Readme
Model description
LLaMA is a family of open-source large language models from Meta AI that perform as well as closed-source models. This is the 7B parameter version, available for both inference and fine-tuning.
Note: LLaMA is for research purposes only. It is not intended for commercial use.
Fine-tuning
If you have access to the training beta, you can fine-tune this model.
Here’s an example using replicate-python:
training = replicate.trainings.create(
version="replicate/llama-7b:ac808388e2e9d8ed35a5bf2eaa7d83f0ad53f9e3df31a42e4eb0a0c3249b3165",
input={
"train_data": "https://storage.googleapis.com/dan-scratch-public/fine-tuning/70k_samples.jsonl",
},
destination="my-username/my-model"
)
Training takes these input parameters:
train_data
(required): URL to a file where each row is a JSON record in the format{"prompt": ..., "completion": ...}
. Can be JSONL or one JSON list.train_batch_size
(optional, default=4): Train batch size. Large batches = faster training, too large and you may run out of GPU memory.gradient_accumulation_steps
(optional, default=8): Number of training steps (each oftrain_batch_size
) to update gradients for before performing a backward pass.learning_rate
(optional, default=2e-5): Learning rate!num_train_epochs
(optional, default=1): Number of epochs (iterations over the entire training dataset) to train for.warmup_ratio
(optional, default=0.03): Percentage of all training steps used for a linear LR warmup.logging_steps
(optional, default=1): Prints loss & other logging info everylogging_steps
.max_steps
(optional, default=-1): Maximum number of training steps. Unlimited ifmax_steps=-1
.lora_rank
(optional, default=8): Rank of the LoRA matrices.lora_alpha
(optional, default=16): Alpha parameter for scaling LoRA weights; weights are scaled by alpha/ranklora_dropout
(optional, default=0.1): Dropout for LoRA training.lora_target_modules
(optional, default=’q_proj,v_proj’): Comma-separated list of target modules to fine-tune with LoRA.
As the input parameters suggest, this model is fine-tuned with LoRA using the peft library.
Citation
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}