Readme
This model doesn't have a readme.
A Stable Diffusion model fine tuned on a limited set of Studio Ghibli landscape images
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run mohamm-ad/sdxl-studioghibli using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"mohamm-ad/sdxl-studioghibli:97503c42ffa65695358060f1e386f64a613a74ea54554ab6b2e39d4d801cf3f4",
{
input: {
width: 1024,
height: 1024,
prompt: "In the style of Studio Ghibli, a view of the Golden Gate Bridge",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run mohamm-ad/sdxl-studioghibli using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"mohamm-ad/sdxl-studioghibli:97503c42ffa65695358060f1e386f64a613a74ea54554ab6b2e39d4d801cf3f4",
input={
"width": 1024,
"height": 1024,
"prompt": "In the style of Studio Ghibli, a view of the Golden Gate Bridge",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run mohamm-ad/sdxl-studioghibli using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "97503c42ffa65695358060f1e386f64a613a74ea54554ab6b2e39d4d801cf3f4",
"input": {
"width": 1024,
"height": 1024,
"prompt": "In the style of Studio Ghibli, a view of the Golden Gate Bridge",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run mohamm-ad/sdxl-studioghibli using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/mohamm-ad/sdxl-studioghibli@sha256:97503c42ffa65695358060f1e386f64a613a74ea54554ab6b2e39d4d801cf3f4 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="In the style of Studio Ghibli, a view of the Golden Gate Bridge"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run mohamm-ad/sdxl-studioghibli using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/mohamm-ad/sdxl-studioghibli@sha256:97503c42ffa65695358060f1e386f64a613a74ea54554ab6b2e39d4d801cf3f4
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "In the style of Studio Ghibli, a view of the Golden Gate Bridge", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.017. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-08-31T19:34:51.972546Z",
"created_at": "2023-08-31T19:34:36.966656Z",
"data_removed": false,
"error": null,
"id": "wpx23xtbmybcqc6dsd4uqsz42y",
"input": {
"width": 1024,
"height": 1024,
"prompt": "In the style of Studio Ghibli, a view of the Golden Gate Bridge",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 20593\nPrompt: In the style of Studio Ghibli, a view of the Golden Gate Bridge\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.70it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.69it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.68it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.67it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.67it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.66it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.66it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.68it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.68it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.68it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.68it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.68it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.68it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.68it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.68it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.68it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.67it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.67it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]",
"metrics": {
"predict_time": 15.034647,
"total_time": 15.00589
},
"output": [
"https://replicate.delivery/pbxt/kpeIiuWe75uF7UVOk3QMAfiMqD63DAte6wfrVu3fe4i7t60vIA/out-0.png"
],
"started_at": "2023-08-31T19:34:36.937899Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/wpx23xtbmybcqc6dsd4uqsz42y",
"cancel": "https://api.replicate.com/v1/predictions/wpx23xtbmybcqc6dsd4uqsz42y/cancel"
},
"version": "97503c42ffa65695358060f1e386f64a613a74ea54554ab6b2e39d4d801cf3f4"
}
Using seed: 20593
Prompt: In the style of Studio Ghibli, a view of the Golden Gate Bridge
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.70it/s]
4%|▍ | 2/50 [00:00<00:13, 3.69it/s]
6%|▌ | 3/50 [00:00<00:12, 3.68it/s]
8%|▊ | 4/50 [00:01<00:12, 3.67it/s]
10%|█ | 5/50 [00:01<00:12, 3.67it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]
20%|██ | 10/50 [00:02<00:10, 3.66it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.66it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]
30%|███ | 15/50 [00:04<00:09, 3.68it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.68it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.68it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.68it/s]
40%|████ | 20/50 [00:05<00:08, 3.68it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.68it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]
50%|█████ | 25/50 [00:06<00:06, 3.68it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]
80%|████████ | 40/50 [00:10<00:02, 3.67it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.67it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
This model costs approximately $0.017 to run on Replicate, or 58 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 18 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 20593
Prompt: In the style of Studio Ghibli, a view of the Golden Gate Bridge
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.70it/s]
4%|▍ | 2/50 [00:00<00:13, 3.69it/s]
6%|▌ | 3/50 [00:00<00:12, 3.68it/s]
8%|▊ | 4/50 [00:01<00:12, 3.67it/s]
10%|█ | 5/50 [00:01<00:12, 3.67it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.67it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.67it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]
20%|██ | 10/50 [00:02<00:10, 3.66it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.66it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.68it/s]
30%|███ | 15/50 [00:04<00:09, 3.68it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.68it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.68it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.68it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.68it/s]
40%|████ | 20/50 [00:05<00:08, 3.68it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.68it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.68it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.68it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.68it/s]
50%|█████ | 25/50 [00:06<00:06, 3.68it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s]
56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s]
60%|██████ | 30/50 [00:08<00:05, 3.68it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.67it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.67it/s]
78%|███████▊ | 39/50 [00:10<00:02, 3.67it/s]
80%|████████ | 40/50 [00:10<00:02, 3.67it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.67it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.67it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.67it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.67it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.67it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.67it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.67it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]