replicate
/
train-rvc-model
Train your own custom RVC model
Prediction
replicate/train-rvc-model:cf360587a27f67500c30fc31de1e0f0f9aa26dcd7b866e6ac937a07bd104bad9IDopl6jylbuhb54lskbcuaj7dxfiStatusSucceededSourceWebHardware8x A40 (Large)Total durationCreatedby @zsxkibInput
- epoch
- 80
- version
- v2
- f0method
- rmvpe_gpu
- batch_size
- 7
- dataset_zip
- dataset_sam_altman.zip
- sample_rate
- 48k
{ "epoch": 80, "version": "v2", "f0method": "rmvpe_gpu", "batch_size": "7", "dataset_zip": "https://replicate.delivery/pbxt/Jve3yEeLYIoklA2qhn8uguIBZvcFNLotV503kIrURbBOAoNU/dataset_sam_altman.zip", "sample_rate": "48k" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run replicate/train-rvc-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "replicate/train-rvc-model:cf360587a27f67500c30fc31de1e0f0f9aa26dcd7b866e6ac937a07bd104bad9", { input: { epoch: 80, version: "v2", f0method: "rmvpe_gpu", batch_size: "7", dataset_zip: "https://replicate.delivery/pbxt/Jve3yEeLYIoklA2qhn8uguIBZvcFNLotV503kIrURbBOAoNU/dataset_sam_altman.zip", sample_rate: "48k" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run replicate/train-rvc-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "replicate/train-rvc-model:cf360587a27f67500c30fc31de1e0f0f9aa26dcd7b866e6ac937a07bd104bad9", input={ "epoch": 80, "version": "v2", "f0method": "rmvpe_gpu", "batch_size": "7", "dataset_zip": "https://replicate.delivery/pbxt/Jve3yEeLYIoklA2qhn8uguIBZvcFNLotV503kIrURbBOAoNU/dataset_sam_altman.zip", "sample_rate": "48k" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run replicate/train-rvc-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cf360587a27f67500c30fc31de1e0f0f9aa26dcd7b866e6ac937a07bd104bad9", "input": { "epoch": 80, "version": "v2", "f0method": "rmvpe_gpu", "batch_size": "7", "dataset_zip": "https://replicate.delivery/pbxt/Jve3yEeLYIoklA2qhn8uguIBZvcFNLotV503kIrURbBOAoNU/dataset_sam_altman.zip", "sample_rate": "48k" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-23T20:11:33.252713Z", "created_at": "2023-11-23T19:49:21.024972Z", "data_removed": false, "error": null, "id": "opl6jylbuhb54lskbcuaj7dxfi", "input": { "epoch": 80, "version": "v2", "f0method": "rmvpe_gpu", "batch_size": "7", "dataset_zip": "https://replicate.delivery/pbxt/Jve3yEeLYIoklA2qhn8uguIBZvcFNLotV503kIrURbBOAoNU/dataset_sam_altman.zip", "sample_rate": "48k" }, "logs": "Current working directory: /src\nBase path: dataset\npython infer/modules/train/preprocess.py 'dataset/sam_altman' 48000 2 './logs/sam_altman' False 3.0\n['infer/modules/train/preprocess.py', 'dataset/sam_altman', '48000', '2', './logs/sam_altman', 'False', '3.0']\nstart preprocess\n['infer/modules/train/preprocess.py', 'dataset/sam_altman', '48000', '2', './logs/sam_altman', 'False', '3.0']\ndataset/sam_altman/split_1.wav->Suc.\ndataset/sam_altman/split_0.wav->Suc.\ndataset/sam_altman/split_100.wav->Suc.\ndataset/sam_altman/split_102.wav->Suc.\ndataset/sam_altman/split_10.wav->Suc.\ndataset/sam_altman/split_104.wav->Suc.\ndataset/sam_altman/split_101.wav->Suc.\ndataset/sam_altman/split_106.wav->Suc.\ndataset/sam_altman/split_103.wav->Suc.\ndataset/sam_altman/split_108.wav->Suc.\ndataset/sam_altman/split_105.wav->Suc.\ndataset/sam_altman/split_12.wav->Suc.\ndataset/sam_altman/split_107.wav->Suc.\ndataset/sam_altman/split_14.wav->Suc.\ndataset/sam_altman/split_11.wav->Suc.\ndataset/sam_altman/split_13.wav->Suc.\ndataset/sam_altman/split_16.wav->Suc.\ndataset/sam_altman/split_15.wav->Suc.\ndataset/sam_altman/split_18.wav->Suc.\ndataset/sam_altman/split_17.wav->Suc.\ndataset/sam_altman/split_2.wav->Suc.\ndataset/sam_altman/split_19.wav->Suc.\ndataset/sam_altman/split_21.wav->Suc.\ndataset/sam_altman/split_20.wav->Suc.\ndataset/sam_altman/split_23.wav->Suc.\ndataset/sam_altman/split_22.wav->Suc.\ndataset/sam_altman/split_25.wav->Suc.\ndataset/sam_altman/split_24.wav->Suc.\ndataset/sam_altman/split_26.wav->Suc.\ndataset/sam_altman/split_27.wav->Suc.\ndataset/sam_altman/split_29.wav->Suc.\ndataset/sam_altman/split_28.wav->Suc.\ndataset/sam_altman/split_3.wav->Suc.\ndataset/sam_altman/split_31.wav->Suc.\ndataset/sam_altman/split_30.wav->Suc.\ndataset/sam_altman/split_33.wav->Suc.\ndataset/sam_altman/split_32.wav->Suc.\ndataset/sam_altman/split_35.wav->Suc.\ndataset/sam_altman/split_37.wav->Suc.\ndataset/sam_altman/split_34.wav->Suc.\ndataset/sam_altman/split_39.wav->Suc.\ndataset/sam_altman/split_40.wav->Suc.\ndataset/sam_altman/split_36.wav->Suc.\ndataset/sam_altman/split_38.wav->Suc.\ndataset/sam_altman/split_42.wav->Suc.\ndataset/sam_altman/split_44.wav->Suc.\ndataset/sam_altman/split_4.wav->Suc.\ndataset/sam_altman/split_41.wav->Suc.\ndataset/sam_altman/split_46.wav->Suc.\ndataset/sam_altman/split_43.wav->Suc.\ndataset/sam_altman/split_48.wav->Suc.\ndataset/sam_altman/split_45.wav->Suc.\ndataset/sam_altman/split_47.wav->Suc.\ndataset/sam_altman/split_5.wav->Suc.\ndataset/sam_altman/split_49.wav->Suc.\ndataset/sam_altman/split_51.wav->Suc.\ndataset/sam_altman/split_50.wav->Suc.\ndataset/sam_altman/split_53.wav->Suc.\ndataset/sam_altman/split_55.wav->Suc.\ndataset/sam_altman/split_57.wav->Suc.\ndataset/sam_altman/split_52.wav->Suc.\ndataset/sam_altman/split_54.wav->Suc.\ndataset/sam_altman/split_59.wav->Suc.\ndataset/sam_altman/split_60.wav->Suc.\ndataset/sam_altman/split_56.wav->Suc.\ndataset/sam_altman/split_62.wav->Suc.\ndataset/sam_altman/split_58.wav->Suc.\ndataset/sam_altman/split_64.wav->Suc.\ndataset/sam_altman/split_6.wav->Suc.\ndataset/sam_altman/split_66.wav->Suc.\ndataset/sam_altman/split_61.wav->Suc.\ndataset/sam_altman/split_63.wav->Suc.\ndataset/sam_altman/split_68.wav->Suc.\ndataset/sam_altman/split_65.wav->Suc.\ndataset/sam_altman/split_7.wav->Suc.\ndataset/sam_altman/split_67.wav->Suc.