ttsds
/
fishspeech_1_1_large
- Public
- 231 runs
-
L40S
Prediction
ttsds/fishspeech_1_1_large:bf25b86020c83763b6727b138d7b0c3308dd210ee059accc00cb6f1971bbcd37IDz4ex31txjdrme0cmq0kv4mm6b0StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- text
- With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.
- text_reference
- and keeping eternity before the eyes, though much.
- speaker_reference
- Video Player is loading.Current Time 00:00:000/Duration 00:00:000Loaded: 0%00:00:000Stream Type LIVERemaining Time -00:00:0001x
- Chapters
- descriptions off, selected
- captions settings, opens captions settings dialog
- captions off, selected
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{ "text": "With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.", "text_reference": "and keeping eternity before the eyes, though much.", "speaker_reference": "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ttsds/fishspeech_1_1_large using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ttsds/fishspeech_1_1_large:bf25b86020c83763b6727b138d7b0c3308dd210ee059accc00cb6f1971bbcd37", { input: { text: "With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.", text_reference: "and keeping eternity before the eyes, though much.", speaker_reference: "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ttsds/fishspeech_1_1_large using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ttsds/fishspeech_1_1_large:bf25b86020c83763b6727b138d7b0c3308dd210ee059accc00cb6f1971bbcd37", input={ "text": "With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.", "text_reference": "and keeping eternity before the eyes, though much.", "speaker_reference": "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ttsds/fishspeech_1_1_large using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bf25b86020c83763b6727b138d7b0c3308dd210ee059accc00cb6f1971bbcd37", "input": { "text": "With tenure, Suzie\'d have all the more leisure for yachting, but her publications are no good.", "text_reference": "and keeping eternity before the eyes, though much.", "speaker_reference": "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
Video Player is loading.Current Time 00:00:000/Duration 00:00:000Loaded: 0%00:00:000Stream Type LIVERemaining Time -00:00:0001x- Chapters
- descriptions off, selected
- captions settings, opens captions settings dialog
- captions off, selected
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{ "completed_at": "2025-01-30T17:01:30.241508Z", "created_at": "2025-01-30T16:59:35.187000Z", "data_removed": false, "error": null, "id": "z4ex31txjdrme0cmq0kv4mm6b0", "input": { "text": "With tenure, Suzie'd have all the more leisure for yachting, but her publications are no good.", "text_reference": "and keeping eternity before the eyes, though much.", "speaker_reference": "https://replicate.delivery/pbxt/MNFXdPaUPOwYCZjZM4azsymbzE2TCV2WJXfGpeV2DrFWaSq8/example_en.wav" }, "logs": "2025-01-30 17:01:26.111 | INFO | tools.llama.generate:generate_long:491 - Encoded text: With tenure, Suzie'd have all\n2025-01-30 17:01:26.111 | INFO | tools.llama.generate:generate_long:491 - Encoded text: the more leisure for yachting,\n2025-01-30 17:01:26.112 | INFO | tools.llama.generate:generate_long:491 - Encoded text: but her publications are no\n2025-01-30 17:01:26.112 | INFO | tools.llama.generate:generate_long:491 - Encoded text: good.\n2025-01-30 17:01:26.112 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 1/4 of sample 1/1\n 0%| | 0/1857 [00:00<?, ?it/s]/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/torch/backends/cuda/__init__.py:342: FutureWarning: torch.backends.cuda.sdp_kernel() is deprecated. In the future, this context manager will be removed. Please see, torch.nn.attention.sdpa_kernel() for the new context manager, with updated signature.