ "prompt": "a lego triceratops family" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { prompt: "a lego triceratops family" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "prompt": "a lego triceratops family" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "prompt": "a lego triceratops family" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-05T19:41:31.743499Z", "created_at": "2023-12-05T19:41:08.458694Z", "data_removed": false, "error": null, "id": "zuc342lbezyg3hyonkl4zbqzlu", "input": { "prompt": "a lego triceratops family" }, "logs": "Using seed: 53332\nEnsuring enough disk space...\nFree disk space: 389406744576\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.243s (767 MB/s)\\nExtracted 186 MB in 0.060s (3.1 GB/s)\\n'\nDownloaded weights in 0.4152698516845703 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a lego triceratops family\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.67it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.67it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.67it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.66it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.67it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.68it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.68it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.68it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.68it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.68it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.68it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.68it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.68it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.68it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.68it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.67it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.67it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.67it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.67it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.67it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.66it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.66it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.66it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.66it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.66it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.66it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]", "metrics": { "predict_time": 16.385484, "total_time": 23.284805 }, "output": [ "https://replicate.delivery/pbxt/Ggw9VfrIifuZEURpfn55Z5UyctJ0wYaBtS0ci5D4HbIW3leHB/out-0.png" ], "started_at": "2023-12-05T19:41:15.358015Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zuc342lbezyg3hyonkl4zbqzlu", "cancel": "https://api.replicate.com/v1/predictions/zuc342lbezyg3hyonkl4zbqzlu/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 53332 Ensuring enough disk space... Free disk space: 389406744576 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.243s (767 MB/s)\nExtracted 186 MB in 0.060s (3.1 GB/s)\n' Downloaded weights in 0.4152698516845703 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: a lego triceratops family txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.67it/s] 4%|▍ | 2/50 [00:00<00:13, 3.67it/s] 6%|▌ | 3/50 [00:00<00:12, 3.67it/s] 8%|▊ | 4/50 [00:01<00:12, 3.66it/s] 10%|█ | 5/50 [00:01<00:12, 3.67it/s] 12%|█▏ | 6/50 [00:01<00:11, 3.67it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.68it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.68it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.68it/s] 20%|██ | 10/50 [00:02<00:10, 3.68it/s] 22%|██▏ | 11/50 [00:02<00:10, 3.68it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.68it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.68it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.68it/s] 30%|███ | 15/50 [00:04<00:09, 3.68it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.68it/s] 34%|███▍ | 17/50 [00:04<00:08, 3.68it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.68it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s] 40%|████ | 20/50 [00:05<00:08, 3.67it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s] 44%|████▍ | 22/50 [00:05<00:07, 3.67it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.67it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.67it/s] 50%|█████ | 25/50 [00:06<00:06, 3.67it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s] 60%|██████ | 30/50 [00:08<00:05, 3.66it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s] 66%|██████▌ | 33/50 [00:08<00:04, 3.66it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s] 70%|███████ | 35/50 [00:09<00:04, 3.66it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.66it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s] 80%|████████ | 40/50 [00:10<00:02, 3.66it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.66it/s] 88%|████████▊ | 44/50 [00:11<00:01, 3.66it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s] 100%|██████████| 50/50 [00:13<00:00, 3.65it/s] 100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDgnnlkadbgfc7d6nzxoi2x6kwhaStatusSucceededSourceAPIHardwareA40 (Large)Total durationCreatedInput
- prompt
- a lego anatomical heart
{ "prompt": "a lego anatomical heart" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { prompt: "a lego anatomical heart" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "prompt": "a lego anatomical heart" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "prompt": "a lego anatomical heart" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-05T21:24:31.104625Z", "created_at": "2023-12-05T21:24:06.900269Z", "data_removed": false, "error": null, "id": "gnnlkadbgfc7d6nzxoi2x6kwha", "input": { "prompt": "a lego anatomical heart" }, "logs": "Using seed: 15486\nEnsuring enough disk space...\nFree disk space: 2525025857536\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 3.420s (54 MB/s)\\nExtracted 186 MB in 0.053s (3.5 GB/s)\\n'\nDownloaded weights in 3.6835296154022217 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a lego anatomical heart\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.66it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.65it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.65it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.65it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.66it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.65it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.65it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.65it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.64it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.65it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.65it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.65it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.65it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.65it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.64it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.64it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]", "metrics": { "predict_time": 19.154549, "total_time": 24.204356 }, "output": [ "https://replicate.delivery/pbxt/swGypGqYDjKOBNnjRTRd9AhWPvr7W9t0Wk7ZA5xYmYjDH1fIA/out-0.png" ], "started_at": "2023-12-05T21:24:11.950076Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gnnlkadbgfc7d6nzxoi2x6kwha", "cancel": "https://api.replicate.com/v1/predictions/gnnlkadbgfc7d6nzxoi2x6kwha/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 15486 Ensuring enough disk space... Free disk space: 2525025857536 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 3.420s (54 MB/s)\nExtracted 186 MB in 0.053s (3.5 GB/s)\n' Downloaded weights in 3.6835296154022217 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: a lego anatomical heart txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.66it/s] 4%|▍ | 2/50 [00:00<00:13, 3.65it/s] 6%|▌ | 3/50 [00:00<00:12, 3.65it/s] 8%|▊ | 4/50 [00:01<00:12, 3.64it/s] 10%|█ | 5/50 [00:01<00:12, 3.64it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s] 20%|██ | 10/50 [00:02<00:10, 3.65it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.66it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s] 30%|███ | 15/50 [00:04<00:09, 3.65it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.65it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.65it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.65it/s] 40%|████ | 20/50 [00:05<00:08, 3.65it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.65it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.65it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s] 50%|█████ | 25/50 [00:06<00:06, 3.64it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.65it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.65it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.65it/s] 60%|██████ | 30/50 [00:08<00:05, 3.65it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.65it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s] 70%|███████ | 35/50 [00:09<00:04, 3.64it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s] 80%|████████ | 40/50 [00:10<00:02, 3.64it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.64it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s] 100%|██████████| 50/50 [00:13<00:00, 3.64it/s] 100%|██████████| 50/50 [00:13<00:00, 3.64it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDczbfgmdbgta6vvqueaa2fvgovyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a pirate ship in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "a pirate ship in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "a pirate ship in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "a pirate ship in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "a pirate ship in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T04:37:28.454169Z", "created_at": "2023-11-12T04:36:53.605566Z", "data_removed": false, "error": null, "id": "czbfgmdbgta6vvqueaa2fvgovy", "input": { "width": 1024, "height": 1024, "prompt": "a pirate ship in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 57518\nEnsuring enough disk space...