ttsds
/
fishspeech_1_0
The Fish Speech V1.0 model.
Prediction
ttsds/fishspeech_1_0:54ec17a9858e5a0936b5fd67eb22dbdc4e7fb4262cfe59b1c117f89ca4b5a12bIDf9ttm80wt1rmc0cmnh6tfpftt8StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- text
- With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.
- text_reference
- and keeping eternity before the eyes, though much
- speaker_reference
- Video Player is loading.Current Time 00:00:000/Duration 00:00:000Loaded: 0%00:00:000Stream Type LIVERemaining Time -00:00:0001x
- Chapters
- descriptions off, selected
- captions settings, opens captions settings dialog
- captions off, selected
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{ "text": "With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.", "text_reference": "and keeping eternity before the eyes, though much", "speaker_reference": "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ttsds/fishspeech_1_0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ttsds/fishspeech_1_0:54ec17a9858e5a0936b5fd67eb22dbdc4e7fb4262cfe59b1c117f89ca4b5a12b", { input: { text: "With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.", text_reference: "and keeping eternity before the eyes, though much", speaker_reference: "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ttsds/fishspeech_1_0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ttsds/fishspeech_1_0:54ec17a9858e5a0936b5fd67eb22dbdc4e7fb4262cfe59b1c117f89ca4b5a12b", input={ "text": "With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.", "text_reference": "and keeping eternity before the eyes, though much", "speaker_reference": "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ttsds/fishspeech_1_0 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "54ec17a9858e5a0936b5fd67eb22dbdc4e7fb4262cfe59b1c117f89ca4b5a12b", "input": { "text": "With tenure, Suzie\'d have all the more leisure for yachting, but her publications are no good.", "text_reference": "and keeping eternity before the eyes, though much", "speaker_reference": "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Video Player is loading.Current Time 00:00:000/Duration 00:00:000Loaded: 0%00:00:000Stream Type LIVERemaining Time -00:00:0001x- Chapters
- descriptions off, selected
- captions settings, opens captions settings dialog
- captions off, selected
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{ "completed_at": "2025-01-28T09:46:45.544026Z", "created_at": "2025-01-28T09:45:22.384000Z", "data_removed": false, "error": null, "id": "f9ttm80wt1rmc0cmnh6tfpftt8", "input": { "text": "With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.", "text_reference": "and keeping eternity before the eyes, though much", "speaker_reference": "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" }, "logs": "2025-01-28 09:46:42.653 | INFO | tools.llama.generate:generate_long:491 - Encoded text: With tenure, Suzie'd have all\n2025-01-28 09:46:42.654 | INFO | tools.llama.generate:generate_long:491 - Encoded text: the more leisure for yachting,\n2025-01-28 09:46:42.654 | INFO | tools.llama.generate:generate_long:491 - Encoded text: but her publications are no\n2025-01-28 09:46:42.654 | INFO | tools.llama.generate:generate_long:491 - Encoded text: good.\n2025-01-28 09:46:42.654 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 1/4 of sample 1/1\n 0%| | 0/1858 [00:00<?, ?it/s]/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/torch/backends/cuda/__init__.py:342: FutureWarning: torch.backends.cuda.sdp_kernel() is deprecated. In the future, this context manager will be removed. Please see, torch.nn.attention.sdpa_kernel() for the new context manager, with updated signature.