Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
stability-ai /sdxl:7762fd07
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
{
input: {
width: 2048,
height: 2048,
prompt: "a stunning watercolor painting on canvas of california poppy flowers, in the style of Claude Monet, Giverny, impressionism, impressionistic landscapes, pastel colors, impressionistic portraits, exaggerated blurry brushstrokes, dramatic lighting",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face",
prompt_strength: 0.8,
num_inference_steps: 100
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
input={
"width": 2048,
"height": 2048,
"prompt": "a stunning watercolor painting on canvas of california poppy flowers, in the style of Claude Monet, Giverny, impressionism, impressionistic landscapes, pastel colors, impressionistic portraits, exaggerated blurry brushstrokes, dramatic lighting",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
"input": {
"width": 2048,
"height": 2048,
"prompt": "a stunning watercolor painting on canvas of california poppy flowers, in the style of Claude Monet, Giverny, impressionism, impressionistic landscapes, pastel colors, impressionistic portraits, exaggerated blurry brushstrokes, dramatic lighting",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-07-27T03:51:00.135005Z",
"created_at": "2023-07-27T03:49:16.327850Z",
"data_removed": false,
"error": null,
"id": "ckscvclbivgjl5cprho7lbgwhm",
"input": {
"width": 2048,
"height": 2048,
"prompt": "a stunning watercolor painting on canvas of california poppy flowers, in the style of Claude Monet, Giverny, impressionism, impressionistic landscapes, pastel colors, impressionistic portraits, exaggerated blurry brushstrokes, dramatic lighting",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"num_outputs": 1,
"guidance_scale": 7.5,
"high_noise_frac": 0.8,
"negative_prompt": "ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face",
"prompt_strength": 0.8,
"num_inference_steps": 100
},
"logs": "Using seed: 47424\ntxt2img mode\n 0%| | 0/65 [00:00<?, ?it/s]\n 2%|▏ | 1/65 [00:01<01:10, 1.09s/it]\n 3%|▎ | 2/65 [00:02<01:09, 1.10s/it]\n 5%|▍ | 3/65 [00:03<01:08, 1.10s/it]\n 6%|▌ | 4/65 [00:04<01:07, 1.10s/it]\n 8%|▊ | 5/65 [00:05<01:05, 1.10s/it]\n 9%|▉ | 6/65 [00:06<01:04, 1.10s/it]\n 11%|█ | 7/65 [00:07<01:03, 1.10s/it]\n 12%|█▏ | 8/65 [00:08<01:02, 1.10s/it]\n 14%|█▍ | 9/65 [00:09<01:01, 1.10s/it]\n 15%|█▌ | 10/65 [00:11<01:00, 1.10s/it]\n 17%|█▋ | 11/65 [00:12<00:59, 1.10s/it]\n 18%|█▊ | 12/65 [00:13<00:58, 1.10s/it]\n 20%|██ | 13/65 [00:14<00:57, 1.10s/it]\n 