\ndataset/sam_altman/split_71.wav->Suc.\ndataset/sam_altman/split_69.wav->Suc.\ndataset/sam_altman/split_73.wav->Suc.\ndataset/sam_altman/split_70.wav->Suc.\ndataset/sam_altman/split_72.wav->Suc.\ndataset/sam_altman/split_74.wav->Suc.\ndataset/sam_altman/split_75.wav->Suc.\ndataset/sam_altman/split_76.wav->Suc.\ndataset/sam_altman/split_77.wav->Suc.\ndataset/sam_altman/split_78.wav->Suc.\ndataset/sam_altman/split_8.wav->Suc.\ndataset/sam_altman/split_79.wav->Suc.\ndataset/sam_altman/split_81.wav->Suc.\ndataset/sam_altman/split_83.wav->Suc.\ndataset/sam_altman/split_80.wav->Suc.\ndataset/sam_altman/split_85.wav->Suc.\ndataset/sam_altman/split_82.wav->Suc.\ndataset/sam_altman/split_84.wav->Suc.\ndataset/sam_altman/split_86.wav->Suc.\ndataset/sam_altman/split_87.wav->Suc.\ndataset/sam_altman/split_88.wav->Suc.\ndataset/sam_altman/split_9.wav->Suc.\ndataset/sam_altman/split_89.wav->Suc.\ndataset/sam_altman/split_91.wav->Suc.\ndataset/sam_altman/split_90.wav->Suc.\ndataset/sam_altman/split_93.wav->Suc.\ndataset/sam_altman/split_92.wav->Suc.\ndataset/sam_altman/split_94.wav->Suc.\ndataset/sam_altman/split_95.wav->Suc.\ndataset/sam_altman/split_96.wav->Suc.\ndataset/sam_altman/split_97.wav->Suc.\ndataset/sam_altman/split_99.wav->Suc.\ndataset/sam_altman/split_98.wav->Suc.\nend preprocess\nOutput: None\npython infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 './logs/sam_altman' True\n['infer/modules/train/extract/extract_f0_rmvpe.py', '1', '0', '0', './logs/sam_altman', 'True']\ntodo-f0-333\nf0ing,now-0,all-333,-./logs/sam_altman/1_16k_wavs/0_0.wav\nLoading rmvpe model\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML\nwarnings.warn(\"Can't initialize NVML\")\nf0ing,now-66,all-333,-./logs/sam_altman/1_16k_wavs/1_3.wav\nf0ing,now-132,all-333,-./logs/sam_altman/1_16k_wavs/39_2.wav\nf0ing,now-198,all-333,-./logs/sam_altman/1_16k_wavs/58_5.wav\nf0ing,now-264,all-333,-./logs/sam_altman/1_16k_wavs/79_2.wav\nf0ing,now-330,all-333,-./logs/sam_altman/1_16k_wavs/9_0.wav\nOutput: None\npython infer/modules/train/extract_feature_print.py cuda:0 1 0 0 './logs/sam_altman' 'v2'\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML\nwarnings.warn(\"Can't initialize NVML\")\n['infer/modules/train/extract_feature_print.py', 'cuda:0', '1', '0', '0', './logs/sam_altman', 'v2']\n./logs/sam_altman\nload model(s) from assets/hubert/hubert_base.pt\n2023-11-23 19:51:49 | INFO | fairseq.tasks.hubert_pretraining | current directory is /src\n2023-11-23 19:51:49 | INFO | fairseq.tasks.hubert_pretraining | HubertPretrainingTask Config {'_name': 'hubert_pretraining', 'data': 'metadata', 'fine_tuning': False, 'labels': ['km'], 'label_dir': 'label', 'label_rate': 50.0, 'sample_rate': 16000, 'normalize': False, 'enable_padding': False, 'max_keep_size': None, 'max_sample_size': 250000, 'min_sample_size': 32000, 'single_target': False, 'random_crop': True, 'pad_audio': False}\n2023-11-23 19:51:49 | INFO | fairseq.models.hubert.hubert | HubertModel Config: {'_name': 'hubert', 'label_rate': 50.0, 'extractor_mode': default, 'encoder_layers': 12, 'encoder_embed_dim': 768, 'encoder_ffn_embed_dim': 3072, 'encoder_attention_heads': 12, 'activation_fn': gelu, 'layer_type': transformer, 'dropout': 0.1, 'attention_dropout': 0.1, 'activation_dropout': 0.0, 'encoder_layerdrop': 0.05, 'dropout_input': 0.1, 'dropout_features': 0.1, 'final_dim': 256, 'untie_final_proj': True, 'layer_norm_first': False, 'conv_feature_layers': '[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2', 'conv_bias': False, 'logit_temp': 0.1, 'target_glu': False, 'feature_grad_mult': 0.1, 'mask_length': 10, 'mask_prob': 0.8, 'mask_selection': static, 'mask_other': 0.0, 'no_mask_overlap': False, 'mask_min_space': 1, 'mask_channel_length': 10, 'mask_channel_prob': 0.0, 'mask_channel_selection': static, 'mask_channel_other': 0.0, 'no_mask_channel_overlap': False, 'mask_channel_min_space': 1, 'conv_pos': 128, 'conv_pos_groups': 16, 'latent_temp': [2.0, 0.5, 0.999995], 'skip_masked': False, 'skip_nomask': False, 'checkpoint_activations': False, 'required_seq_len_multiple': 2, 'depthwise_conv_kernel_size': 31, 'attn_type': '', 'pos_enc_type': 'abs', 'fp16': False}\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.\nwarnings.warn(\"torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.\")\nmove model to cuda\nall-feature-333\nnow-333,all-0,0_0.wav,(149, 768)\nnow-333,all-33,10_0.wav,(149, 768)\nnow-333,all-66,1_3.wav,(75, 768)\nnow-333,all-99,30_0.wav,(149, 768)\nnow-333,all-132,39_2.wav,(149, 768)\nnow-333,all-165,4_5.wav,(36, 768)\nnow-333,all-198,58_5.wav,(66, 768)\nnow-333,all-231,6_1.wav,(149, 768)\nnow-333,all-264,79_2.wav,(96, 768)\nnow-333,all-297,89_1.wav,(131, 768)\nnow-333,all-330,9_0.wav,(149, 768)\nall-feature-done\nOutput: None\n(42097, 768),1079\n(42097, 768),1079\ntraining\n(42097, 768),1079\ntraining\nadding\nWrite filelist done\nUse gpus: 0\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML\nwarnings.warn(\"Can't initialize NVML\")\nINFO:sam_altman:{'data': {'filter_length': 2048, 'hop_length': 480, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 128, 'sampling_rate': 48000, 'win_length': 2048, 'training_files': './logs/sam_altman/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [24, 20, 4, 4], 'upsample_rates': [12, 10, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 7, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 17280, 'warmup_epochs': 0}, 'model_dir': './logs/sam_altman', 'experiment_dir': './logs/sam_altman', 'save_every_epoch': 50, 'name': 'sam_altman', 'total_epoch': 80, 'pretrainG': 'assets/pretrained_v2/f0G48k.pth', 'pretrainD': 'assets/pretrained_v2/f0D48k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '48k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '0', 'if_cache_data_in_gpu': 1}\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML\nwarnings.warn(\"Can't initialize NVML\")\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.