Prediction
organisciak/rad-posters:c765170fInput
- seed
- 23014
- width
- 768
- height
- 1024
- prompt
- poster illustration of a skull, limited edition print
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.02
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.77
- negative_prompt
- text, heading
- prompt_strength
- 0.62
- num_inference_steps
- 50
{
"seed": 23014,
"width": 768,
"height": 1024,
"prompt": "poster illustration of a skull, limited edition print",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.02,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.77,
"negative_prompt": "text, heading",
"prompt_strength": 0.62,
"num_inference_steps": 50
}
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run organisciak/rad-posters using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"organisciak/rad-posters:c765170f1a906ca7ccd849dcd8c477ea54f72540d37d1f2b109f3dc64132fbb5",
{
input: {
seed: 23014,
width: 768,
height: 1024,
prompt: "poster illustration of a skull, limited edition print",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.02,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.77,
negative_prompt: "text, heading",
prompt_strength: 0.62,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run organisciak/rad-posters using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"organisciak/rad-posters:c765170f1a906ca7ccd849dcd8c477ea54f72540d37d1f2b109f3dc64132fbb5",
input={
"seed": 23014,
"width": 768,
"height": 1024,
"prompt": "poster illustration of a skull, limited edition print",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.02,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.77,
"negative_prompt": "text, heading",
"prompt_strength": 0.62,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run organisciak/rad-posters using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "c765170f1a906ca7ccd849dcd8c477ea54f72540d37d1f2b109f3dc64132fbb5",
"input": {
"seed": 23014,
"width": 768,
"height": 1024,
"prompt": "poster illustration of a skull, limited edition print",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.02,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.77,
"negative_prompt": "text, heading",
"prompt_strength": 0.62,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/organisciak/rad-posters@sha256:c765170f1a906ca7ccd849dcd8c477ea54f72540d37d1f2b109f3dc64132fbb5 \
-i 'seed=23014' \
-i 'width=768' \
-i 'height=1024' \
-i 'prompt="poster illustration of a skull, limited edition print"' \
-i 'refine="expert_ensemble_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.02' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.77' \
-i 'negative_prompt="text, heading"' \
-i 'prompt_strength=0.62' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/organisciak/rad-posters@sha256:c765170f1a906ca7ccd849dcd8c477ea54f72540d37d1f2b109f3dc64132fbb5