22%|██▏ | 14/65 [00:15<00:56, 1.10s/it]\n 23%|██▎ | 15/65 [00:16<00:55, 1.11s/it]\n 25%|██▍ | 16/65 [00:17<00:54, 1.11s/it]\n 26%|██▌ | 17/65 [00:18<00:53, 1.11s/it]\n 28%|██▊ | 18/65 [00:19<00:51, 1.11s/it]\n 29%|██▉ | 19/65 [00:20<00:50, 1.11s/it]\n 31%|███ | 20/65 [00:22<00:49, 1.11s/it]\n 32%|███▏ | 21/65 [00:23<00:48, 1.11s/it]\n 34%|███▍ | 22/65 [00:24<00:47, 1.11s/it]\n 35%|███▌ | 23/65 [00:25<00:46, 1.11s/it]\n 37%|███▋ | 24/65 [00:26<00:45, 1.11s/it]\n 38%|███▊ | 25/65 [00:27<00:44, 1.10s/it]\n 40%|████ | 26/65 [00:28<00:43, 1.10s/it]\n 42%|████▏ | 27/65 [00:29<00:42, 1.11s/it]\n 43%|████▎ | 28/65 [00:30<00:40, 1.11s/it]\n 45%|████▍ | 29/65 [00:32<00:39, 1.10s/it]\n 46%|████▌ | 30/65 [00:33<00:38, 1.10s/it]\n 48%|████▊ | 31/65 [00:34<00:37, 1.11s/it]\n 49%|████▉ | 32/65 [00:35<00:36, 1.11s/it]\n 51%|█████ | 33/65 [00:36<00:35, 1.11s/it]\n 52%|█████▏ | 34/65 [00:37<00:34, 1.11s/it]\n 54%|█████▍ | 35/65 [00:38<00:33, 1.11s/it]\n 55%|█████▌ | 36/65 [00:39<00:32, 1.11s/it]\n 57%|█████▋ | 37/65 [00:40<00:30, 1.11s/it]\n 58%|█████▊ | 38/65 [00:41<00:29, 1.11s/it]\n 60%|██████ | 39/65 [00:43<00:28, 1.11s/it]\n 62%|██████▏ | 40/65 [00:44<00:27, 1.11s/it]\n 63%|██████▎ | 41/65 [00:45<00:26, 1.11s/it]\n 65%|██████▍ | 42/65 [00:46<00:25, 1.11s/it]\n 66%|██████▌ | 43/65 [00:47<00:24, 1.11s/it]\n 68%|██████▊ | 44/65 [00:48<00:23, 1.11s/it]\n 69%|██████▉ | 45/65 [00:49<00:22, 1.11s/it]\n 71%|███████ | 46/65 [00:50<00:21, 1.11s/it]\n 72%|███████▏ | 47/65 [00:51<00:19, 1.11s/it]\n 74%|███████▍ | 48/65 [00:53<00:18, 1.11s/it]\n 75%|███████▌ | 49/65 [00:54<00:17, 1.11s/it]\n 77%|███████▋ | 50/65 [00:55<00:16, 1.11s/it]\n 78%|███████▊ | 51/65 [00:56<00:15, 1.11s/it]\n 80%|████████ | 52/65 [00:57<00:14, 1.11s/it]\n 82%|████████▏ | 53/65 [00:58<00:13, 1.11s/it]\n 83%|████████▎ | 54/65 [00:59<00:12, 1.11s/it]\n 85%|████████▍ | 55/65 [01:00<00:11, 1.11s/it]\n 86%|████████▌ | 56/65 [01:01<00:09, 1.11s/it]\n 88%|████████▊ | 57/65 [01:03<00:08, 1.11s/it]\n 89%|████████▉ | 58/65 [01:04<00:07, 1.11s/it]\n 91%|█████████ | 59/65 [01:05<00:06, 1.11s/it]\n 92%|█████████▏| 60/65 [01:06<00:05, 1.11s/it]\n 94%|█████████▍| 61/65 [01:07<00:04, 1.11s/it]\n 95%|█████████▌| 62/65 [01:08<00:03, 1.11s/it]\n 97%|█████████▋| 63/65 [01:09<00:02, 1.11s/it]\n 98%|█████████▊| 64/65 [01:10<00:01, 1.11s/it]\n100%|██████████| 65/65 [01:11<00:00, 1.11s/it]\n100%|██████████| 65/65 [01:11<00:00, 1.11s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:01<00:25, 1.34s/it]\n 10%|█ | 2/20 [00:02<00:24, 1.34s/it]\n 15%|█▌ | 3/20 [00:04<00:22, 1.34s/it]\n 20%|██ | 4/20 [00:05<00:21, 1.34s/it]\n 25%|██▌ | 5/20 [00:06<00:20, 1.34s/it]\n 30%|███ | 6/20 [00:08<00:18, 1.34s/it]\n 35%|███▌ | 7/20 [00:09<00:17, 1.34s/it]\n 40%|████ | 8/20 [00:10<00:16, 1.34s/it]\n 45%|████▌ | 9/20 [00:12<00:14, 1.34s/it]\n 50%|█████ | 10/20 [00:13<00:13, 1.34s/it]\n 55%|█████▌ | 11/20 [00:14<00:12, 1.34s/it]\n 60%|██████ | 12/20 [00:16<00:10, 1.34s/it]\n 65%|██████▌ | 13/20 [00:17<00:09, 1.34s/it]\n 70%|███████ | 14/20 [00:18<00:08, 1.34s/it]\n 75%|███████▌ | 15/20 [00:20<00:06, 1.34s/it]\n 80%|████████ | 16/20 [00:21<00:05, 1.34s/it]\n 85%|████████▌ | 17/20 [00:22<00:04, 1.34s/it]\n 90%|█████████ | 18/20 [00:24<00:02, 1.34s/it]\n 95%|█████████▌| 19/20 [00:25<00:01, 1.34s/it]\n100%|██████████| 20/20 [00:26<00:00, 1.34s/it]\n100%|██████████| 20/20 [00:26<00:00, 1.34s/it]",
"metrics": {
"predict_time": 103.846238,
"total_time": 103.807155
},
"output": [
"https://replicate.delivery/pbxt/N2fpLQB1e0nFgk018oQfKCzP6lDtQrF3hRK1pqAZedqP6mPFB/out-0.png"
],
"started_at": "2023-07-27T03:49:16.288767Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ckscvclbivgjl5cprho7lbgwhm",
"cancel": "https://api.replicate.com/v1/predictions/ckscvclbivgjl5cprho7lbgwhm/cancel"
},
"version": "2f779eb9b23b34fe171f8eaa021b8261566f0d2c10cd2674063e7dbcd351509e"
}
Using seed: 47424
txt2img mode
0%| | 0/65 [00:00<?, ?it/s]
2%|▏ | 1/65 [00:01<01:10, 1.09s/it]
3%|▎ | 2/65 [00:02<01:09, 1.10s/it]
5%|▍ | 3/65 [00:03<01:08, 1.10s/it]
6%|▌ | 4/65 [00:04<01:07, 1.10s/it]
8%|▊ | 5/65 [00:05<01:05, 1.10s/it]
9%|▉ | 6/65 [00:06<01:04, 1.10s/it]
11%|█ | 7/65 [00:07<01:03, 1.10s/it]
12%|█▏ | 8/65 [00:08<01:02, 1.10s/it]
14%|█▍ | 9/65 [00:09<01:01, 1.10s/it]
15%|█▌ | 10/65 [00:11<01:00, 1.10s/it]
17%|█▋ | 11/65 [00:12<00:59, 1.10s/it]
18%|█▊ | 12/65 [00:13<00:58, 1.10s/it]
20%|██ | 13/65 [00:14<00:57, 1.10s/it]
22%|██▏ | 14/65 [00:15<00:56, 1.10s/it]
23%|██▎ | 15/65 [00:16<00:55, 1.11s/it]
25%|██▍ | 16/65 [00:17<00:54, 1.11s/it]
26%|██▌ | 17/65 [00:18<00:53, 1.11s/it]
28%|██▊ | 18/65 [00:19<00:51, 1.11s/it]
29%|██▉ | 19/65 [00:20<00:50, 1.11s/it]
31%|███ | 20/65 [00:22<00:49, 1.11s/it]
32%|███▏ | 21/65 [00:23<00:48, 1.11s/it]
34%|███▍ | 22/65 [00:24<00:47, 1.11s/it]
35%|███▌ | 23/65 [00:25<00:46, 1.11s/it]
37%|███▋ | 24/65 [00:26<00:45, 1.11s/it]
38%|███▊ | 25/65 [00:27<00:44, 1.10s/it]
40%|████ | 26/65 [00:28<00:43, 1.10s/it]
42%|████▏ | 27/65 [00:29<00:42, 1.11s/it]
43%|████▎ | 28/65 [00:30<00:40, 1.11s/it]
45%|████▍ | 29/65 [00:32<00:39, 1.10s/it]
46%|████▌ | 30/65 [00:33<00:38, 1.10s/it]
48%|████▊ | 31/65 [00:34<00:37, 1.11s/it]