\nwarnings.warn(\"torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.\")\nDEBUG:infer.lib.infer_pack.models:gin_channels: 256, self.spk_embed_dim: 109\nINFO:sam_altman:loaded pretrained assets/pretrained_v2/f0G48k.pth\nINFO:sam_altman:<All keys matched successfully>\nINFO:sam_altman:loaded pretrained assets/pretrained_v2/f0D48k.pth\nINFO:sam_altman:<All keys matched successfully>\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\nNote: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\nreturn _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\nNote: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\nreturn _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\nNote: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\nreturn _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\nNote: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\nreturn _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\nNote: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\nreturn _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/autograd/__init__.py:251: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance.\ngrad.sizes() = [64, 1, 4], strides() = [4, 1, 1]\nbucket_view.sizes() = [64, 1, 4], strides() = [4, 4, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:320.)\nVariable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass\nINFO:sam_altman:Train Epoch: 1 [0%]\nINFO:sam_altman:[0, 0.0001]\nINFO:sam_altman:loss_disc=4.172, loss_gen=3.120, loss_fm=8.932,loss_mel=27.330, loss_kl=9.000\nDEBUG:matplotlib:matplotlib data path: /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/matplotlib/mpl-data\nDEBUG:matplotlib:CONFIGDIR=/root/.config/matplotlib\nDEBUG:matplotlib:interactive is False\nDEBUG:matplotlib:platform is linux\nINFO:sam_altman:====> Epoch: 1 [2023-11-23 19:52:46] | (0:00:18.492362)\nINFO:sam_altman:====> Epoch: 2 [2023-11-23 19:53:01] | (0:00:14.058839)\nINFO:sam_altman:====> Epoch: 3 [2023-11-23 19:53:15] | (0:00:14.087264)\nINFO:sam_altman:====> Epoch: 4 [2023-11-23 19:53:29] | (0:00:14.048906)\nINFO:sam_altman:Train Epoch: 5 [20%]\nINFO:sam_altman:[200, 9.995000937421877e-05]\nINFO:sam_altman:loss_disc=3.921, loss_gen=3.317, loss_fm=7.828,loss_mel=18.033, loss_kl=1.945\nINFO:sam_altman:====> Epoch: 5 [2023-11-23 19:53:43] | (0:00:14.331246)\nINFO:sam_altman:====> Epoch: 6 [2023-11-23 19:53:57] | (0:00:14.016381)\nINFO:sam_altman:====> Epoch: 7 [2023-11-23 19:54:11] | (0:00:14.015517)\nINFO:sam_altman:====> Epoch: 8 [2023-11-23 19:54:25] | (0:00:14.132970)\nINFO:sam_altman:Train Epoch: 9 [69%]\nINFO:sam_altman:[400, 9.990004373906418e-05]\nINFO:sam_altman:loss_disc=3.705, loss_gen=3.479, loss_fm=8.874,loss_mel=17.079, loss_kl=1.697\nINFO:sam_altman:====> Epoch: 9 [2023-11-23 19:54:39] | (0:00:14.305179)\nINFO:sam_altman:====> Epoch: 10 [2023-11-23 19:54:53] | (0:00:14.000367)\nINFO:sam_altman:====> Epoch: 11 [2023-11-23 19:55:07] | (0:00:13.998400)\nINFO:sam_altman:====> Epoch: 12 [2023-11-23 19:55:21] | (0:00:14.007730)\nINFO:sam_altman:Train Epoch: 13 [24%]\nINFO:sam_altman:[600, 9.98501030820433e-05]\nINFO:sam_altman:loss_disc=3.772, loss_gen=3.694, loss_fm=9.682,loss_mel=16.714, loss_kl=1.909\nINFO:sam_altman:====> Epoch: 13 [2023-11-23 19:55:36] | (0:00:14.299253)\nINFO:sam_altman:====> Epoch: 14 [2023-11-23 19:55:50] | (0:00:14.096318)\nINFO:sam_altman:====> Epoch: 15 [2023-11-23 19:56:04] | (0:00:13.995778)\nINFO:sam_altman:====> Epoch: 16 [2023-11-23 19:56:18] | (0:00:14.167015)\nINFO:sam_altman:Train Epoch: 17 [0%]\nINFO:sam_altman:[800, 9.980018739066937e-05]\nINFO:sam_altman:loss_disc=4.066, loss_gen=3.559, loss_fm=8.139,loss_mel=18.515, loss_kl=1.488\nINFO:sam_altman:====> Epoch: 17 [2023-11-23 19:56:32] | (0:00:14.315985)\nINFO:sam_altman:====> Epoch: 18 [2023-11-23 19:56:46] | (0:00:14.002399)\nINFO:sam_altman:====> Epoch: 19 [2023-11-23 19:57:00] | (0:00:14.019100)\nINFO:sam_altman:====> Epoch: 20 [2023-11-23 19:57:14] | (0:00:14.007005)\nINFO:sam_altman:Train Epoch: 21 [20%]\nINFO:sam_altman:[1000, 9.975029665246193e-05]\nINFO:sam_altman:loss_disc=3.879, loss_gen=3.444, loss_fm=9.087,loss_mel=16.523, loss_kl=1.996\nINFO:sam_altman:====> Epoch: 21 [2023-11-23 19:57:29] | (0:00:14.307051)\nINFO:sam_altman:====> Epoch: 22 [2023-11-23 19:57:43] | (0:00:13.993078)\nINFO:sam_altman:====> Epoch: 23 [2023-11-23 19:57:57] | (0:00:14.114252)\nINFO:sam_altman:====> Epoch: 24 [2023-11-23 19:58:11] | (0:00:13.993609)\nINFO:sam_altman:Train Epoch: 25 [96%]\nINFO:sam_altman:[1200, 9.970043085494672e-05]\nINFO:sam_altman:loss_disc=3.763, loss_gen=3.675, loss_fm=8.664,loss_mel=16.108, loss_kl=0.825\nINFO:sam_altman:====> Epoch: 25 [2023-11-23 19:58:25] | (0:00:14.274665)\nINFO:sam_altman:====> Epoch: 26 [2023-11-23 19:58:39] | (0:00:14.000343)\nINFO:sam_altman:====> Epoch: 27 [2023-11-23 19:58:53] | (0:00:13.992903)\nINFO:sam_altman:====> Epoch: 28 [2023-11-23 19:59:07] | (0:00:14.003525)\nINFO:sam_altman:Train Epoch: 29 [94%]\nINFO:sam_altman:[1400, 9.965058998565574e-05]\nINFO:sam_altman:loss_disc=3.845, loss_gen=3.284, loss_fm=9.413,loss_mel=17.019, loss_kl=1.318\nINFO:sam_altman:====> Epoch: 29 [2023-11-23 19:59:21] | (0:00:14.285749)\nINFO:sam_altman:====> Epoch: 30 [2023-11-23 19:59:35] | (0:00:14.010255)\nINFO:sam_altman:====> Epoch: 31 [2023-11-23 19:59:49] | (0:00:14.013091)\nINFO:sam_altman:====> Epoch: 32 [2023-11-23 20:00:04] | (0:00:14.118040)\nINFO:sam_altman:Train Epoch: 33 [0%]\nINFO:sam_altman:[1600, 