\nFree disk space: 2136009408512\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.170s (1.1 GB/s)\\nExtracted 186 MB in 0.064s (2.9 GB/s)\\n'\nDownloaded weights in 0.48265552520751953 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a pirate ship in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.64it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.63it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.64it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.64it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.64it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.64it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.63it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.64it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.63it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.63it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.63it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.63it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.63it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.63it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.63it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.63it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.63it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.63it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.63it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.63it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.63it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.63it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.63it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.63it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.63it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.63it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.63it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.63it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.63it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.62it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.62it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.62it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.62it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.62it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.62it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.62it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.62it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.62it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.62it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.62it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.62it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.63it/s]", "metrics": { "predict_time": 16.167379, "total_time": 34.848603 }, "output": [ "https://replicate.delivery/pbxt/2vZvhqOsiwb2Fhn7NNjuIJprq2FeBEFv3V2NxbivoEaERw7IA/out-0.png" ], "started_at": "2023-11-12T04:37:12.286790Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/czbfgmdbgta6vvqueaa2fvgovy", "cancel": "https://api.replicate.com/v1/predictions/czbfgmdbgta6vvqueaa2fvgovy/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 57518 Ensuring enough disk space... Free disk space: 2136009408512 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.170s (1.1 GB/s)\nExtracted 186 MB in 0.064s (2.9 GB/s)\n' Downloaded weights in 0.48265552520751953 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: a pirate ship in the style of <s0><s1> txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.64it/s] 4%|▍ | 2/50 [00:00<00:13, 3.63it/s] 6%|▌ | 3/50 [00:00<00:12, 3.64it/s] 8%|▊ | 4/50 [00:01<00:12, 3.64it/s] 10%|█ | 5/50 [00:01<00:12, 3.64it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.64it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s] 20%|██ | 10/50 [00:02<00:11, 3.64it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.64it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.63it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.64it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.63it/s] 30%|███ | 15/50 [00:04<00:09, 3.63it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.63it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.63it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.63it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s] 40%|████ | 20/50 [00:05<00:08, 3.63it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.63it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.63it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.63it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.63it/s] 50%|█████ | 25/50 [00:06<00:06, 3.63it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.63it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.63it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.63it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.63it/s] 60%|██████ | 30/50 [00:08<00:05, 3.63it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.63it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.63it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.63it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.63it/s] 70%|███████ | 35/50 [00:09<00:04, 3.63it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.62it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.62it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.62it/s] 80%|████████ | 40/50 [00:11<00:02, 3.62it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.62it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.62it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.62it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.62it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.62it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.62it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.62it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.62it/s] 100%|██████████| 50/50 [00:13<00:00, 3.61it/s] 100%|██████████| 50/50 [00:13<00:00, 3.63it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDkdm4rx3bcmpgayx6ajons6a6cqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- spiderman pointing meme in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "spiderman pointing meme in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "spiderman pointing meme in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "spiderman pointing meme in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "spiderman pointing meme in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T04:42:15.117497Z", "created_at": "2023-11-12T04:41:58.026637Z", "data_removed": false, "error": null, "id": "kdm4rx3bcmpgayx6ajons6a6cq", "input": { "width": 1024, "height": 1024, "prompt": "spiderman pointing meme in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 26262\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: spiderman pointing meme in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.69it/s]\n 4%|▍ | 2/50 [00:00<00:12, 3.69it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.69it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.70it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.69it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.69it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.69it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.69it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.69it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.69it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.69it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.69it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.69it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.69it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.69it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.69it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.69it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.68it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.68it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.68it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.68it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.68it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.67it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.67it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.68it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.67it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.67it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.67it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.68it/s]", "metrics": { "predict_time": 15.631376, "total_time": 17.09086 }, "output": [ "https://replicate.delivery/pbxt/hORfGosp0DX0dCexUGJNMRIqRfTaL6gMfTfhnkkyC8bw0E8OC/out-0.png" ], "started_at": "2023-11-12T04:41:59.486121Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kdm4rx3bcmpgayx6ajons6a6cq", "cancel": "https://api.replicate.com/v1/predictions/kdm4rx3bcmpgayx6ajons6a6cq/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 26262 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: spiderman pointing meme in the style of <s0><s1> txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.69it/s] 4%|▍ | 2/50 [00:00<00:12, 3.69it/s] 6%|▌ | 3/50 [00:00<00:12, 3.69it/s] 8%|▊ | 4/50 [00:01<00:12, 3.70it/s] 10%|█ | 5/50 [00:01<00:12, 3.69it/s] 12%|█▏ | 6/50 [00:01<00:11, 3.69it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.69it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.69it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.69it/s] 20%|██ | 10/50 [00:02<00:10, 3.69it/s] 22%|██▏ | 11/50 [00:02<00:10, 3.69it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.69it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.69it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.69it/s] 30%|███ | 15/50 [00:04<00:09, 3.69it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.69it/s] 34%|███▍ | 17/50 [00:04<00:08, 3.69it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.68it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.68it/s] 40%|████ | 20/50 [00:05<00:08, 3.68it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.68it/s] 44%|████▍ | 22/50 [00:05<00:07, 3.68it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.68it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.68it/s] 50%|█████ | 25/50 [00:06<00:06, 3.68it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s] 56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s] 60%|██████ | 30/50 [00:08<00:05, 3.68it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s] 66%|██████▌ | 33/50 [00:08<00:04, 3.67it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.67it/s] 70%|███████ | 35/50 [00:09<00:04, 3.68it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.67it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s] 78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s] 80%|████████ | 40/50 [00:10<00:02, 3.67it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s] 88%|████████▊ | 44/50 [00:11<00:01, 3.67it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.67it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s] 100%|██████████| 50/50 [00:13<00:00, 3.67it/s] 100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDyenrwjlbt3qdnuunfrrf272qceStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- obama as a lego in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "obama as a lego in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "obama as a lego in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "obama as a lego in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "obama as a lego in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T04:50:26.934491Z", "created_at": "2023-11-12T04:50:05.359425Z", "data_removed": false, "error": null, "id": "yenrwjlbt3qdnuunfrrf272qce", "input": { "width": 1024, "height": 1024, "prompt": "obama as a lego in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 8920\nEnsuring enough disk space...