49%|████▉ | 32/65 [00:35<00:36, 1.11s/it]
51%|█████ | 33/65 [00:36<00:35, 1.11s/it]
52%|█████▏ | 34/65 [00:37<00:34, 1.11s/it]
54%|█████▍ | 35/65 [00:38<00:33, 1.11s/it]
55%|█████▌ | 36/65 [00:39<00:32, 1.11s/it]
57%|█████▋ | 37/65 [00:40<00:30, 1.11s/it]
58%|█████▊ | 38/65 [00:41<00:29, 1.11s/it]
60%|██████ | 39/65 [00:43<00:28, 1.11s/it]
62%|██████▏ | 40/65 [00:44<00:27, 1.11s/it]
63%|██████▎ | 41/65 [00:45<00:26, 1.11s/it]
65%|██████▍ | 42/65 [00:46<00:25, 1.11s/it]
66%|██████▌ | 43/65 [00:47<00:24, 1.11s/it]
68%|██████▊ | 44/65 [00:48<00:23, 1.11s/it]
69%|██████▉ | 45/65 [00:49<00:22, 1.11s/it]
71%|███████ | 46/65 [00:50<00:21, 1.11s/it]
72%|███████▏ | 47/65 [00:51<00:19, 1.11s/it]
74%|███████▍ | 48/65 [00:53<00:18, 1.11s/it]
75%|███████▌ | 49/65 [00:54<00:17, 1.11s/it]
77%|███████▋ | 50/65 [00:55<00:16, 1.11s/it]
78%|███████▊ | 51/65 [00:56<00:15, 1.11s/it]
80%|████████ | 52/65 [00:57<00:14, 1.11s/it]
82%|████████▏ | 53/65 [00:58<00:13, 1.11s/it]
83%|████████▎ | 54/65 [00:59<00:12, 1.11s/it]
85%|████████▍ | 55/65 [01:00<00:11, 1.11s/it]
86%|████████▌ | 56/65 [01:01<00:09, 1.11s/it]
88%|████████▊ | 57/65 [01:03<00:08, 1.11s/it]
89%|████████▉ | 58/65 [01:04<00:07, 1.11s/it]
91%|█████████ | 59/65 [01:05<00:06, 1.11s/it]
92%|█████████▏| 60/65 [01:06<00:05, 1.11s/it]
94%|█████████▍| 61/65 [01:07<00:04, 1.11s/it]
95%|█████████▌| 62/65 [01:08<00:03, 1.11s/it]
97%|█████████▋| 63/65 [01:09<00:02, 1.11s/it]
98%|█████████▊| 64/65 [01:10<00:01, 1.11s/it]
100%|██████████| 65/65 [01:11<00:00, 1.11s/it]
100%|██████████| 65/65 [01:11<00:00, 1.11s/it]
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:01<00:25, 1.34s/it]
10%|█ | 2/20 [00:02<00:24, 1.34s/it]
15%|█▌ | 3/20 [00:04<00:22, 1.34s/it]
20%|██ | 4/20 [00:05<00:21, 1.34s/it]
25%|██▌ | 5/20 [00:06<00:20, 1.34s/it]
30%|███ | 6/20 [00:08<00:18, 1.34s/it]
35%|███▌ | 7/20 [00:09<00:17, 1.34s/it]
40%|████ | 8/20 [00:10<00:16, 1.34s/it]
45%|████▌ | 9/20 [00:12<00:14, 1.34s/it]
50%|█████ | 10/20 [00:13<00:13, 1.34s/it]
55%|█████▌ | 11/20 [00:14<00:12, 1.34s/it]
60%|██████ | 12/20 [00:16<00:10, 1.34s/it]
65%|██████▌ | 13/20 [00:17<00:09, 1.34s/it]
70%|███████ | 14/20 [00:18<00:08, 1.34s/it]
75%|███████▌ | 15/20 [00:20<00:06, 1.34s/it]
80%|████████ | 16/20 [00:21<00:05, 1.34s/it]
85%|████████▌ | 17/20 [00:22<00:04, 1.34s/it]
90%|█████████ | 18/20 [00:24<00:02, 1.34s/it]
95%|█████████▌| 19/20 [00:25<00:01, 1.34s/it]
100%|██████████| 20/20 [00:26<00:00, 1.34s/it]
100%|██████████| 20/20 [00:26<00:00, 1.34s/it]
This output was created using a different version of the model, stability-ai/sdxl:2f779eb9.