9.960077403212722e-05]\nINFO:sam_altman:loss_disc=3.623, loss_gen=3.782, loss_fm=9.977,loss_mel=17.460, loss_kl=1.435\nINFO:sam_altman:====> Epoch: 33 [2023-11-23 20:00:18] | (0:00:14.325803)\nINFO:sam_altman:====> Epoch: 34 [2023-11-23 20:00:32] | (0:00:13.998874)\nINFO:sam_altman:====> Epoch: 35 [2023-11-23 20:00:46] | (0:00:14.018591)\nINFO:sam_altman:====> Epoch: 36 [2023-11-23 20:01:00] | (0:00:14.013491)\nINFO:sam_altman:Train Epoch: 37 [65%]\nINFO:sam_altman:[1800, 9.95509829819056e-05]\nINFO:sam_altman:loss_disc=3.833, loss_gen=3.036, loss_fm=6.822,loss_mel=17.565, loss_kl=0.938\nINFO:sam_altman:====> Epoch: 37 [2023-11-23 20:01:14] | (0:00:14.308932)\nINFO:sam_altman:====> Epoch: 38 [2023-11-23 20:01:28] | (0:00:14.012427)\nINFO:sam_altman:====> Epoch: 39 [2023-11-23 20:01:42] | (0:00:14.004681)\nINFO:sam_altman:====> Epoch: 40 [2023-11-23 20:01:56] | (0:00:14.136796)\nINFO:sam_altman:Train Epoch: 41 [4%]\nINFO:sam_altman:[2000, 9.950121682254156e-05]\nINFO:sam_altman:loss_disc=3.531, loss_gen=3.865, loss_fm=9.413,loss_mel=16.917, loss_kl=1.230\nINFO:sam_altman:====> Epoch: 41 [2023-11-23 20:02:11] | (0:00:14.295757)\nINFO:sam_altman:====> Epoch: 42 [2023-11-23 20:02:25] | (0:00:14.027522)\nINFO:sam_altman:====> Epoch: 43 [2023-11-23 20:02:39] | (0:00:14.005888)\nINFO:sam_altman:====> Epoch: 44 [2023-11-23 20:02:53] | (0:00:14.028138)\nINFO:sam_altman:Train Epoch: 45 [0%]\nINFO:sam_altman:[2200, 9.945147554159202e-05]\nINFO:sam_altman:loss_disc=3.822, loss_gen=3.635, loss_fm=6.555,loss_mel=15.532, loss_kl=1.205\nINFO:sam_altman:====> Epoch: 45 [2023-11-23 20:03:07] | (0:00:14.322628)\nINFO:sam_altman:====> Epoch: 46 [2023-11-23 20:03:21] | (0:00:14.005216)\nINFO:sam_altman:====> Epoch: 47 [2023-11-23 20:03:35] | (0:00:14.133467)\nINFO:sam_altman:====> Epoch: 48 [2023-11-23 20:03:49] | (0:00:14.016325)\nINFO:sam_altman:Train Epoch: 49 [67%]\nINFO:sam_altman:[2400, 9.940175912662009e-05]\nINFO:sam_altman:loss_disc=3.923, loss_gen=3.040, loss_fm=6.919,loss_mel=15.679, loss_kl=1.050\nINFO:sam_altman:====> Epoch: 49 [2023-11-23 20:04:04] | (0:00:14.310548)\nINFO:sam_altman:Saving model and optimizer state at epoch 50 to ./logs/sam_altman/G_2333333.pth\nINFO:sam_altman:Saving model and optimizer state at epoch 50 to ./logs/sam_altman/D_2333333.pth\nINFO:sam_altman:====> Epoch: 50 [2023-11-23 20:04:18] | (0:00:14.870339)\nINFO:sam_altman:====> Epoch: 51 [2023-11-23 20:04:33] | (0:00:14.079238)\nINFO:sam_altman:====> Epoch: 52 [2023-11-23 20:04:47] | (0:00:14.035602)\nINFO:sam_altman:====> Epoch: 53 [2023-11-23 20:05:01] | (0:00:14.023377)\nINFO:sam_altman:Train Epoch: 54 [12%]\nINFO:sam_altman:[2600, 9.933964855674948e-05]\nINFO:sam_altman:loss_disc=3.802, loss_gen=3.355, loss_fm=9.064,loss_mel=16.333, loss_kl=1.413\nINFO:sam_altman:====> Epoch: 54 [2023-11-23 20:05:15] | (0:00:14.402449)\nINFO:sam_altman:====> Epoch: 55 [2023-11-23 20:05:29] | (0:00:13.988542)\nINFO:sam_altman:====> Epoch: 56 [2023-11-23 20:05:43] | (0:00:14.031654)\nINFO:sam_altman:====> Epoch: 57 [2023-11-23 20:05:57] | (0:00:14.064693)\nINFO:sam_altman:Train Epoch: 58 [71%]\nINFO:sam_altman:[2800, 9.928998804478705e-05]\nINFO:sam_altman:loss_disc=3.404, loss_gen=3.825, loss_fm=9.404,loss_mel=15.319, loss_kl=0.330\nINFO:sam_altman:====> Epoch: 58 [2023-11-23 20:06:11] | (0:00:14.307631)\nINFO:sam_altman:====> Epoch: 59 [2023-11-23 20:06:25] | (0:00:14.009880)\nINFO:sam_altman:====> Epoch: 60 [2023-11-23 20:06:39] | (0:00:14.011763)\nINFO:sam_altman:====> Epoch: 61 [2023-11-23 20:06:54] | (0:00:14.023478)\nINFO:sam_altman:Train Epoch: 62 [80%]\nINFO:sam_altman:[3000, 9.924035235842533e-05]\nINFO:sam_altman:loss_disc=3.725, loss_gen=3.785, loss_fm=9.929,loss_mel=15.898, loss_kl=1.236\nINFO:sam_altman:====> Epoch: 62 [2023-11-23 20:07:08] | (0:00:14.471969)\nINFO:sam_altman:====> Epoch: 63 [2023-11-23 20:07:22] | (0:00:14.033923)\nINFO:sam_altman:====> Epoch: 64 [2023-11-23 20:07:36] | (0:00:14.029050)\nINFO:sam_altman:====> Epoch: 65 [2023-11-23 20:07:50] | (0:00:14.032673)\nINFO:sam_altman:Train Epoch: 66 [55%]\nINFO:sam_altman:[3200, 9.919074148525384e-05]\nINFO:sam_altman:loss_disc=3.888, loss_gen=3.578, loss_fm=9.723,loss_mel=16.500, loss_kl=1.436\nINFO:sam_altman:====> Epoch: 66 [2023-11-23 20:08:04] | (0:00:14.293031)\nINFO:sam_altman:====> Epoch: 67 [2023-11-23 20:08:18] | (0:00:14.006002)\nINFO:sam_altman:====> Epoch: 68 [2023-11-23 20:08:32] | (0:00:13.997145)\nINFO:sam_altman:====> Epoch: 69 [2023-11-23 20:08:46] | (0:00:14.003798)\nINFO:sam_altman:Train Epoch: 70 [16%]\nINFO:sam_altman:[3400, 9.914115541286833e-05]\nINFO:sam_altman:loss_disc=3.674, loss_gen=3.389, loss_fm=8.772,loss_mel=15.365, loss_kl=0.968\nINFO:sam_altman:====> Epoch: 70 [2023-11-23 20:09:01] | (0:00:14.416095)\nINFO:sam_altman:====> Epoch: 71 [2023-11-23 20:09:15] | (0:00:13.989245)\nINFO:sam_altman:====> Epoch: 72 [2023-11-23 20:09:29] | (0:00:13.990721)\nINFO:sam_altman:====> Epoch: 73 [2023-11-23 20:09:43] | (0:00:13.987562)\nINFO:sam_altman:Train Epoch: 74 [39%]\nINFO:sam_altman:[3600, 9.909159412887068e-05]\nINFO:sam_altman:loss_disc=3.890, loss_gen=2.895, loss_fm=7.118,loss_mel=14.766, loss_kl=0.778\nINFO:sam_altman:====> Epoch: 74 [2023-11-23 20:09:57] | (0:00:14.276048)\nINFO:sam_altman:====> Epoch: 75 [2023-11-23 20:10:11] | (0:00:14.009208)\nINFO:sam_altman:====> Epoch: 76 [2023-11-23 20:10:25] | (0:00:13.998905)\nINFO:sam_altman:====> Epoch: 77 [2023-11-23 20:10:39] | (0:00:14.010387)\nINFO:sam_altman:Train Epoch: 78 [71%]\nINFO:sam_altman:[3800, 9.904205762086905e-05]\nINFO:sam_altman:loss_disc=3.256, loss_gen=3.944, loss_fm=10.533,loss_mel=15.718, loss_kl=1.287\nINFO:sam_altman:====> Epoch: 78 [2023-11-23 20:10:54] | (0:00:14.404643)\nINFO:sam_altman:====> Epoch: 79 [2023-11-23 20:11:08] | (0:00:13.989626)\nINFO:sam_altman:====> Epoch: 80 [2023-11-23 20:11:22] | (0:00:13.996693)\nINFO:sam_altman:Training is done. The program is closed.