\nFree disk space: 1947732725760\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.239s (778 MB/s)\\nExtracted 186 MB in 0.062s (3.0 GB/s)\\n'\nDownloaded weights in 0.41402530670166016 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: obama as a lego in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.64it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.64it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.63it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.63it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.62it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.62it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.63it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.62it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.62it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.62it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.62it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.62it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.62it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.62it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.62it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.62it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.62it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.61it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s]\n 58%|█████▊ | 29/50 [00:08<00:05, 3.61it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.61it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.61it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.61it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.61it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.61it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.61it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.61it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.61it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]", "metrics": { "predict_time": 17.504046, "total_time": 21.575066 }, "output": [ "https://replicate.delivery/pbxt/BgZ7udk7PtayO1eajSthIfBnLlAAvbgFRrogOieawXTkcBvjA/out-0.png" ], "started_at": "2023-11-12T04:50:09.430445Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yenrwjlbt3qdnuunfrrf272qce", "cancel": "https://api.replicate.com/v1/predictions/yenrwjlbt3qdnuunfrrf272qce/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 8920 Ensuring enough disk space... Free disk space: 1947732725760 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.239s (778 MB/s)\nExtracted 186 MB in 0.062s (3.0 GB/s)\n' Downloaded weights in 0.41402530670166016 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: obama as a lego in the style of <s0><s1> txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.64it/s] 4%|▍ | 2/50 [00:00<00:13, 3.64it/s] 6%|▌ | 3/50 [00:00<00:12, 3.63it/s] 8%|▊ | 4/50 [00:01<00:12, 3.63it/s] 10%|█ | 5/50 [00:01<00:12, 3.62it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.62it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.63it/s] 20%|██ | 10/50 [00:02<00:11, 3.62it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.62it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.62it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.62it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.62it/s] 30%|███ | 15/50 [00:04<00:09, 3.62it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.62it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.62it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.62it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s] 40%|████ | 20/50 [00:05<00:08, 3.62it/s] 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s] 50%|█████ | 25/50 [00:06<00:06, 3.61it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s] 58%|█████▊ | 29/50 [00:08<00:05, 3.61it/s] 60%|██████ | 30/50 [00:08<00:05, 3.61it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.61it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.61it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.61it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s] 70%|███████ | 35/50 [00:09<00:04, 3.61it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.61it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.61it/s] 80%|████████ | 40/50 [00:11<00:02, 3.61it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s] 100%|██████████| 50/50 [00:13<00:00, 3.61it/s] 100%|██████████| 50/50 [00:13<00:00, 3.61it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDac3ftx3b4les5uheacruqgu3y4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- ratatouille as a lego set in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "ratatouille as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "ratatouille as a lego set in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "ratatouille as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "ratatouille as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T04:51:34.040375Z", "created_at": "2023-11-12T04:51:03.330338Z", "data_removed": false, "error": null, "id": "ac3ftx3b4les5uheacruqgu3y4", "input": { "width": 1024, "height": 1024, "prompt": "ratatouille as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 41584\nEnsuring enough disk space...\nFree disk space: 1943089876992\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.230s (808 MB/s)\\nExtracted 186 MB in 0.060s (3.1 GB/s)\\n'\nDownloaded weights in 0.3755807876586914 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: ratatouille as a lego set in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.69it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.67it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.67it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.66it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.65it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.66it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.67it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.67it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.67it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.67it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.67it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.67it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.67it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.67it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.66it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.66it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.66it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.66it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.66it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.66it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.66it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.65it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.66it/s]", "metrics": { "predict_time": 16.978208, "total_time": 30.710037 }, "output": [ "https://replicate.delivery/pbxt/XssK5hgBkTooAt7OHFSOHq5HxJRHRYWcvyVWanMn9AE1L4dE/out-0.png" ], "started_at": "2023-11-12T04:51:17.062167Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ac3ftx3b4les5uheacruqgu3y4", "cancel": "https://api.replicate.com/v1/predictions/ac3ftx3b4les5uheacruqgu3y4/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 41584 Ensuring enough disk space... Free disk space: 1943089876992 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.230s (808 MB/s)\nExtracted 186 MB in 0.060s (3.1 GB/s)\n' Downloaded weights in 0.3755807876586914 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: ratatouille as a lego set in the style of <s0><s1> txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.69it/s] 4%|▍ | 2/50 [00:00<00:13, 3.67it/s] 6%|▌ | 3/50 [00:00<00:12, 3.67it/s] 8%|▊ | 4/50 [00:01<00:12, 3.66it/s] 10%|█ | 5/50 [00:01<00:12, 3.65it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.66it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s] 20%|██ | 10/50 [00:02<00:10, 3.67it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.67it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.67it/s] 30%|███ | 15/50 [00:04<00:09, 3.67it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.67it/s] 34%|███▍ | 17/50 [00:04<00:08, 3.67it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.67it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s] 40%|████ | 20/50 [00:05<00:08, 3.67it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s] 44%|████▍ | 22/50 [00:05<00:07, 3.67it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.67it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.67it/s] 50%|█████ | 25/50 [00:06<00:06, 3.67it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s] 60%|██████ | 30/50 [00:08<00:05, 3.66it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.66it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s] 70%|███████ | 35/50 [00:09<00:04, 3.66it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.66it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s] 80%|████████ | 40/50 [00:10<00:02, 3.66it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.66it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.66it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.65it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.66it/s] 100%|██████████| 50/50 [00:13<00:00, 3.65it/s] 100%|██████████| 50/50 [00:13<00:00, 3.66it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDoxg2kg3b2lvwdjgi6jf3waldmeStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- charlie and the chocolate factory as a lego set in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "charlie and the chocolate factory as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "charlie and the chocolate factory as a lego set in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "charlie and the chocolate factory as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "charlie and the chocolate factory as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T04:53:24.066181Z", "created_at": "2023-11-12T04:53:03.172666Z", "data_removed": false, "error": null, "id": "oxg2kg3b2lvwdjgi6jf3waldme", "input": { "width": 1024, "height": 1024, "prompt": "charlie and the chocolate factory as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 10663\nEnsuring enough disk space...