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 23014, "width": 768, "height": 1024, "prompt": "poster illustration of a skull, limited edition print", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.02, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.77, "negative_prompt": "text, heading", "prompt_strength": 0.62, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{
"completed_at": "2023-09-15T22:43:14.722555Z",
"created_at": "2023-09-15T22:43:03.950087Z",
"data_removed": false,
"error": null,
"id": "faaripdbnieij37xelm3mm5ol4",
"input": {
"seed": 23014,
"width": 768,
"height": 1024,
"prompt": "poster illustration of a skull, limited edition print",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.02,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.77,
"negative_prompt": "text, heading",
"prompt_strength": 0.62,
"num_inference_steps": 50
},
"logs": "Using seed: 23014\nPrompt: poster illustration of a skull, limited edition print\ntxt2img mode\n 0%| | 0/38 [00:00<?, ?it/s]\n 3%|▎ | 1/38 [00:00<00:07, 4.97it/s]\n 5%|▌ | 2/38 [00:00<00:07, 4.96it/s]\n 8%|▊ | 3/38 [00:00<00:07, 4.95it/s]\n 11%|█ | 4/38 [00:00<00:06, 4.95it/s]\n 13%|█▎ | 5/38 [00:01<00:06, 4.94it/s]\n 16%|█▌ | 6/38 [00:01<00:06, 4.94it/s]\n 18%|█▊ | 7/38 [00:01<00:06, 4.93it/s]\n 21%|██ | 8/38 [00:01<00:06, 4.93it/s]\n 24%|██▎ | 9/38 [00:01<00:05, 4.93it/s]\n 26%|██▋ | 10/38 [00:02<00:05, 4.93it/s]\n 29%|██▉ | 11/38 [00:02<00:05, 4.93it/s]\n 32%|███▏ | 12/38 [00:02<00:05, 4.93it/s]\n 34%|███▍ | 13/38 [00:02<00:05, 4.93it/s]\n 37%|███▋ | 14/38 [00:02<00:04, 4.92it/s]\n 39%|███▉ | 15/38 [00:03<00:04, 4.92it/s]\n 42%|████▏ | 16/38 [00:03<00:04, 4.93it/s]\n 45%|████▍ | 17/38 [00:03<00:04, 4.93it/s]\n 47%|████▋ | 18/38 [00:03<00:04, 4.93it/s]\n 50%|█████ | 19/38 [00:03<00:03, 4.92it/s]\n 53%|█████▎ | 20/38 [00:04<00:03, 4.92it/s]\n 55%|█████▌ | 21/38 [00:04<00:03, 4.93it/s]\n 58%|█████▊ | 22/38 [00:04<00:03, 4.92it/s]\n 61%|██████ | 23/38 [00:04<00:03, 4.92it/s]\n 63%|██████▎ | 24/38 [00:04<00:02, 4.92it/s]\n 66%|██████▌ | 25/38 [00:05<00:02, 4.93it/s]\n 68%|██████▊ | 26/38 [00:05<00:02, 4.93it/s]\n 71%|███████ | 27/38 [00:05<00:02, 4.94it/s]\n 74%|███████▎ | 28/38 [00:05<00:02, 4.94it/s]\n 76%|███████▋ | 29/38 [00:05<00:01, 4.94it/s]\n 79%|███████▉ | 30/38 [00:06<00:01, 4.95it/s]\n 82%|████████▏ | 31/38 [00:06<00:01, 4.95it/s]\n 84%|████████▍ | 32/38 [00:06<00:01, 4.95it/s]\n 87%|████████▋ | 33/38 [00:06<00:01, 4.95it/s]\n 89%|████████▉ | 34/38 [00:06<00:00, 4.95it/s]\n 92%|█████████▏| 35/38 [00:07<00:00, 4.95it/s]\n 95%|█████████▍| 36/38 [00:07<00:00, 4.95it/s]\n 97%|█████████▋| 37/38 [00:07<00:00, 4.95it/s]\n100%|██████████| 38/38 [00:07<00:00, 4.95it/s]\n100%|██████████| 38/38 [00:07<00:00, 4.94it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 8%|▊ | 1/12 [00:00<00:01, 6.22it/s]\n 17%|█▋ | 2/12 [00:00<00:01, 6.17it/s]\n 25%|██▌ | 3/12 [00:00<00:01, 6.16it/s]\n 33%|███▎ | 4/12 [00:00<00:01, 6.15it/s]\n 42%|████▏ | 5/12 [00:00<00:01, 6.16it/s]\n 50%|█████ | 6/12 [00:00<00:00, 6.15it/s]\n 58%|█████▊ | 7/12 [00:01<00:00, 6.14it/s]\n 67%|██████▋ | 8/12 [00:01<00:00, 6.14it/s]\n 75%|███████▌ | 9/12 [00:01<00:00, 6.14it/s]\n 83%|████████▎ | 10/12 [00:01<00:00, 6.14it/s]\n 92%|█████████▏| 11/12 [00:01<00:00, 6.14it/s]\n100%|██████████| 12/12 [00:01<00:00, 6.15it/s]\n100%|██████████| 12/12 [00:01<00:00, 6.15it/s]",