\nINFO:sam_altman:saving final ckpt:Success.\n/root/.pyenv/versions/3.9.18/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 20 leaked semaphore objects to clean up at shutdown\nwarnings.warn('resource_tracker: There appear to be %d '\nTraining completed. You can check the training log in the console or the 'train.log' file in the experiment directory.\nCreating directory...\nCopying files...\nCopying file: logs/sam_altman/added_IVF1079_Flat_nprobe_1_sam_altman_v2.index\nCopying file: logs/sam_altman/total_fea.npy\nCopying file: assets/weights/sam_altman.pth\nDefining the base directory...\nCreating a Zip file...\nAdding 'added_*.index' files to the Zip file...\nAdding file: /src/Model/sam_altman/added_IVF1079_Flat_nprobe_1_sam_altman_v2.index\nAdding 'total_*.npy' files to the Zip file...\nAdding file: /src/Model/sam_altman/total_fea.npy\nAdding specific file to the Zip file...\nAdding file: /src/Model/sam_altman/sam_altman.pth\nZip file path: /src/Model/sam_altman/sam_altman.zip", "metrics": { "predict_time": 1210.830887, "total_time": 1332.227741 }, "output": "https://replicate.delivery/pbxt/lN9zQPTvPBaWEVUyLmvclC3nT1CDrOBAFjzGj15MyrV7j1eIA/sam_altman.zip", "started_at": "2023-11-23T19:51:22.421826Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/opl6jylbuhb54lskbcuaj7dxfi", "cancel": "https://api.replicate.com/v1/predictions/opl6jylbuhb54lskbcuaj7dxfi/cancel" }, "version": "cf360587a27f67500c30fc31de1e0f0f9aa26dcd7b866e6ac937a07bd104bad9" }
Generated inCurrent working directory: /src Base path: dataset python infer/modules/train/preprocess.py 'dataset/sam_altman' 48000 2 './logs/sam_altman' False 3.0 ['infer/modules/train/preprocess.py', 'dataset/sam_altman', '48000', '2', './logs/sam_altman', 'False', '3.0'] start preprocess ['infer/modules/train/preprocess.py', 'dataset/sam_altman', '48000', '2', './logs/sam_altman', 'False', '3.0'] dataset/sam_altman/split_1.wav->Suc. dataset/sam_altman/split_0.wav->Suc. dataset/sam_altman/split_100.wav->Suc. dataset/sam_altman/split_102.wav->Suc. dataset/sam_altman/split_10.wav->Suc. dataset/sam_altman/split_104.wav->Suc. dataset/sam_altman/split_101.wav->Suc. dataset/sam_altman/split_106.wav->Suc. dataset/sam_altman/split_103.wav->Suc. dataset/sam_altman/split_108.wav->Suc. dataset/sam_altman/split_105.wav->Suc. dataset/sam_altman/split_12.wav->Suc. dataset/sam_altman/split_107.wav->Suc. dataset/sam_altman/split_14.wav->Suc. dataset/sam_altman/split_11.wav->Suc. dataset/sam_altman/split_13.wav->Suc. dataset/sam_altman/split_16.wav->Suc. dataset/sam_altman/split_15.wav->Suc. dataset/sam_altman/split_18.wav->Suc. dataset/sam_altman/split_17.wav->Suc. dataset/sam_altman/split_2.wav->Suc. dataset/sam_altman/split_19.wav->Suc. dataset/sam_altman/split_21.wav->Suc. dataset/sam_altman/split_20.wav->Suc. dataset/sam_altman/split_23.wav->Suc. dataset/sam_altman/split_22.wav->Suc. dataset/sam_altman/split_25.wav->Suc. dataset/sam_altman/split_24.wav->Suc. dataset/sam_altman/split_26.wav->Suc. dataset/sam_altman/split_27.wav->Suc. dataset/sam_altman/split_29.wav->Suc. dataset/sam_altman/split_28.wav->Suc. dataset/sam_altman/split_3.wav->Suc. dataset/sam_altman/split_31.wav->Suc. dataset/sam_altman/split_30.wav->Suc. dataset/sam_altman/split_33.wav->Suc. dataset/sam_altman/split_32.wav->Suc. dataset/sam_altman/split_35.wav->Suc. dataset/sam_altman/split_37.wav->Suc. dataset/sam_altman/split_34.wav->Suc. dataset/sam_altman/split_39.wav->Suc. dataset/sam_altman/split_40.wav->Suc. dataset/sam_altman/split_36.wav->Suc. dataset/sam_altman/split_38.wav->Suc. dataset/sam_altman/split_42.wav->Suc. dataset/sam_altman/split_44.wav->Suc. dataset/sam_altman/split_4.wav->Suc. dataset/sam_altman/split_41.wav->Suc. dataset/sam_altman/split_46.wav->Suc. dataset/sam_altman/split_43.wav->Suc. dataset/sam_altman/split_48.wav->Suc. dataset/sam_altman/split_45.wav->Suc. dataset/sam_altman/split_47.wav->Suc. dataset/sam_altman/split_5.wav->Suc. dataset/sam_altman/split_49.wav->Suc. dataset/sam_altman/split_51.wav->Suc. dataset/sam_altman/split_50.wav->Suc. dataset/sam_altman/split_53.wav->Suc. dataset/sam_altman/split_55.wav->Suc. dataset/sam_altman/split_57.wav->Suc. dataset/sam_altman/split_52.wav->Suc. dataset/sam_altman/split_54.wav->Suc. dataset/sam_altman/split_59.wav->Suc. dataset/sam_altman/split_60.wav->Suc. dataset/sam_altman/split_56.wav->Suc. dataset/sam_altman/split_62.wav->Suc. dataset/sam_altman/split_58.wav->Suc. dataset/sam_altman/split_64.wav->Suc. dataset/sam_altman/split_6.wav->Suc. dataset/sam_altman/split_66.wav->Suc. dataset/sam_altman/split_61.wav->Suc. dataset/sam_altman/split_63.wav->Suc. dataset/sam_altman/split_68.wav->Suc. dataset/sam_altman/split_65.wav->Suc. dataset/sam_altman/split_7.wav->Suc. dataset/sam_altman/split_67.wav->Suc. dataset/sam_altman/split_71.wav->Suc. dataset/sam_altman/split_69.wav->Suc. dataset/sam_altman/split_73.wav->Suc. dataset/sam_altman/split_70.wav->Suc. dataset/sam_altman/split_72.wav->Suc. dataset/sam_altman/split_74.wav->Suc. dataset/sam_altman/split_75.wav->Suc. dataset/sam_altman/split_76.wav->Suc. dataset/sam_altman/split_77.wav->Suc. dataset/sam_altman/split_78.wav->Suc. dataset/sam_altman/split_8.wav->Suc. dataset/sam_altman/split_79.wav->Suc. dataset/sam_altman/split_81.wav->Suc. dataset/sam_altman/split_83.wav->Suc. dataset/sam_altman/split_80.wav->Suc. dataset/sam_altman/split_85.wav->Suc. dataset/sam_altman/split_82.wav->Suc. dataset/sam_altman/split_84.wav->Suc. dataset/sam_altman/split_86.wav->Suc. dataset/sam_altman/split_87.wav->Suc. dataset/sam_altman/split_88.wav->Suc. dataset/sam_altman/split_9.wav->Suc. dataset/sam_altman/split_89.wav->Suc. dataset/sam_altman/split_91.wav->Suc. dataset/sam_altman/split_90.wav->Suc. dataset/sam_altman/split_93.wav->Suc. dataset/sam_altman/split_92.wav->Suc. dataset/sam_altman/split_94.wav->Suc. dataset/sam_altman/split_95.wav->Suc. dataset/sam_altman/split_96.wav->Suc. dataset/sam_altman/split_97.wav->Suc. dataset/sam_altman/split_99.wav->Suc. dataset/sam_altman/split_98.wav->Suc. end