\nFree disk space: 1834566115328\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.433s (429 MB/s)\\nExtracted 186 MB in 0.050s (3.7 GB/s)\\n'\nDownloaded weights in 0.6059157848358154 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: charlie and the chocolate factory as a lego set in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.65it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.64it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.65it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.63it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.63it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.63it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.63it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.63it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.63it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.63it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.63it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.63it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.63it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.62it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.62it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.61it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.62it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.62it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.62it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.62it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.61it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.61it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.61it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.62it/s]", "metrics": { "predict_time": 16.913219, "total_time": 20.893515 }, "output": [ "https://replicate.delivery/pbxt/XYGTuLTne825HSu4CoQm8iFvYIfNclRGwXRzSpniOfoGiBvjA/out-0.png" ], "started_at": "2023-11-12T04:53:07.152962Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/oxg2kg3b2lvwdjgi6jf3waldme", "cancel": "https://api.replicate.com/v1/predictions/oxg2kg3b2lvwdjgi6jf3waldme/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 10663 Ensuring enough disk space... Free disk space: 1834566115328 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.433s (429 MB/s)\nExtracted 186 MB in 0.050s (3.7 GB/s)\n' Downloaded weights in 0.6059157848358154 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: charlie and the chocolate factory as a lego set in the style of <s0><s1> txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.65it/s] 4%|▍ | 2/50 [00:00<00:13, 3.64it/s] 6%|▌ | 3/50 [00:00<00:12, 3.65it/s] 8%|▊ | 4/50 [00:01<00:12, 3.64it/s] 10%|█ | 5/50 [00:01<00:12, 3.64it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.63it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s] 20%|██ | 10/50 [00:02<00:11, 3.63it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.63it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.63it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.63it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.63it/s] 30%|███ | 15/50 [00:04<00:09, 3.63it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.63it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.63it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.63it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s] 40%|████ | 20/50 [00:05<00:08, 3.62it/s] 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s] 50%|█████ | 25/50 [00:06<00:06, 3.62it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.61it/s] 60%|██████ | 30/50 [00:08<00:05, 3.62it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.62it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.62it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.62it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s] 70%|███████ | 35/50 [00:09<00:04, 3.61it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.61it/s] 80%|████████ | 40/50 [00:11<00:02, 3.61it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s] 100%|██████████| 50/50 [00:13<00:00, 3.61it/s] 100%|██████████| 50/50 [00:13<00:00, 3.62it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDldas24dbwc3f4pt3psajhlru2uStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- the grand budapest hotel in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "the grand budapest hotel in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "the grand budapest hotel in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "the grand budapest hotel in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "the grand budapest hotel in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T04:54:54.053489Z", "created_at": "2023-11-12T04:54:26.619766Z", "data_removed": false, "error": null, "id": "ldas24dbwc3f4pt3psajhlru2u", "input": { "width": 1024, "height": 1024, "prompt": "the grand budapest hotel in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 55815\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: the grand budapest hotel in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.68it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.68it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.67it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.67it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.66it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.66it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.66it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.66it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.66it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.66it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.66it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.66it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.66it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.66it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.66it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.65it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.65it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.65it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.65it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.65it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.65it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.65it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]", "metrics": { "predict_time": 16.690609, "total_time": 27.433723 }, "output": [ "https://replicate.delivery/pbxt/oMLYpEGYfk3PFCvjHbinLvXiCYqxhbDS8bxVC7KrFPgOZw7IA/out-0.png" ], "started_at": "2023-11-12T04:54:37.362880Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ldas24dbwc3f4pt3psajhlru2u", "cancel": "https://api.replicate.com/v1/predictions/ldas24dbwc3f4pt3psajhlru2u/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 55815 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: the grand budapest hotel in the style of <s0><s1> txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.68it/s] 4%|▍ | 2/50 [00:00<00:13, 3.68it/s] 6%|▌ | 3/50 [00:00<00:12, 3.67it/s] 8%|▊ | 4/50 [00:01<00:12, 3.67it/s] 10%|█ | 5/50 [00:01<00:12, 3.66it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.66it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.66it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.66it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s] 20%|██ | 10/50 [00:02<00:10, 3.66it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.66it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.66it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.66it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.66it/s] 30%|███ | 15/50 [00:04<00:09, 3.66it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.66it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.66it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.66it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.66it/s] 40%|████ | 20/50 [00:05<00:08, 3.65it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.65it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.65it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.65it/s] 50%|█████ | 25/50 [00:06<00:06, 3.65it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.65it/s] 60%|██████ | 30/50 [00:08<00:05, 3.65it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s] 70%|███████ | 35/50 [00:09<00:04, 3.65it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s] 80%|████████ | 40/50 [00:10<00:02, 3.65it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.65it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s] 100%|██████████| 50/50 [00:13<00:00, 3.65it/s] 100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDujdzkilbmb5tyf6mh5ny2a6vh4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- yellow submarine lego set
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "yellow submarine lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "yellow submarine lego set", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "yellow submarine lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "yellow submarine lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T04:57:36.180035Z", "created_at": "2023-11-12T04:57:16.532668Z", "data_removed": false, "error": null, "id": "ujdzkilbmb5tyf6mh5ny2a6vh4", "input": { "width": 1024, "height": 1024, "prompt": "yellow submarine lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 14295\nEnsuring enough disk space...\nFree disk space: 2026854731776\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.387s (481 MB/s)\\nExtracted 186 MB in 0.064s (2.9 GB/s)\\n'\nDownloaded weights in 0.5409281253814697 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: yellow submarine lego set\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.58it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.59it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.61it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.61it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.61it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.61it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.62it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.62it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.62it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.62it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.62it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.62it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.62it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.62it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.61it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.61it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.61it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.61it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.61it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.61it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.61it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.61it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.61it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.60it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.60it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.60it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.60it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.60it/s]\n 58%|█████▊ | 29/50 [00:08<00:05, 3.60it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.60it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.60it/s]\n 64%|██████▍ | 32/50 [00:08<00:05, 3.59it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.60it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.60it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.60it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.59it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.59it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.59it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.59it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.59it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.59it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.59it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.59it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.59it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.59it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.59it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.59it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.59it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.59it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.59it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.60it/s]", "metrics": { "predict_time": 16.9352, "total_time": 19.647367 }, "output": [ "https://replicate.delivery/pbxt/ML8lfrUa2x2WV6JbriyTDTtJ8hfcpLW3wlZIAvsNhFHfpBvjA/out-0.png" ], "started_at": "2023-11-12T04:57:19.244835Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ujdzkilbmb5tyf6mh5ny2a6vh4", "cancel": "https://api.replicate.com/v1/predictions/ujdzkilbmb5tyf6mh5ny2a6vh4/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 14295 Ensuring enough disk space... Free disk space: 2026854731776 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.387s (481 MB/s)\nExtracted 186 MB in 0.064s (2.9 GB/s)\n' Downloaded weights in 0.5409281253814697 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: yellow submarine lego set txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.58it/s] 4%|▍ | 2/50 [00:00<00:13, 3.59it/s] 6%|▌ | 3/50 [00:00<00:13, 3.61it/s] 8%|▊ | 4/50 [00:01<00:12, 3.61it/s] 10%|█ | 5/50 [00:01<00:12, 3.61it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.61it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.62it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.62it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.62it/s] 20%|██ | 10/50 [00:02<00:11, 3.62it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.62it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.62it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.62it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.62it/s] 30%|███ | 15/50 [00:04<00:09, 3.61it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.61it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.61it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.61it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.61it/s] 40%|████ | 20/50 [00:05<00:08, 3.61it/s] 42%|████▏ | 21/50 [00:05<00:08, 3.61it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.61it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.61it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.60it/s] 50%|█████ | 25/50 [00:06<00:06, 3.60it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.60it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.60it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.60it/s] 58%|█████▊ | 29/50 [00:08<00:05, 3.60it/s] 60%|██████ | 30/50 [00:08<00:05, 3.60it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.60it/s] 64%|██████▍ | 32/50 [00:08<00:05, 3.59it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.60it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.60it/s] 70%|███████ | 35/50 [00:09<00:04, 3.60it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.59it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.59it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.59it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.59it/s] 80%|████████ | 40/50 [00:11<00:02, 3.59it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.59it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.59it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.59it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.59it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.59it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.59it/s] 94%|█████████▍| 47/50 [00:13<00:00, 3.59it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.59it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.59it/s] 100%|██████████| 50/50 [00:13<00:00, 3.59it/s] 100%|██████████| 50/50 [00:13<00:00, 3.60it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDqujhgptbeolovgkm3zltb36tvqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- bernie sanders as a lego
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "bernie sanders as a lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "bernie sanders as a lego", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "bernie sanders as a lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "bernie sanders as a lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T05:00:07.930790Z", "created_at": "2023-11-12T04:59:47.883858Z", "data_removed": false, "error": null, "id": "qujhgptbeolovgkm3zltb36tvq", "input": { "width": 1024, "height": 1024, "prompt": "bernie sanders as a lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 3196\nskipping loading .. weights already loaded\nPrompt: bernie sanders as a lego\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.63it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.63it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.64it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.63it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.63it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.63it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.63it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.63it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.63it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.62it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.62it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.62it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.62it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.62it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.62it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.62it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.62it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s]\n 58%|█████▊ | 29/50 [00:08<00:05, 3.61it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.61it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.61it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.61it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.62it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.62it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.62it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.61it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.61it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.61it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.62it/s]", "metrics": { "predict_time": 16.10616, "total_time": 20.046932 }, "output": [ "https://replicate.delivery/pbxt/pw2HAw5peGT6baBcWM8FkcKuJ3Jey34O8FoVRhXqAcCX3g3RA/out-0.png" ], "started_at": "2023-11-12T04:59:51.824630Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qujhgptbeolovgkm3zltb36tvq", "cancel": "https://api.replicate.com/v1/predictions/qujhgptbeolovgkm3zltb36tvq/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 3196 skipping loading .. weights already loaded Prompt: bernie sanders as a lego txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.63it/s] 4%|▍ | 2/50 [00:00<00:13, 3.63it/s] 6%|▌ | 3/50 [00:00<00:12, 3.64it/s] 8%|▊ | 4/50 [00:01<00:12, 3.64it/s] 10%|█ | 5/50 [00:01<00:12, 3.64it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.63it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.63it/s] 20%|██ | 10/50 [00:02<00:11, 3.63it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.63it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.63it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.63it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.62it/s] 30%|███ | 15/50 [00:04<00:09, 3.62it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.62it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.62it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.62it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s] 40%|████ | 20/50 [00:05<00:08, 3.62it/s] 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s] 50%|█████ | 25/50 [00:06<00:06, 3.62it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.62it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s] 58%|█████▊ | 29/50 [00:08<00:05, 3.61it/s] 60%|██████ | 30/50 [00:08<00:05, 3.61it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.61it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.61it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.62it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.62it/s] 70%|███████ | 35/50 [00:09<00:04, 3.62it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.61it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.61it/s] 80%|████████ | 40/50 [00:11<00:02, 3.61it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s] 100%|██████████| 50/50 [00:13<00:00, 3.61it/s] 100%|██████████| 50/50 [00:13<00:00, 3.62it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDppw3nd3btzebbj7gqv6n6giamiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- noah's ark lego
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "noah's ark lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "noah's ark lego", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "noah's ark lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "noah\'s ark lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T05:04:25.523864Z", "created_at": "2023-11-12T05:04:10.197938Z", "data_removed": false, "error": null, "id": "ppw3nd3btzebbj7gqv6n6giami", "input": { "width": 1024, "height": 1024, "prompt": "noah's ark lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 15310\nskipping loading .. weights already loaded\nPrompt: noah's ark lego\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.64it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.65it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.65it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.65it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.65it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.65it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.64it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.64it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.64it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.64it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.64it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.64it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.64it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.64it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.63it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.63it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.63it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.63it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.63it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.63it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.63it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.63it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.63it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.63it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.63it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.63it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.63it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.63it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.63it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.63it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.63it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.63it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.63it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.63it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.63it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.63it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.63it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.63it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.63it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]", "metrics": { "predict_time": 