"metrics": {
"predict_time": 10.796288,
"total_time": 10.772468
},
"output": [
"https://replicate.delivery/pbxt/zTCBe4rf6mmIUEBg6q4ReilZzc09aBwedxqQp2xYgmgLAkSGB/out-0.png"
],
"started_at": "2023-09-15T22:43:03.926267Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/faaripdbnieij37xelm3mm5ol4",
"cancel": "https://api.replicate.com/v1/predictions/faaripdbnieij37xelm3mm5ol4/cancel"
},
"version": "c765170f1a906ca7ccd849dcd8c477ea54f72540d37d1f2b109f3dc64132fbb5"
}
Using seed: 23014
Prompt: poster illustration of a skull, limited edition print
txt2img mode
0%| | 0/38 [00:00<?, ?it/s]
3%|▎ | 1/38 [00:00<00:07, 4.97it/s]
5%|▌ | 2/38 [00:00<00:07, 4.96it/s]
8%|▊ | 3/38 [00:00<00:07, 4.95it/s]
11%|█ | 4/38 [00:00<00:06, 4.95it/s]
13%|█▎ | 5/38 [00:01<00:06, 4.94it/s]
16%|█▌ | 6/38 [00:01<00:06, 4.94it/s]
18%|█▊ | 7/38 [00:01<00:06, 4.93it/s]
21%|██ | 8/38 [00:01<00:06, 4.93it/s]
24%|██▎ | 9/38 [00:01<00:05, 4.93it/s]
26%|██▋ | 10/38 [00:02<00:05, 4.93it/s]
29%|██▉ | 11/38 [00:02<00:05, 4.93it/s]
32%|███▏ | 12/38 [00:02<00:05, 4.93it/s]
34%|███▍ | 13/38 [00:02<00:05, 4.93it/s]
37%|███▋ | 14/38 [00:02<00:04, 4.92it/s]
39%|███▉ | 15/38 [00:03<00:04, 4.92it/s]
42%|████▏ | 16/38 [00:03<00:04, 4.93it/s]
45%|████▍ | 17/38 [00:03<00:04, 4.93it/s]
47%|████▋ | 18/38 [00:03<00:04, 4.93it/s]
50%|█████ | 19/38 [00:03<00:03, 4.92it/s]
53%|█████▎ | 20/38 [00:04<00:03, 4.92it/s]
55%|█████▌ | 21/38 [00:04<00:03, 4.93it/s]
58%|█████▊ | 22/38 [00:04<00:03, 4.92it/s]
61%|██████ | 23/38 [00:04<00:03, 4.92it/s]
63%|██████▎ | 24/38 [00:04<00:02, 4.92it/s]
66%|██████▌ | 25/38 [00:05<00:02, 4.93it/s]
68%|██████▊ | 26/38 [00:05<00:02, 4.93it/s]
71%|███████ | 27/38 [00:05<00:02, 4.94it/s]
74%|███████▎ | 28/38 [00:05<00:02, 4.94it/s]
76%|███████▋ | 29/38 [00:05<00:01, 4.94it/s]
79%|███████▉ | 30/38 [00:06<00:01, 4.95it/s]
82%|████████▏ | 31/38 [00:06<00:01, 4.95it/s]
84%|████████▍ | 32/38 [00:06<00:01, 4.95it/s]
87%|████████▋ | 33/38 [00:06<00:01, 4.95it/s]
89%|████████▉ | 34/38 [00:06<00:00, 4.95it/s]
92%|█████████▏| 35/38 [00:07<00:00, 4.95it/s]
95%|█████████▍| 36/38 [00:07<00:00, 4.95it/s]
97%|█████████▋| 37/38 [00:07<00:00, 4.95it/s]
100%|██████████| 38/38 [00:07<00:00, 4.95it/s]
100%|██████████| 38/38 [00:07<00:00, 4.94it/s]
0%| | 0/12 [00:00<?, ?it/s]
8%|▊ | 1/12 [00:00<00:01, 6.22it/s]
17%|█▋ | 2/12 [00:00<00:01, 6.17it/s]
25%|██▌ | 3/12 [00:00<00:01, 6.16it/s]
33%|███▎ | 4/12 [00:00<00:01, 6.15it/s]
42%|████▏ | 5/12 [00:00<00:01, 6.16it/s]
50%|█████ | 6/12 [00:00<00:00, 6.15it/s]
58%|█████▊ | 7/12 [00:01<00:00, 6.14it/s]
67%|██████▋ | 8/12 [00:01<00:00, 6.14it/s]
75%|███████▌ | 9/12 [00:01<00:00, 6.14it/s]
83%|████████▎ | 10/12 [00:01<00:00, 6.14it/s]
92%|█████████▏| 11/12 [00:01<00:00, 6.14it/s]
100%|██████████| 12/12 [00:01<00:00, 6.15it/s]
100%|██████████| 12/12 [00:01<00:00, 6.15it/s]