preprocess Output: None python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 './logs/sam_altman' True ['infer/modules/train/extract/extract_f0_rmvpe.py', '1', '0', '0', './logs/sam_altman', 'True'] todo-f0-333 f0ing,now-0,all-333,-./logs/sam_altman/1_16k_wavs/0_0.wav Loading rmvpe model /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML warnings.warn("Can't initialize NVML") f0ing,now-66,all-333,-./logs/sam_altman/1_16k_wavs/1_3.wav f0ing,now-132,all-333,-./logs/sam_altman/1_16k_wavs/39_2.wav f0ing,now-198,all-333,-./logs/sam_altman/1_16k_wavs/58_5.wav f0ing,now-264,all-333,-./logs/sam_altman/1_16k_wavs/79_2.wav f0ing,now-330,all-333,-./logs/sam_altman/1_16k_wavs/9_0.wav Output: None python infer/modules/train/extract_feature_print.py cuda:0 1 0 0 './logs/sam_altman' 'v2' /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML warnings.warn("Can't initialize NVML") ['infer/modules/train/extract_feature_print.py', 'cuda:0', '1', '0', '0', './logs/sam_altman', 'v2'] ./logs/sam_altman load model(s) from assets/hubert/hubert_base.pt 2023-11-23 19:51:49 | INFO | fairseq.tasks.hubert_pretraining | current directory is /src 2023-11-23 19:51:49 | INFO | fairseq.tasks.hubert_pretraining | HubertPretrainingTask Config {'_name': 'hubert_pretraining', 'data': 'metadata', 'fine_tuning': False, 'labels': ['km'], 'label_dir': 'label', 'label_rate': 50.0, 'sample_rate': 16000, 'normalize': False, 'enable_padding': False, 'max_keep_size': None, 'max_sample_size': 250000, 'min_sample_size': 32000, 'single_target': False, 'random_crop': True, 'pad_audio': False} 2023-11-23 19:51:49 | INFO | fairseq.models.hubert.hubert | HubertModel Config: {'_name': 'hubert', 'label_rate': 50.0, 'extractor_mode': default, 'encoder_layers': 12, 'encoder_embed_dim': 768, 'encoder_ffn_embed_dim': 3072, 'encoder_attention_heads': 12, 'activation_fn': gelu, 'layer_type': transformer, 'dropout': 0.1, 'attention_dropout': 0.1, 'activation_dropout': 0.0, 'encoder_layerdrop': 0.05, 'dropout_input': 0.1, 'dropout_features': 0.1, 'final_dim': 256, 'untie_final_proj': True, 'layer_norm_first': False, 'conv_feature_layers': '[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2', 'conv_bias': False, 'logit_temp': 0.1, 'target_glu': False, 'feature_grad_mult': 0.1, 'mask_length': 10, 'mask_prob': 0.8, 'mask_selection': static, 'mask_other': 0.0, 'no_mask_overlap': False, 'mask_min_space': 1, 'mask_channel_length': 10, 'mask_channel_prob': 0.0, 'mask_channel_selection': static, 'mask_channel_other': 0.0, 'no_mask_channel_overlap': False, 'mask_channel_min_space': 1, 'conv_pos': 128, 'conv_pos_groups': 16, 'latent_temp': [2.0, 0.5, 0.999995], 'skip_masked': False, 'skip_nomask': False, 'checkpoint_activations': False, 'required_seq_len_multiple': 2, 'depthwise_conv_kernel_size': 31, 'attn_type': '', 'pos_enc_type': 'abs', 'fp16': False} /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.") move model to cuda all-feature-333 now-333,all-0,0_0.wav,(149, 768) now-333,all-33,10_0.wav,(149, 768) now-333,all-66,1_3.wav,(75, 768) now-333,all-99,30_0.wav,(149, 768) now-333,all-132,39_2.wav,(149, 768) now-333,all-165,4_5.wav,(36, 768) now-333,all-198,58_5.wav,(66, 768) now-333,all-231,6_1.wav,(149, 768) now-333,all-264,79_2.wav,(96, 768) now-333,all-297,89_1.wav,(131, 768) now-333,all-330,9_0.wav,(149, 768) all-feature-done Output: None (42097, 768),1079 (42097, 768),1079 training (42097, 768),1079 training adding Write filelist done Use gpus: 0 /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML warnings.warn("Can't initialize NVML") INFO:sam_altman:{'data': {'filter_length': 2048, 'hop_length': 480, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 128, 'sampling_rate': 48000, 'win_length': 2048, 'training_files': './logs/sam_altman/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [24, 20, 4, 4], 'upsample_rates': [12, 10, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 7, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 17280, 'warmup_epochs': 0}, 'model_dir': './logs/sam_altman', 'experiment_dir': './logs/sam_altman', 'save_every_epoch': 50, 'name': 'sam_altman', 'total_epoch': 80, 'pretrainG': 'assets/pretrained_v2/f0G48k.pth', 'pretrainD': 'assets/pretrained_v2/f0D48k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '48k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '0', 'if_cache_data_in_gpu': 1} /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML warnings.warn("Can't initialize NVML") /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.") DEBUG:infer.lib.infer_pack.models:gin_channels: 256, self.spk_embed_dim: 109 INFO:sam_altman:loaded pretrained assets/pretrained_v2/f0G48k.pth INFO:sam_altman:<All keys matched successfully> INFO:sam_altman:loaded pretrained assets/pretrained_v2/f0D48k.pth INFO:sam_altman:<All keys matched successfully> /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error. Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined] /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error. Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined] /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error. Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined] /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error. Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined] /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error. Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined] /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/autograd/__init__.py:251: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. grad.sizes() = [64, 1, 4], strides() = [4, 1, 1] bucket_view.sizes() = [64, 1, 4], strides() = [4, 4, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:320.) Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass INFO:sam_altman:Train Epoch: 1 [0%] INFO:sam_altman:[0, 0.0001] INFO:sam_altman:loss_disc=4.172, loss_gen=3.120, loss_fm=8.932,loss_mel=27.330, loss_kl=9.000 DEBUG:matplotlib:matplotlib data path: /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/matplotlib/mpl-data DEBUG:matplotlib:CONFIGDIR=/root/.config/matplotlib DEBUG:matplotlib:interactive is False DEBUG:matplotlib:platform is linux INFO:sam_altman:====> Epoch: 1 [2023-11-23 19:52:46] | (0:00:18.492362) INFO:sam_altman:====> Epoch: 2 [2023-11-23 19:53:01] | (0:00:14.058839) INFO:sam_altman:====> Epoch: 3 [2023-11-23 19:53:15] | (0:00:14.087264) INFO:sam_altman:====> Epoch: 4 [2023-11-23 19:53:29] | (0:00:14.048906) INFO:sam_altman:Train Epoch: 5 [20%] INFO:sam_altman:[200, 9.995000937421877e-05] INFO:sam_altman:loss_disc=3.921, loss_gen=3.317, loss_fm=7.828,loss_mel=18.033, loss_kl=1.945 INFO:sam_altman:====> Epoch: 5 [2023-11-23 19:53:43] | (0:00:14.331246) INFO:sam_altman:====> Epoch: 6 [2023-11-23 19:53:57] | (0:00:14.016381) INFO:sam_altman:====> Epoch: 7 [2023-11-23 19:54:11] | (0:00:14.015517) INFO:sam_altman:====> Epoch: 8 [2023-11-23 19:54:25] | (0:00:14.132970) INFO:sam_altman:Train Epoch: 9 [69%] INFO:sam_altman:[400, 9.990004373906418e-05] INFO:sam_altman:loss_disc=3.705, loss_gen=3.479, loss_fm=8.874,loss_mel=17.079, loss_kl=1.697 INFO:sam_altman:====> Epoch: 9 [2023-11-23 19:54:39] | (0:00:14.305179) INFO:sam_altman:====> Epoch: 10 [2023-11-23 19:54:53] | (0:00:14.000367) INFO:sam_altman:====> Epoch: 11 [2023-11-23 19:55:07] | (0:00:13.998400) INFO:sam_altman:====> Epoch: 12 [2023-11-23 19:55:21] | (0:00:14.007730) INFO:sam_altman:Train Epoch: 13 [24%] INFO:sam_altman:[600, 9.98501030820433e-05] INFO:sam_altman:loss_disc=3.772, loss_gen=3.694, loss_fm=9.682,loss_mel=16.714, loss_kl=1.909 INFO:sam_altman:====> Epoch: 13 [2023-11-23 19:55:36] | (0:00:14.299253) INFO:sam_altman:====> Epoch: 14 [2023-11-23 19:55:50] | (0:00:14.096318) INFO:sam_altman:====> Epoch: 15 [2023-11-23 19:56:04] | (0:00:13.995778) INFO:sam_altman:====> Epoch: 16 [2023-11-23 19:56:18] | (0:00:14.167015) INFO:sam_altman:Train Epoch: 17 [0%] INFO:sam_altman:[800, 9.980018739066937e-05] INFO:sam_altman:loss_disc=4.066, loss_gen=3.559, loss_fm=8.139,loss_mel=18.515, loss_kl=1.488 INFO:sam_altman:====> Epoch: 17 [2023-11-23 19:56:32] | (0:00:14.315985) INFO:sam_altman:====> Epoch: 18 [2023-11-23 19:56:46] | (0:00:14.002399) INFO:sam_altman:====> Epoch: 19 [2023-11-23 19:57:00] | (0:00:14.019100) INFO:sam_altman:====> Epoch: 20 [2023-11-23 19:57:14] | (0:00:14.007005) INFO:sam_altman:Train Epoch: 21 [20%] INFO:sam_altman:[1000, 9.975029665246193e-05] INFO:sam_altman:loss_disc=3.879, loss_gen=3.444, loss_fm=9.087,loss_mel=16.523, loss_kl=1.996 INFO:sam_altman:====> Epoch: 21 [2023-11-23 19:57:29] | (0:00:14.307051) INFO:sam_altman:====> Epoch: 22 [2023-11-23 19:57:43] | (0:00:13.993078) INFO:sam_altman:====> Epoch: 23 [2023-11-23 19:57:57] | (0:00:14.114252) INFO:sam_altman:====> Epoch: 24 [2023-11-23 19:58:11] | (0:00:13.993609) INFO:sam_altman:Train Epoch: 25 [96%] INFO:sam_altman:[1200, 9.970043085494672e-05] INFO:sam_altman:loss_disc=3.763, loss_gen=3.675, loss_fm=8.664,loss_mel=16.108, loss_kl=0.825 INFO:sam_altman:====> Epoch: 25 [2023-11-23 19:58:25] | (0:00:14.274665) INFO:sam_altman:====> Epoch: 26 [2023-11-23 19:58:39] | (0:00:14.000343) INFO:sam_altman:====> Epoch: 27 [2023-11-23 19:58:53] | (0:00:13.992903) INFO:sam_altman:====> Epoch: 28 [2023-11-23 19:59:07] | (0:00:14.003525) INFO:sam_altman:Train Epoch: 29 [94%] INFO:sam_altman:[1400, 9.965058998565574e-05] INFO:sam_altman:loss_disc=3.845, loss_gen=3.284, loss_fm=9.413,loss_mel=17.019, loss_kl=1.318 INFO:sam_altman:====> Epoch: 29 [2023-11-23 19:59:21] | (0:00:14.285749) INFO:sam_altman:====> Epoch: 30 [2023-11-23 19:59:35] | (0:00:14.010255) INFO:sam_altman:====> Epoch: 31 [2023-11-23 19:59:49] | (0:00:14.013091) INFO:sam_altman:====> Epoch: 32 [2023-11-23 20:00:04] | (0:00:14.118040) INFO:sam_altman:Train Epoch: 33 [0%] INFO:sam_altman:[1600, 9.960077403212722e-05] INFO:sam_altman:loss_disc=3.623, loss_gen=3.782, loss_fm=9.977,loss_mel=17.460, loss_kl=1.435 INFO:sam_altman:====> Epoch: 33 [2023-11-23 20:00:18] | (0:00:14.325803) INFO:sam_altman:====> Epoch: 34 [2023-11-23 20:00:32] | (0:00:13.998874) INFO:sam_altman:====> Epoch: 35 [2023-11-23 20:00:46] | (0:00:14.018591) INFO:sam_altman:====> Epoch: 36 [2023-11-23 20:01:00] | (0:00:14.013491) INFO:sam_altman:Train Epoch: 37 [65%] INFO:sam_altman:[1800, 9.95509829819056e-05] INFO:sam_altman:loss_disc=3.833, loss_gen=3.036, loss_fm=6.822,loss_mel=17.565, loss_kl=0.938 INFO:sam_altman:====> Epoch: 37 [2023-11-23 20:01:14] | (0:00:14.308932) INFO:sam_altman:====> Epoch: 38 [2023-11-23 20:01:28] | (0:00:14.012427) INFO:sam_altman:====> Epoch: 39 [2023-11-23 20:01:42] | (0:00:14.004681) INFO:sam_altman:====> Epoch: 40 [2023-11-23 20:01:56] | (0:00:14.136796) INFO:sam_altman:Train Epoch: 41 [4%] INFO:sam_altman:[2000, 9.950121682254156e-05] INFO:sam_altman:loss_disc=3.531, loss_gen=3.865, loss_fm=9.413,loss_mel=16.917, loss_kl=1.230 INFO:sam_altman:====> Epoch: 41 [2023-11-23 20:02:11] | (0:00:14.295757) INFO:sam_altman:====> Epoch: 