15.372776, "total_time": 15.325926 }, "output": [ "https://replicate.delivery/pbxt/lBRN0j0fyH29ekyYKPm001WaDllAjes9SB6wOXD5Q8Py2BvjA/out-0.png" ], "started_at": "2023-11-12T05:04:10.151088Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ppw3nd3btzebbj7gqv6n6giami", "cancel": "https://api.replicate.com/v1/predictions/ppw3nd3btzebbj7gqv6n6giami/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 15310 skipping loading .. weights already loaded Prompt: noah's ark lego txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.64it/s] 4%|▍ | 2/50 [00:00<00:13, 3.65it/s] 6%|▌ | 3/50 [00:00<00:12, 3.65it/s] 8%|▊ | 4/50 [00:01<00:12, 3.64it/s] 10%|█ | 5/50 [00:01<00:12, 3.64it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.65it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.65it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.65it/s] 20%|██ | 10/50 [00:02<00:10, 3.65it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.64it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s] 30%|███ | 15/50 [00:04<00:09, 3.64it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.64it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.64it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.64it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.64it/s] 40%|████ | 20/50 [00:05<00:08, 3.64it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.64it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.64it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.64it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s] 50%|█████ | 25/50 [00:06<00:06, 3.63it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.63it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.63it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.63it/s] 60%|██████ | 30/50 [00:08<00:05, 3.63it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.63it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.63it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.63it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.63it/s] 70%|███████ | 35/50 [00:09<00:04, 3.63it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.63it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.63it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.63it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.63it/s] 80%|████████ | 40/50 [00:10<00:02, 3.63it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.63it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.63it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.63it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.63it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.63it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.63it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.63it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.63it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.63it/s] 100%|██████████| 50/50 [00:13<00:00, 3.63it/s] 100%|██████████| 50/50 [00:13<00:00, 3.64it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6ID7j2xnrtbtpwhiijgonp552dlluStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- jesus lego
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "jesus lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "jesus lego", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "jesus lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "jesus lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T05:05:49.798922Z", "created_at": "2023-11-12T05:05:30.943955Z", "data_removed": false, "error": null, "id": "7j2xnrtbtpwhiijgonp552dllu", "input": { "width": 1024, "height": 1024, "prompt": "jesus lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 960\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: jesus lego\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.68it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.67it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.67it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.67it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.67it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.67it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.67it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.67it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.67it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.67it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.67it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.67it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.67it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.66it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.65it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.66it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.66it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.66it/s]", "metrics": { "predict_time": 16.182134, "total_time": 18.854967 }, "output": [ "https://replicate.delivery/pbxt/m8uY36WmFToJKpKBIbTNPvwFR1JfqjvWRjrpsNLETcKWeg3RA/out-0.png" ], "started_at": "2023-11-12T05:05:33.616788Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7j2xnrtbtpwhiijgonp552dllu", "cancel": "https://api.replicate.com/v1/predictions/7j2xnrtbtpwhiijgonp552dllu/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 960 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: jesus lego txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.68it/s] 4%|▍ | 2/50 [00:00<00:13, 3.67it/s] 6%|▌ | 3/50 [00:00<00:12, 3.67it/s] 8%|▊ | 4/50 [00:01<00:12, 3.67it/s] 10%|█ | 5/50 [00:01<00:12, 3.67it/s] 12%|█▏ | 6/50 [00:01<00:11, 3.67it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s] 20%|██ | 10/50 [00:02<00:10, 3.67it/s] 22%|██▏ | 11/50 [00:02<00:10, 3.67it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.67it/s] 30%|███ | 15/50 [00:04<00:09, 3.67it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.67it/s] 34%|███▍ | 17/50 [00:04<00:08, 3.67it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.67it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s] 40%|████ | 20/50 [00:05<00:08, 3.67it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s] 44%|████▍ | 22/50 [00:05<00:07, 3.67it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.67it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.67it/s] 50%|█████ | 25/50 [00:06<00:06, 3.67it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.67it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s] 60%|██████ | 30/50 [00:08<00:05, 3.66it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s] 66%|██████▌ | 33/50 [00:08<00:04, 3.65it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.66it/s] 70%|███████ | 35/50 [00:09<00:04, 3.66it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.66it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.66it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.66it/s] 80%|████████ | 40/50 [00:10<00:02, 3.66it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.66it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.66it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.66it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s] 100%|██████████| 50/50 [00:13<00:00, 3.65it/s] 100%|██████████| 50/50 [00:13<00:00, 3.66it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDyv53rytbgm5eecwgexpaepinjuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- jeep wrangler lego
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "jeep wrangler lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "jeep wrangler lego", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "jeep wrangler lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "jeep wrangler lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T05:10:08.023039Z", "created_at": "2023-11-12T05:09:46.013205Z", "data_removed": false, "error": null, "id": "yv53rytbgm5eecwgexpaepinju", "input": { "width": 1024, "height": 1024, "prompt": "jeep wrangler lego", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 48117\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: jeep wrangler lego\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.70it/s]\n 4%|▍ | 2/50 [00:00<00:12, 3.70it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.70it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.68it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.68it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.68it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.68it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.67it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.67it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.66it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.66it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.66it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.66it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.66it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.66it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.66it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.66it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.66it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.67it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.67it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.67it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.68it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.68it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.68it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.68it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]", "metrics": { "predict_time": 15.707464, "total_time": 22.009834 }, "output": [ "https://replicate.delivery/pbxt/x2DtxKrNKB5vCVfeoWGHzqRGJZqZErqu5kQ9ZeSBERcfCEeOC/out-0.png" ], "started_at": "2023-11-12T05:09:52.315575Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yv53rytbgm5eecwgexpaepinju", "cancel": "https://api.replicate.com/v1/predictions/yv53rytbgm5eecwgexpaepinju/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 48117 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: jeep wrangler lego txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.70it/s] 4%|▍ | 2/50 [00:00<00:12, 3.70it/s] 6%|▌ | 3/50 [00:00<00:12, 3.70it/s] 8%|▊ | 4/50 [00:01<00:12, 3.68it/s] 10%|█ | 5/50 [00:01<00:12, 3.68it/s] 12%|█▏ | 6/50 [00:01<00:11, 3.68it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.68it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s] 20%|██ | 10/50 [00:02<00:10, 3.67it/s] 22%|██▏ | 11/50 [00:02<00:10, 3.67it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.66it/s] 30%|███ | 15/50 [00:04<00:09, 3.66it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.66it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.66it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.66it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.66it/s] 40%|████ | 20/50 [00:05<00:08, 3.66it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.66it/s] 44%|████▍ | 22/50 [00:05<00:07, 3.66it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.66it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.66it/s] 50%|█████ | 25/50 [00:06<00:06, 3.66it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.67it/s] 56%|█████▌ | 28/50 [00:07<00:05, 3.67it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.67it/s] 60%|██████ | 30/50 [00:08<00:05, 3.68it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s] 66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s] 70%|███████ | 35/50 [00:09<00:04, 3.68it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s] 78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s] 80%|████████ | 40/50 [00:10<00:02, 3.68it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s] 88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.68it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s] 100%|██████████| 50/50 [00:13<00:00, 3.68it/s] 100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDkgzbw5tbyxhm6kfd2o5ui7pz6yStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- citi field lego set