\nwarnings.warn(\n 0%| | 6/1858 [00:00<00:31, 58.98it/s]\n 1%| | 13/1858 [00:00<00:29, 62.02it/s]\n 1%| | 20/1858 [00:00<00:29, 62.85it/s]\n 1%|▏ | 27/1858 [00:00<00:29, 62.97it/s]\n 2%|▏ | 34/1858 [00:00<00:28, 63.17it/s]\n 2%|▏ | 41/1858 [00:00<00:28, 63.23it/s]\n 3%|▎ | 48/1858 [00:00<00:28, 63.45it/s]\n 3%|▎ | 55/1858 [00:00<00:28, 63.64it/s]\n3%|▎ | 57/1858 [00:00<00:29, 62.02it/s]\n2025-01-28 09:46:43.653 | INFO | tools.llama.generate:generate_long:565 - Generated 59 tokens in 1.00 seconds, 59.06 tokens/sec\n2025-01-28 09:46:43.653 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 23.04 GB/s\n2025-01-28 09:46:43.654 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 2.45 GB\n2025-01-28 09:46:43.654 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 2/4 of sample 1/1\n 0%| | 0/1751 [00:00<?, ?it/s]\n 0%| | 7/1751 [00:00<00:27, 63.96it/s]\n 1%| | 14/1751 [00:00<00:27, 64.07it/s]\n 1%| | 21/1751 [00:00<00:26, 64.20it/s]\n 2%|▏ | 28/1751 [00:00<00:26, 63.93it/s]\n 2%|▏ | 35/1751 [00:00<00:26, 63.92it/s]\n2%|▏ | 39/1751 [00:00<00:27, 62.36it/s]\n2025-01-28 09:46:44.300 | INFO | tools.llama.generate:generate_long:565 - Generated 41 tokens in 0.65 seconds, 63.47 tokens/sec\n2025-01-28 09:46:44.300 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 24.77 GB/s\n2025-01-28 09:46:44.300 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 2.45 GB\n2025-01-28 09:46:44.301 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 3/4 of sample 1/1\n 0%| | 0/1665 [00:00<?, ?it/s]\n 0%| | 7/1665 [00:00<00:25, 64.20it/s]\n 1%| | 14/1665 [00:00<00:26, 63.41it/s]\n 1%|▏ | 21/1665 [00:00<00:25, 63.69it/s]\n 2%|▏ | 28/1665 [00:00<00:25, 63.84it/s]\n 2%|▏ | 35/1665 [00:00<00:25, 63.98it/s]\n2%|▏ | 37/1665 [00:00<00:26, 62.18it/s]\n2025-01-28 09:46:44.911 | INFO | tools.llama.generate:generate_long:565 - Generated 39 tokens in 0.61 seconds, 63.85 tokens/sec\n2025-01-28 09:46:44.912 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 24.91 GB/s\n2025-01-28 09:46:44.912 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 2.45 GB\n2025-01-28 09:46:44.912 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 4/4 of sample 1/1\n 0%| | 0/1603 [00:00<?, ?it/s]\n 0%| | 7/1603 [00:00<00:24, 64.35it/s]\n 1%| | 14/1603 [00:00<00:24, 64.30it/s]\n1%| | 17/1603 [00:00<00:26, 60.48it/s]\n2025-01-28 09:46:45.209 | INFO | tools.llama.generate:generate_long:565 - Generated 19 tokens in 0.30 seconds, 63.95 tokens/sec\n2025-01-28 09:46:45.209 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 24.95 GB/s\n2025-01-28 09:46:45.209 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 2.45 GB\n/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/torch/nn/modules/conv.py:306: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)\nreturn F.conv1d(input, weight, bias, self.stride,\nNext sample", "metrics": { "predict_time": 3.163233212, "total_time": 83.160026 }, "output": "https://replicate.delivery/xezq/NRYmYHgoJ87uAJc7uH1NxPhF4w5fM159tmdCCMqJhgzCzyEKA/generated.wav", "started_at": "2025-01-28T09:46:42.380793Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bsvm-xtmkponhu5fq3bisvawc66i4qzcb7i73w2f4ud4ewgsouhumr5xa", "get": "https://api.replicate.com/v1/predictions/f9ttm80wt1rmc0cmnh6tfpftt8", "cancel": "https://api.replicate.com/v1/predictions/f9ttm80wt1rmc0cmnh6tfpftt8/cancel" }, "version": "54ec17a9858e5a0936b5fd67eb22dbdc4e7fb4262cfe59b1c117f89ca4b5a12b" }