42 [2023-11-23 20:02:25] | (0:00:14.027522) INFO:sam_altman:====> Epoch: 43 [2023-11-23 20:02:39] | (0:00:14.005888) INFO:sam_altman:====> Epoch: 44 [2023-11-23 20:02:53] | (0:00:14.028138) INFO:sam_altman:Train Epoch: 45 [0%] INFO:sam_altman:[2200, 9.945147554159202e-05] INFO:sam_altman:loss_disc=3.822, loss_gen=3.635, loss_fm=6.555,loss_mel=15.532, loss_kl=1.205 INFO:sam_altman:====> Epoch: 45 [2023-11-23 20:03:07] | (0:00:14.322628) INFO:sam_altman:====> Epoch: 46 [2023-11-23 20:03:21] | (0:00:14.005216) INFO:sam_altman:====> Epoch: 47 [2023-11-23 20:03:35] | (0:00:14.133467) INFO:sam_altman:====> Epoch: 48 [2023-11-23 20:03:49] | (0:00:14.016325) INFO:sam_altman:Train Epoch: 49 [67%] INFO:sam_altman:[2400, 9.940175912662009e-05] INFO:sam_altman:loss_disc=3.923, loss_gen=3.040, loss_fm=6.919,loss_mel=15.679, loss_kl=1.050 INFO:sam_altman:====> Epoch: 49 [2023-11-23 20:04:04] | (0:00:14.310548) INFO:sam_altman:Saving model and optimizer state at epoch 50 to ./logs/sam_altman/G_2333333.pth INFO:sam_altman:Saving model and optimizer state at epoch 50 to ./logs/sam_altman/D_2333333.pth INFO:sam_altman:====> Epoch: 50 [2023-11-23 20:04:18] | (0:00:14.870339) INFO:sam_altman:====> Epoch: 51 [2023-11-23 20:04:33] | (0:00:14.079238) INFO:sam_altman:====> Epoch: 52 [2023-11-23 20:04:47] | (0:00:14.035602) INFO:sam_altman:====> Epoch: 53 [2023-11-23 20:05:01] | (0:00:14.023377) INFO:sam_altman:Train Epoch: 54 [12%] INFO:sam_altman:[2600, 9.933964855674948e-05] INFO:sam_altman:loss_disc=3.802, loss_gen=3.355, loss_fm=9.064,loss_mel=16.333, loss_kl=1.413 INFO:sam_altman:====> Epoch: 54 [2023-11-23 20:05:15] | (0:00:14.402449) INFO:sam_altman:====> Epoch: 55 [2023-11-23 20:05:29] | (0:00:13.988542) INFO:sam_altman:====> Epoch: 56 [2023-11-23 20:05:43] | (0:00:14.031654) INFO:sam_altman:====> Epoch: 57 [2023-11-23 20:05:57] | (0:00:14.064693) INFO:sam_altman:Train Epoch: 58 [71%] INFO:sam_altman:[2800, 9.928998804478705e-05] INFO:sam_altman:loss_disc=3.404, loss_gen=3.825, loss_fm=9.404,loss_mel=15.319, loss_kl=0.330 INFO:sam_altman:====> Epoch: 58 [2023-11-23 20:06:11] | (0:00:14.307631) INFO:sam_altman:====> Epoch: 59 [2023-11-23 20:06:25] | (0:00:14.009880) INFO:sam_altman:====> Epoch: 60 [2023-11-23 20:06:39] | (0:00:14.011763) INFO:sam_altman:====> Epoch: 61 [2023-11-23 20:06:54] | (0:00:14.023478) INFO:sam_altman:Train Epoch: 62 [80%] INFO:sam_altman:[3000, 9.924035235842533e-05] INFO:sam_altman:loss_disc=3.725, loss_gen=3.785, loss_fm=9.929,loss_mel=15.898, loss_kl=1.236 INFO:sam_altman:====> Epoch: 62 [2023-11-23 20:07:08] | (0:00:14.471969) INFO:sam_altman:====> Epoch: 63 [2023-11-23 20:07:22] | (0:00:14.033923) INFO:sam_altman:====> Epoch: 64 [2023-11-23 20:07:36] | (0:00:14.029050) INFO:sam_altman:====> Epoch: 65 [2023-11-23 20:07:50] | (0:00:14.032673) INFO:sam_altman:Train Epoch: 66 [55%] INFO:sam_altman:[3200, 9.919074148525384e-05] INFO:sam_altman:loss_disc=3.888, loss_gen=3.578, loss_fm=9.723,loss_mel=16.500, loss_kl=1.436 INFO:sam_altman:====> Epoch: 66 [2023-11-23 20:08:04] | (0:00:14.293031) INFO:sam_altman:====> Epoch: 67 [2023-11-23 20:08:18] | (0:00:14.006002) INFO:sam_altman:====> Epoch: 68 [2023-11-23 20:08:32] | (0:00:13.997145) INFO:sam_altman:====> Epoch: 69 [2023-11-23 20:08:46] | (0:00:14.003798) INFO:sam_altman:Train Epoch: 70 [16%] INFO:sam_altman:[3400, 9.914115541286833e-05] INFO:sam_altman:loss_disc=3.674, loss_gen=3.389, loss_fm=8.772,loss_mel=15.365, loss_kl=0.968 INFO:sam_altman:====> Epoch: 70 [2023-11-23 20:09:01] | (0:00:14.416095) INFO:sam_altman:====> Epoch: 71 [2023-11-23 20:09:15] | (0:00:13.989245) INFO:sam_altman:====> Epoch: 72 [2023-11-23 20:09:29] | (0:00:13.990721) INFO:sam_altman:====> Epoch: 73 [2023-11-23 20:09:43] | (0:00:13.987562) INFO:sam_altman:Train Epoch: 74 [39%] INFO:sam_altman:[3600, 9.909159412887068e-05] INFO:sam_altman:loss_disc=3.890, loss_gen=2.895, loss_fm=7.118,loss_mel=14.766, loss_kl=0.778 INFO:sam_altman:====> Epoch: 74 [2023-11-23 20:09:57] | (0:00:14.276048) INFO:sam_altman:====> Epoch: 75 [2023-11-23 20:10:11] | (0:00:14.009208) INFO:sam_altman:====> Epoch: 76 [2023-11-23 20:10:25] | (0:00:13.998905) INFO:sam_altman:====> Epoch: 77 [2023-11-23 20:10:39] | (0:00:14.010387) INFO:sam_altman:Train Epoch: 78 [71%] INFO:sam_altman:[3800, 9.904205762086905e-05] INFO:sam_altman:loss_disc=3.256, loss_gen=3.944, loss_fm=10.533,loss_mel=15.718, loss_kl=1.287 INFO:sam_altman:====> Epoch: 78 [2023-11-23 20:10:54] | (0:00:14.404643) INFO:sam_altman:====> Epoch: 79 [2023-11-23 20:11:08] | (0:00:13.989626) INFO:sam_altman:====> Epoch: 80 [2023-11-23 20:11:22] | (0:00:13.996693) INFO:sam_altman:Training is done. The program is closed. INFO:sam_altman:saving final ckpt:Success. /root/.pyenv/versions/3.9.18/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 20 leaked semaphore objects to clean up at shutdown warnings.warn('resource_tracker: There appear to be %d ' Training completed. You can check the training log in the console or the 'train.log' file in the experiment directory. Creating directory... Copying files... Copying file: logs/sam_altman/added_IVF1079_Flat_nprobe_1_sam_altman_v2.index Copying file: logs/sam_altman/total_fea.npy Copying file: assets/weights/sam_altman.pth Defining the base directory... Creating a Zip file... Adding 'added_*.index' files to the Zip file... Adding file: /src/Model/sam_altman/added_IVF1079_Flat_nprobe_1_sam_altman_v2.index Adding 'total_*.npy' files to the Zip file... Adding file: /src/Model/sam_altman/total_fea.npy Adding specific file to the Zip file... Adding file: /src/Model/sam_altman/sam_altman.pth Zip file path: /src/Model/sam_altman/sam_altman.zip
Want to make some of these yourself?
Run this model