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "citi field lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "citi field lego set", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "citi field lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "citi field lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T05:14:12.859218Z", "created_at": "2023-11-12T05:13:50.751221Z", "data_removed": false, "error": null, "id": "kgzbw5tbyxhm6kfd2o5ui7pz6y", "input": { "width": 1024, "height": 1024, "prompt": "citi field lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 14092\nEnsuring enough disk space...\nFree disk space: 3098716082176\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.290s (642 MB/s)\\nExtracted 186 MB in 0.048s (3.9 GB/s)\\n'\nDownloaded weights in 0.409975528717041 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: citi field lego set\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.65it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.64it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.64it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.63it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.63it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.63it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.62it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.62it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.62it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.62it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.62it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.61it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.62it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.62it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.62it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.62it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.61it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.61it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.61it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.61it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s]\n 58%|█████▊ | 29/50 [00:08<00:05, 3.61it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.61it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.61it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.61it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.61it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.60it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.60it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.60it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.60it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.60it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.60it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.60it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.61it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.60it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]", "metrics": { "predict_time": 16.838394, "total_time": 22.107997 }, "output": [ "https://replicate.delivery/pbxt/RkNeHQTvVORVRCNSfsQ5fPcCn5pkws0gr08SCTbeuuXTSEeOC/out-0.png" ], "started_at": "2023-11-12T05:13:56.020824Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kgzbw5tbyxhm6kfd2o5ui7pz6y", "cancel": "https://api.replicate.com/v1/predictions/kgzbw5tbyxhm6kfd2o5ui7pz6y/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 14092 Ensuring enough disk space... Free disk space: 3098716082176 Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar b'Downloaded 186 MB bytes in 0.290s (642 MB/s)\nExtracted 186 MB in 0.048s (3.9 GB/s)\n' Downloaded weights in 0.409975528717041 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: citi field lego set txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.65it/s] 4%|▍ | 2/50 [00:00<00:13, 3.64it/s] 6%|▌ | 3/50 [00:00<00:12, 3.64it/s] 8%|▊ | 4/50 [00:01<00:12, 3.63it/s] 10%|█ | 5/50 [00:01<00:12, 3.63it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.63it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.62it/s] 20%|██ | 10/50 [00:02<00:11, 3.62it/s] 22%|██▏ | 11/50 [00:03<00:10, 3.62it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.62it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.62it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.61it/s] 30%|███ | 15/50 [00:04<00:09, 3.62it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.62it/s] 34%|███▍ | 17/50 [00:04<00:09, 3.62it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.62it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s] 40%|████ | 20/50 [00:05<00:08, 3.61it/s] 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s] 44%|████▍ | 22/50 [00:06<00:07, 3.61it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.61it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s] 50%|█████ | 25/50 [00:06<00:06, 3.61it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s] 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s] 58%|█████▊ | 29/50 [00:08<00:05, 3.61it/s] 60%|██████ | 30/50 [00:08<00:05, 3.61it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.61it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.61it/s] 66%|██████▌ | 33/50 [00:09<00:04, 3.61it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s] 70%|███████ | 35/50 [00:09<00:04, 3.60it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.60it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.60it/s] 78%|███████▊ | 39/50 [00:10<00:03, 3.60it/s] 80%|████████ | 40/50 [00:11<00:02, 3.60it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.60it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.60it/s] 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s] 94%|█████████▍| 47/50 [00:13<00:00, 3.61it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s] 100%|██████████| 50/50 [00:13<00:00, 3.60it/s] 100%|██████████| 50/50 [00:13<00:00, 3.61it/s]
Prediction
marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6IDfzskiadbi2lac77ytzqxdmdwtyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- an eskimo igloo lego set
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 150
{ "width": 1024, "height": 1024, "prompt": "an eskimo igloo lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 15, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 150 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", { input: { width: 1024, height: 1024, prompt: "an eskimo igloo lego set", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 15, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 150 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", input={ "width": 1024, "height": 1024, "prompt": "an eskimo igloo lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 15, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 150 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6", "input": { "width": 1024, "height": 1024, "prompt": "an eskimo igloo lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 15, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 150 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-12T05:17:14.407613Z", "created_at": "2023-11-12T05:16:25.500469Z", "data_removed": false, "error": null, "id": "fzskiadbi2lac77ytzqxdmdwty", "input": { "width": 1024, "height": 1024, "prompt": "an eskimo igloo lego set", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 15, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 150 }, "logs": "Using seed: 34815\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: an eskimo igloo lego set\ntxt2img mode\n 0%| | 0/150 [00:00<?, ?it/s]\n 1%| | 1/150 [00:00<00:40, 3.66it/s]\n 1%|▏ | 2/150 [00:00<00:40, 3.65it/s]\n 2%|▏ | 3/150 [00:00<00:40, 3.65it/s]\n 3%|▎ | 4/150 [00:01<00:40, 3.65it/s]\n 3%|▎ | 5/150 [00:01<00:39, 3.65it/s]\n 4%|▍ | 6/150 [00:01<00:39, 3.64it/s]\n 5%|▍ | 7/150 [00:01<00:39, 3.64it/s]\n 5%|▌ | 8/150 [00:02<00:39, 3.64it/s]\n 6%|▌ | 9/150 [00:02<00:38, 3.64it/s]\n 7%|▋ | 10/150 [00:02<00:38, 3.64it/s]\n 7%|▋ | 11/150 [00:03<00:38, 3.64it/s]\n 8%|▊ | 12/150 [00:03<00:37, 3.63it/s]\n 9%|▊ | 13/150 [00:03<00:37, 3.63it/s]\n 9%|▉ | 14/150 [00:03<00:37, 3.63it/s]\n 10%|█ | 15/150 [00:04<00:37, 3.63it/s]\n 11%|█ | 16/150 [00:04<00:36, 3.63it/s]\n 11%|█▏ | 17/150 [00:04<00:36, 3.63it/s]\n 12%|█▏ | 18/150 [00:04<00:36, 3.63it/s]\n 13%|█▎ | 19/150 [00:05<00:36, 3.63it/s]\n 13%|█▎ | 20/150 [00:05<00:35, 3.63it/s]\n 14%|█▍ | 21/150 [00:05<00:35, 3.63it/s]\n 15%|█▍ | 22/150 [00:06<00:35, 3.63it/s]\n 15%|█▌ | 23/150 [00:06<00:34, 3.63it/s]\n 16%|█▌ | 24/150 [00:06<00:34, 3.63it/s]\n 17%|█▋ | 25/150 [00:06<00:34, 3.63it/s]\n 17%|█▋ | 26/150 [00:07<00:34, 3.63it/s]\n 18%|█▊ | 27/150 [00:07<00:33, 3.62it/s]\n 19%|█▊ | 28/150 [00:07<00:33, 3.62it/s]\n 19%|█▉ | 29/150 [00:07<00:33, 3.62it/s]\n 20%|██ | 30/150 [00:08<00:33, 3.62it/s]\n 21%|██ | 31/150 [00:08<00:32, 3.62it/s]\n 21%|██▏ | 32/150 [00:08<00:32, 3.62it/s]\n 22%|██▏ | 33/150 [00:09<00:32, 3.62it/s]\n 23%|██▎ | 34/150 [00:09<00:32, 3.62it/s]\n 23%|██▎ | 35/150 [00:09<00:31, 3.62it/s]\n 24%|██▍ | 36/150 [00:09<00:31, 3.62it/s]\n 25%|██▍ | 37/150 [00:10<00:31, 3.62it/s]\n 25%|██▌ | 38/150 [00:10<00:30, 3.62it/s]\n 26%|██▌ | 39/150 [00:10<00:30, 3.62it/s]\n 27%|██▋ | 40/150 [00:11<00:30, 3.62it/s]\n 27%|██▋ | 41/150 [00:11<00:30, 3.62it/s]\n 28%|██▊ | 42/150 [00:11<00:29, 3.62it/s]\n 29%|██▊ | 43/150 [00:11<00:29, 3.62it/s]\n 29%|██▉ | 44/150 [00:12<00:29, 3.62it/s]\n 30%|███ | 45/150 [00:12<00:29, 3.62it/s]\n 31%|███ | 46/150 [00:12<00:28, 3.61it/s]\n 31%|███▏ | 47/150 [00:12<00:28, 3.62it/s]\n 32%|███▏ | 48/150 [00:13<00:28, 3.62it/s]\n 33%|███▎ | 49/150 [00:13<00:27, 3.62it/s]\n 33%|███▎ | 50/150 [00:13<00:27, 3.62it/s]\n 34%|███▍ | 51/150 [00:14<00:27, 3.61it/s]\n 35%|███▍ | 52/150 [00:14<00:27, 3.62it/s]\n 35%|███▌ | 53/150 [00:14<00:26, 3.62it/s]\n 36%|███▌ | 54/150 [00:14<00:26, 3.62it/s]\n 37%|███▋ | 55/150 [00:15<00:26, 3.62it/s]\n 37%|███▋ | 56/150 [00:15<00:25, 3.62it/s]\n 38%|███▊ | 57/150 [00:15<00:25, 3.61it/s]\n 39%|███▊ | 58/150 [00:16<00:25, 3.58it/s]\n 39%|███▉ | 59/150 [00:16<00:25, 3.59it/s]\n 40%|████ | 60/150 [00:16<00:25, 3.59it/s]\n 41%|████ | 61/150 [00:16<00:24, 3.60it/s]\n 41%|████▏ | 62/150 [00:17<00:24, 3.60it/s]\n 42%|████▏ | 63/150 [00:17<00:24, 3.61it/s]\n 43%|████▎ | 64/150 [00:17<00:23, 3.61it/s]\n 43%|████▎ | 65/150 [00:17<00:23, 3.61it/s]\n 44%|████▍ | 66/150 [00:18<00:23, 3.61it/s]\n 45%|████▍ | 67/150 [00:18<00:22, 3.62it/s]\n 45%|████▌ | 68/150 [00:18<00:22, 3.61it/s]\n 46%|████▌ | 69/150 [00:19<00:22, 3.61it/s]\n 47%|████▋ | 70/150 [00:19<00:22, 3.61it/s]\n 47%|████▋ | 71/150 [00:19<00:21, 3.61it/s]\n 48%|████▊ | 72/150 [00:19<00:21, 3.62it/s]\n 49%|████▊ | 73/150 [00:20<00:21, 3.62it/s]\n 49%|████▉ | 74/150 [00:20<00:21, 3.62it/s]\n 50%|█████ | 75/150 [00:20<00:20, 3.62it/s]\n 51%|█████ | 76/150 [00:20<00:20, 3.61it/s]\n 51%|█████▏ | 77/150 [00:21<00:20, 3.61it/s]\n 52%|█████▏ | 78/150 [00:21<00:19, 3.61it/s]\n 53%|█████▎ | 79/150 [00:21<00:19, 3.62it/s]\n 53%|█████▎ | 80/150 [00:22<00:19, 3.61it/s]\n 54%|█████▍ | 81/150 [00:22<00:19, 3.61it/s]\n 55%|█████▍ | 82/150 [00:22<00:18, 3.61it/s]\n 55%|█████▌ | 83/150 [00:22<00:18, 3.61it/s]\n 56%|█████▌ | 84/150 [00:23<00:18, 3.61it/s]\n 57%|█████▋ | 85/150 [00:23<00:18, 3.61it/s]\n 57%|█████▋ | 86/150 [00:23<00:17, 3.61it/s]\n 58%|█████▊ | 87/150 [00:24<00:17, 3.61it/s]\n 59%|█████▊ | 88/150 [00:24<00:17, 3.61it/s]\n 59%|█████▉ | 89/150 [00:24<00:16, 3.61it/s]\n 60%|██████ | 90/150 [00:24<00:16, 3.60it/s]\n 61%|██████ | 91/150 [00:25<00:16, 3.61it/s]\n 61%|██████▏ | 92/150 [00:25<00:16, 3.60it/s]\n 62%|██████▏ | 93/150 [00:25<00:15, 3.60it/s]\n 63%|██████▎ | 94/150 [00:25<00:15, 3.60it/s]\n 63%|██████▎ | 95/150 [00:26<00:15, 3.61it/s]\n 64%|██████▍ | 96/150 [00:26<00:14, 3.60it/s]\n 65%|██████▍ | 97/150 [00:26<00:14, 3.61it/s]\n 65%|██████▌ | 98/150 [00:27<00:14, 3.61it/s]\n 66%|██████▌ | 99/150 [00:27<00:14, 3.61it/s]\n 67%|██████▋ | 100/150 [00:27<00:13, 3.61it/s]\n 67%|██████▋ | 101/150 [00:27<00:13, 3.61it/s]\n 68%|██████▊ | 102/150 [00:28<00:13, 3.61it/s]\n 69%|██████▊ | 103/150 [00:28<00:13, 3.61it/s]\n 69%|██████▉ | 104/150 [00:28<00:12, 3.61it/s]\n 70%|███████ | 105/150 [00:29<00:12, 3.61it/s]\n 71%|███████ | 106/150 [00:29<00:12, 3.61it/s]\n 71%|███████▏ | 107/150 [00:29<00:11, 3.61it/s]\n 72%|███████▏ | 108/150 [00:29<00:11, 3.61it/s]\n 73%|███████▎ | 109/150 [00:30<00:11, 3.61it/s]\n 73%|███████▎ | 110/150 [00:30<00:11, 3.61it/s]\n 74%|███████▍ | 111/150 [00:30<00:10, 3.61it/s]\n 75%|███████▍ | 112/150 [00:30<00:10, 3.61it/s]\n 75%|███████▌ | 113/150 [00:31<00:10, 3.61it/s]\n 76%|███████▌ | 114/150 [00:31<00:09, 3.61it/s]\n 77%|███████▋ | 115/150 [00:31<00:09, 3.61it/s]\n 77%|███████▋ | 116/150 [00:32<00:09, 3.61it/s]\n 78%|███████▊ | 117/150 [00:32<00:09, 3.61it/s]\n 79%|███████▊ | 118/150 [00:32<00:08, 3.61it/s]\n 79%|███████▉ | 119/150 [00:32<00:08, 3.61it/s]\n 80%|████████ | 120/150 [00:33<00:08, 3.61it/s]\n 81%|████████ | 121/150 [00:33<00:08, 3.61it/s]\n 81%|████████▏ | 122/150 [00:33<00:07, 3.61it/s]\n 82%|████████▏ | 123/150 [00:34<00:07, 3.60it/s]\n 83%|████████▎ | 124/150 [00:34<00:07, 3.61it/s]\n 83%|████████▎ | 125/150 [00:34<00:06, 3.61it/s]\n 84%|████████▍ | 126/150 [00:34<00:06, 3.61it/s]\n 85%|████████▍ | 127/150 [00:35<00:06, 3.61it/s]\n 85%|████████▌ | 128/150 [00:35<00:06, 3.61it/s]\n 86%|████████▌ | 129/150 [00:35<00:05, 3.61it/s]\n 87%|████████▋ | 130/150 [00:35<00:05, 3.61it/s]\n 87%|████████▋ | 131/150 [00:36<00:05, 3.61it/s]\n 88%|████████▊ | 132/150 [00:36<00:04, 3.61it/s]\n 89%|████████▊ | 133/150 [00:36<00:04, 3.61it/s]\n 89%|████████▉ | 134/150 [00:37<00:04, 3.61it/s]\n 90%|█████████ | 135/150 [00:37<00:04, 3.62it/s]\n 91%|█████████ | 136/150 [00:37<00:03, 3.61it/s]\n 91%|█████████▏| 137/150 [00:37<00:03, 3.61it/s]\n 92%|█████████▏| 138/150 [00:38<00:03, 3.61it/s]\n 93%|█████████▎| 139/150 [00:38<00:03, 3.61it/s]\n 93%|█████████▎| 140/150 [00:38<00:02, 3.61it/s]\n 94%|█████████▍| 141/150 [00:38<00:02, 3.61it/s]\n 95%|█████████▍| 142/150 [00:39<00:02, 3.61it/s]\n 95%|█████████▌| 143/150 [00:39<00:01, 3.61it/s]\n 96%|█████████▌| 144/150 [00:39<00:01, 3.61it/s]\n 97%|█████████▋| 145/150 [00:40<00:01, 3.61it/s]\n 97%|█████████▋| 146/150 [00:40<00:01, 3.61it/s]\n 98%|█████████▊| 147/150 [00:40<00:00, 3.61it/s]\n 99%|█████████▊| 148/150 [00:40<00:00, 3.61it/s]\n 99%|█████████▉| 149/150 [00:41<00:00, 3.61it/s]\n100%|██████████| 150/150 [00:41<00:00, 3.60it/s]\n100%|██████████| 150/150 [00:41<00:00, 3.62it/s]", "metrics": { "predict_time": 43.9795, "total_time": 48.907144 }, "output": [ "https://replicate.delivery/pbxt/hMiqiRzQMeylbKZmd2fMYufavC7JF9Z2L1duNoWFEs4zOCvjA/out-0.png" ], "started_at": "2023-11-12T05:16:30.428113Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fzskiadbi2lac77ytzqxdmdwty", "cancel": "https://api.replicate.com/v1/predictions/fzskiadbi2lac77ytzqxdmdwty/cancel" }, "version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6" }
Generated inUsing seed: 34815 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: an eskimo igloo lego set txt2img mode 0%| | 0/150 [00:00<?, ?it/s] 1%| | 1/150 [00:00<00:40, 3.66it/s] 1%|▏ | 2/150 [00:00<00:40, 3.65it/s] 2%|▏ | 3/150 [00:00<00:40, 3.65it/s] 3%|▎ | 4/150 [00:01<00:40, 3.65it/s] 3%|▎ | 5/150 [00:01<00:39, 3.65it/s] 4%|▍ | 6/150 [00:01<00:39, 3.64it/s] 5%|▍ | 7/150 [00:01<00:39, 3.64it/s] 5%|▌ | 8/150 [00:02<00:39, 3.64it/s] 6%|▌ | 9/150 [00:02<00:38, 3.64it/s] 7%|▋ | 10/150 [00:02<00:38, 3.64it/s] 7%|▋ | 11/150 [00:03<00:38, 3.64it/s] 8%|▊ | 12/150 [00:03<00:37, 3.63it/s] 9%|▊ | 13/150 [00:03<00:37, 3.63it/s] 9%|▉ | 14/150 [00:03<00:37, 3.63it/s] 10%|█ | 15/150 [00:04<00:37, 3.63it/s] 11%|█ | 16/150 [00:04<00:36, 3.63it/s] 11%|█▏ | 17/150 [00:04<00:36, 3.63it/s] 12%|█▏ | 18/150 [00:04<00:36, 3.63it/s] 13%|█▎ | 19/150 [00:05<00:36, 3.63it/s] 13%|█▎ | 20/150 [00:05<00:35, 3.63it/s] 14%|█▍ | 21/150 [00:05<00:35, 3.63it/s] 15%|█▍ | 22/150 [00:06<00:35, 3.63it/s] 15%|█▌ | 23/150 [00:06<00:34, 3.63it/s] 16%|█▌ | 24/150 [00:06<00:34, 3.63it/s] 17%|█▋ | 25/150 [00:06<00:34, 3.63it/s] 17%|█▋ | 26/150 [00:07<00:34, 3.63it/s] 18%|█▊ | 27/150 [00:07<00:33, 3.62it/s] 19%|█▊ | 28/150 [00:07<00:33, 3.62it/s] 19%|█▉ | 29/150 [00:07<00:33, 3.62it/s] 20%|██ | 30/150 [00:08<00:33, 3.62it/s] 21%|██ | 31/150 [00:08<00:32, 3.62it/s] 21%|██▏ | 32/150 [00:08<00:32, 3.62it/s] 22%|██▏ | 33/150 [00:09<00:32, 3.62it/s] 23%|██▎ | 34/150 [00:09<00:32, 3.62it/s] 23%|██▎ | 35/150 [00:09<00:31, 3.62it/s] 24%|██▍ | 36/150 [00:09<00:31, 3.62it/s] 25%|██▍ | 37/150 [00:10<00:31, 3.62it/s] 25%|██▌ | 38/150 [00:10<00:30, 3.62it/s] 26%|██▌ | 39/150 [00:10<00:30, 3.62it/s] 27%|██▋ | 40/150 [00:11<00:30, 3.62it/s] 27%|██▋ | 41/150 [00:11<00:30, 3.62it/s] 28%|██▊ | 42/150 [00:11<00:29, 3.62it/s] 29%|██▊ | 43/150 [00:11<00:29, 3.62it/s] 29%|██▉ | 44/150 [00:12<00:29, 3.62it/s] 30%|███ | 45/150 [00:12<00:29, 3.62it/s] 31%|███ | 46/150 [00:12<00:28, 3.61it/s] 31%|███▏ | 47/150 [00:12<00:28, 3.62it/s] 32%|███▏ | 48/150 [00:13<00:28, 3.62it/s] 33%|███▎ | 49/150 [00:13<00:27, 3.62it/s] 33%|███▎ | 50/150 [00:13<00:27, 3.62it/s] 34%|███▍ | 51/150 [00:14<00:27, 3.61it/s] 35%|███▍ | 52/150 [00:14<00:27, 3.62it/s] 35%|███▌ | 53/150 [00:14<00:26, 3.62it/s] 36%|███▌ | 54/150 [00:14<00:26, 3.62it/s] 37%|███▋ | 55/150 [00:15<00:26, 3.62it/s] 37%|███▋ | 56/150 [00:15<00:25, 3.62it/s] 38%|███▊ | 57/150 [00:15<00:25, 3.61it/s] 39%|███▊ | 58/150 [00:16<00:25, 3.58it/s] 39%|███▉ | 59/150 [00:16<00:25, 3.59it/s] 40%|████ | 60/150 [00:16<00:25, 3.59it/s] 41%|████ | 61/150 [00:16<00:24, 3.60it/s] 41%|████▏ | 62/150 [00:17<00:24, 3.60it/s] 42%|████▏ | 63/150 [00:17<00:24, 3.61it/s] 43%|████▎ | 64/150 [00:17<00:23, 3.61it/s] 43%|████▎ | 65/150 [00:17<00:23, 3.61it/s] 44%|████▍ | 66/150 [00:18<00:23, 3.61it/s] 45%|████▍ | 67/150 [00:18<00:22, 3.62it/s] 45%|████▌ | 68/150 [00:18<00:22, 3.61it/s] 46%|████▌ | 69/150 [00:19<00:22, 3.61it/s] 47%|████▋ | 70/150 [00:19<00:22, 3.61it/s] 47%|████▋ | 71/150 [00:19<00:21, 3.61it/s] 48%|████▊ | 72/150 [00:19<00:21, 3.62it/s] 49%|████▊ | 73/150 [00:20<00:21, 3.62it/s] 49%|████▉ | 74/150 [00:20<00:21, 3.62it/s] 50%|█████ | 75/150 [00:20<00:20, 3.62it/s] 51%|█████ | 76/150 [00:20<00:20, 3.61it/s] 51%|█████▏ | 77/150 [00:21<00:20, 3.61it/s] 52%|█████▏ | 78/150 [00:21<00:19, 3.61it/s] 53%|█████▎ | 79/150 [00:21<00:19, 3.62it/s] 53%|█████▎ | 80/150 [00:22<00:19, 3.61it/s] 54%|█████▍ | 81/150 [00:22<00:19, 3.61it/s] 55%|█████▍ | 82/150 [00:22<00:18, 3.61it/s] 55%|█████▌ | 83/150 [00:22<00:18, 3.61it/s] 56%|█████▌ | 84/150 [00:23<00:18, 3.61it/s] 57%|█████▋ | 85/150 [00:23<00:18, 3.61it/s] 57%|█████▋ | 86/150 [00:23<00:17, 3.61it/s] 58%|█████▊ | 87/150 [00:24<00:17, 3.61it/s] 59%|█████▊ | 88/150 [00:24<00:17, 3.61it/s] 59%|█████▉ | 89/150 [00:24<00:16, 3.61it/s] 60%|██████ | 90/150 [00:24<00:16, 3.60it/s] 61%|██████ | 91/150 [00:25<00:16, 3.61it/s] 61%|██████▏ | 92/150 [00:25<00:16, 3.60it/s] 62%|██████▏ | 93/150 [00:25<00:15, 3.60it/s] 63%|██████▎ | 94/150 [00:25<00:15, 3.60it/s] 63%|██████▎ | 95/150 [00:26<00:15, 3.61it/s] 64%|██████▍ | 96/150 [00:26<00:14, 3.60it/s] 65%|██████▍ | 97/150 [00:26<00:14, 3.61it/s] 65%|██████▌ | 98/150 [00:27<00:14, 3.61it/s] 66%|██████▌ | 99/150 [00:27<00:14, 3.61it/s] 67%|██████▋ | 100/150 [00:27<00:13, 3.61it/s] 67%|██████▋ | 101/150 [00:27<00:13, 3.61it/s] 68%|██████▊ | 102/150 [00:28<00:13, 3.61it/s] 69%|██████▊ | 103/150 [00:28<00:13, 3.61it/s] 69%|██████▉ | 104/150 [00:28<00:12, 3.61it/s] 70%|███████ | 105/150 [00:29<00:12, 3.61it/s] 71%|███████ | 106/150 [00:29<00:12, 3.61it/s] 71%|███████▏ | 107/150 [00:29<00:11, 3.61it/s] 72%|███████▏ | 108/150 [00:29<00:11, 3.61it/s] 73%|███████▎ | 109/150 [00:30<00:11, 3.61it/s] 73%|███████▎ | 110/150 [00:30<00:11, 3.61it/s] 74%|███████▍ | 111/150 [00:30<00:10, 3.61it/s] 75%|███████▍ | 112/150 [00:30<00:10, 3.61it/s] 75%|███████▌ | 113/150 [00:31<00:10, 3.61it/s] 76%|███████▌ | 114/150 [00:31<00:09, 3.61it/s] 77%|███████▋ | 115/150 [00:31<00:09, 3.61it/s] 77%|███████▋ | 116/150 [00:32<00:09, 3.61it/s] 78%|███████▊ | 117/150 [00:32<00:09, 3.61it/s] 79%|███████▊ | 118/150 [00:32<00:08, 3.61it/s] 79%|███████▉ | 119/150 [00:32<00:08, 3.61it/s] 80%|████████ | 120/150 [00:33<00:08, 3.61it/s] 81%|████████ | 121/150 [00:33<00:08, 3.61it/s] 81%|████████▏ | 122/150 [00:33<00:07, 3.61it/s] 82%|████████▏ | 123/150 [00:34<00:07, 3.60it/s] 83%|████████▎ | 124/150 [00:34<00:07, 3.61it/s] 83%|████████▎ | 125/150 [00:34<00:06, 3.61it/s] 84%|████████▍ | 126/150 [00:34<00:06, 3.61it/s] 85%|████████▍ | 127/150 [00:35<00:06, 3.61it/s] 85%|████████▌ | 128/150 [00:35<00:06, 3.61it/s] 86%|████████▌ | 129/150 [00:35<00:05, 3.61it/s] 87%|████████▋ | 130/150 [00:35<00:05, 3.61it/s] 87%|████████▋ | 131/150 [00:36<00:05, 3.61it/s] 88%|████████▊ | 132/150 [00:36<00:04, 3.61it/s] 89%|████████▊ | 133/150 [00:36<00:04, 3.61it/s] 89%|████████▉ | 134/150 [00:37<00:04, 3.61it/s] 90%|█████████ | 135/150 [00:37<00:04, 3.62it/s] 91%|█████████ | 136/150 [00:37<00:03, 3.61it/s] 91%|█████████▏| 137/150 [00:37<00:03, 3.61it/s] 92%|█████████▏| 138/150 [00:38<00:03, 3.61it/s] 93%|█████████▎| 139/150 [00:38<00:03, 3.61it/s] 93%|█████████▎| 140/150 [00:38<00:02, 3.61it/s] 94%|█████████▍| 141/150 [00:38<00:02, 3.61it/s] 95%|█████████▍| 142/150 [00:39<00:02, 3.61it/s] 95%|█████████▌| 143/150 [00:39<00:01, 3.61it/s] 96%|█████████▌| 144/150 [00:39<00:01, 3.61it/s] 97%|█████████▋| 145/150 [00:40<00:01, 3.61it/s] 97%|█████████▋| 146/150 [00:40<00:01, 3.61it/s] 98%|█████████▊| 147/150 [00:40<00:00, 3.61it/s] 99%|█████████▊| 148/150 [00:40<00:00, 3.61it/s] 99%|█████████▉| 149/150 [00:41<00:00, 3.61it/s] 100%|██████████| 150/150 [00:41<00:00, 3.60it/s] 100%|██████████| 150/150 [00:41<00:00, 3.62it/s]
Want to make some of these yourself?
Run this model