Generated in2025-01-28 09:46:42.653 | INFO | tools.llama.generate:generate_long:491 - Encoded text: With tenure, Suzie'd have all 2025-01-28 09:46:42.654 | INFO | tools.llama.generate:generate_long:491 - Encoded text: the more leisure for yachting, 2025-01-28 09:46:42.654 | INFO | tools.llama.generate:generate_long:491 - Encoded text: but her publications are no 2025-01-28 09:46:42.654 | INFO | tools.llama.generate:generate_long:491 - Encoded text: good. 2025-01-28 09:46:42.654 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 1/4 of sample 1/1 0%| | 0/1858 [00:00<?, ?it/s]/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/torch/backends/cuda/__init__.py:342: FutureWarning: torch.backends.cuda.sdp_kernel() is deprecated. In the future, this context manager will be removed. Please see, torch.nn.attention.sdpa_kernel() for the new context manager, with updated signature. warnings.warn( 0%| | 6/1858 [00:00<00:31, 58.98it/s] 1%| | 13/1858 [00:00<00:29, 62.02it/s] 1%| | 20/1858 [00:00<00:29, 62.85it/s] 1%|▏ | 27/1858 [00:00<00:29, 62.97it/s] 2%|▏ | 34/1858 [00:00<00:28, 63.17it/s] 2%|▏ | 41/1858 [00:00<00:28, 63.23it/s] 3%|▎ | 48/1858 [00:00<00:28, 63.45it/s] 3%|▎ | 55/1858 [00:00<00:28, 63.64it/s] 3%|▎ | 57/1858 [00:00<00:29, 62.02it/s] 2025-01-28 09:46:43.653 | INFO | tools.llama.generate:generate_long:565 - Generated 59 tokens in 1.00 seconds, 59.06 tokens/sec 2025-01-28 09:46:43.653 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 23.04 GB/s 2025-01-28 09:46:43.654 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 2.45 GB 2025-01-28 09:46:43.654 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 2/4 of sample 1/1 0%| | 0/1751 [00:00<?, ?it/s] 0%| | 7/1751 [00:00<00:27, 63.96it/s] 1%| | 14/1751 [00:00<00:27, 64.07it/s] 1%| | 21/1751 [00:00<00:26, 64.20it/s] 2%|▏ | 28/1751 [00:00<00:26, 63.93it/s] 2%|▏ | 35/1751 [00:00<00:26, 63.92it/s] 2%|▏ | 39/1751 [00:00<00:27, 62.36it/s] 2025-01-28 09:46:44.300 | INFO | tools.llama.generate:generate_long:565 - Generated 41 tokens in 0.65 seconds, 63.47 tokens/sec 2025-01-28 09:46:44.300 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 24.77 GB/s 2025-01-28 09:46:44.300 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 2.45 GB 2025-01-28 09:46:44.301 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 3/4 of sample 1/1 0%| | 0/1665 [00:00<?, ?it/s] 0%| | 7/1665 [00:00<00:25, 64.20it/s] 1%| | 14/1665 [00:00<00:26, 63.41it/s] 1%|▏ | 21/1665 [00:00<00:25, 63.69it/s] 2%|▏ | 28/1665 [00:00<00:25, 63.84it/s] 2%|▏ | 35/1665 [00:00<00:25, 63.98it/s] 2%|▏ | 37/1665 [00:00<00:26, 62.18it/s] 2025-01-28 09:46:44.911 | INFO | tools.llama.generate:generate_long:565 - Generated 39 tokens in 0.61 seconds, 63.85 tokens/sec 2025-01-28 09:46:44.912 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 24.91 GB/s 2025-01-28 09:46:44.912 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 2.45 GB 2025-01-28 09:46:44.912 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 4/4 of sample 1/1 0%| | 0/1603 [00:00<?, ?it/s] 0%| | 7/1603 [00:00<00:24, 64.35it/s] 1%| | 14/1603 [00:00<00:24, 64.30it/s] 1%| | 17/1603 [00:00<00:26, 60.48it/s] 2025-01-28 09:46:45.209 | INFO | tools.llama.generate:generate_long:565 - Generated 19 tokens in 0.30 seconds, 63.95 tokens/sec 2025-01-28 09:46:45.209 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 24.95 GB/s 2025-01-28 09:46:45.209 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 2.45 GB /root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/torch/nn/modules/conv.py:306: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.) return F.conv1d(input, weight, bias, self.stride, Next sample
Want to make some of these yourself?
Run this model