\nwarnings.warn(\n 0%| | 6/1857 [00:00<00:35, 51.79it/s]\n 1%| | 12/1857 [00:00<00:34, 53.93it/s]\n 1%| | 18/1857 [00:00<00:33, 54.19it/s]\n 1%|▏ | 24/1857 [00:00<00:33, 54.77it/s]\n 2%|▏ | 30/1857 [00:00<00:33, 55.09it/s]\n 2%|▏ | 36/1857 [00:00<00:32, 55.26it/s]\n 2%|▏ | 42/1857 [00:00<00:32, 55.42it/s]\n 3%|▎ | 48/1857 [00:00<00:32, 55.49it/s]\n 3%|▎ | 54/1857 [00:00<00:32, 55.56it/s]\n 3%|▎ | 60/1857 [00:01<00:32, 55.55it/s]\n 4%|▎ | 66/1857 [00:01<00:32, 55.52it/s]\n 4%|▍ | 72/1857 [00:01<00:32, 55.56it/s]\n 4%|▍ | 78/1857 [00:01<00:32, 55.21it/s]\n4%|▍ | 81/1857 [00:01<00:32, 54.48it/s]\n2025-01-30 17:01:27.699 | INFO | tools.llama.generate:generate_long:565 - Generated 83 tokens in 1.59 seconds, 52.28 tokens/sec\n2025-01-30 17:01:27.700 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 53.67 GB/s\n2025-01-30 17:01:27.700 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 4.01 GB\n2025-01-30 17:01:27.700 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 2/4 of sample 1/1\n 0%| | 0/1726 [00:00<?, ?it/s]\n 0%| | 6/1726 [00:00<00:30, 55.57it/s]\n 1%| | 12/1726 [00:00<00:30, 55.47it/s]\n 1%| | 18/1726 [00:00<00:30, 55.52it/s]\n 1%|▏ | 24/1726 [00:00<00:30, 55.57it/s]\n 2%|▏ | 30/1726 [00:00<00:30, 55.51it/s]\n 2%|▏ | 36/1726 [00:00<00:30, 55.52it/s]\n 2%|▏ | 42/1726 [00:00<00:30, 55.54it/s]\n 3%|▎ | 48/1726 [00:00<00:30, 55.53it/s]\n3%|▎ | 50/1726 [00:00<00:30, 54.43it/s]\n2025-01-30 17:01:28.645 | INFO | tools.llama.generate:generate_long:565 - Generated 52 tokens in 0.94 seconds, 55.04 tokens/sec\n2025-01-30 17:01:28.645 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 56.50 GB/s\n2025-01-30 17:01:28.645 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 4.01 GB\n2025-01-30 17:01:28.646 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 3/4 of sample 1/1\n 0%| | 0/1629 [00:00<?, ?it/s]\n 0%| | 6/1629 [00:00<00:29, 55.72it/s]\n 1%| | 12/1629 [00:00<00:29, 55.44it/s]\n 1%| | 18/1629 [00:00<00:29, 55.43it/s]\n 1%|▏ | 24/1629 [00:00<00:28, 55.44it/s]\n 2%|▏ | 30/1629 [00:00<00:28, 55.51it/s]\n 2%|▏ | 36/1629 [00:00<00:28, 55.53it/s]\n 3%|▎ | 42/1629 [00:00<00:28, 55.52it/s]\n3%|▎ | 43/1629 [00:00<00:29, 54.22it/s]\n2025-01-30 17:01:29.459 | INFO | tools.llama.generate:generate_long:565 - Generated 45 tokens in 0.81 seconds, 55.34 tokens/sec\n2025-01-30 17:01:29.459 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 56.81 GB/s\n2025-01-30 17:01:29.459 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 4.01 GB\n2025-01-30 17:01:29.459 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 4/4 of sample 1/1\n 0%| | 0/1561 [00:00<?, ?it/s]\n 0%| | 6/1561 [00:00<00:28, 54.37it/s]\n 1%| | 12/1561 [00:00<00:28, 55.05it/s]\n 1%| | 18/1561 [00:00<00:28, 54.63it/s]\n1%|▏ | 22/1561 [00:00<00:29, 52.42it/s]\n2025-01-30 17:01:29.899 | INFO | tools.llama.generate:generate_long:565 - Generated 24 tokens in 0.44 seconds, 54.53 tokens/sec\n2025-01-30 17:01:29.900 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 55.97 GB/s\n2025-01-30 17:01:29.900 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 4.01 GB\n/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/torch/nn/modules/conv.py:306: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)\nreturn F.conv1d(input, weight, bias, self.stride,\nNext sample", "metrics": { "predict_time": 4.436514462, "total_time": 115.054508 }, "output": "https://replicate.delivery/xezq/cvDmYj7AkS7tCJ1L4xokpE0UPfq8qIr2Ey17B5YYk2fqJWKUA/generated.wav", "started_at": "2025-01-30T17:01:25.804994Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bsvm-oyur2w3altprrqoq2gmfap2fatjfjob7q4ccipws6k27y6glqlda", "get": "https://api.replicate.com/v1/predictions/z4ex31txjdrme0cmq0kv4mm6b0", "cancel": "https://api.replicate.com/v1/predictions/z4ex31txjdrme0cmq0kv4mm6b0/cancel" }, "version": "bf25b86020c83763b6727b138d7b0c3308dd210ee059accc00cb6f1971bbcd37" }
Generated in2025-01-30 17:01:26.111 | INFO | tools.llama.generate:generate_long:491 - Encoded text: With tenure, Suzie'd have all 2025-01-30 17:01:26.111 | INFO | tools.llama.generate:generate_long:491 - Encoded text: the more leisure for yachting, 2025-01-30 17:01:26.112 | INFO | tools.llama.generate:generate_long:491 - Encoded text: but her publications are no 2025-01-30 17:01:26.112 | INFO | tools.llama.generate:generate_long:491 - Encoded text: good. 2025-01-30 17:01:26.112 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 1/4 of sample 1/1 0%| | 0/1857 [00:00<?, ?it/s]/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/torch/backends/cuda/__init__.py:342: FutureWarning: torch.backends.cuda.sdp_kernel() is deprecated. In the future, this context manager will be removed. Please see, torch.nn.attention.sdpa_kernel() for the new context manager, with updated signature. warnings.warn( 0%| | 6/1857 [00:00<00:35, 51.79it/s] 1%| | 12/1857 [00:00<00:34, 53.93it/s] 1%| | 18/1857 [00:00<00:33, 54.19it/s] 1%|▏ | 24/1857 [00:00<00:33, 54.77it/s] 2%|▏ | 30/1857 [00:00<00:33, 55.09it/s] 2%|▏ | 36/1857 [00:00<00:32, 55.26it/s] 2%|▏ | 42/1857 [00:00<00:32, 55.42it/s] 3%|▎ | 48/1857 [00:00<00:32, 55.49it/s] 3%|▎ | 54/1857 [00:00<00:32, 55.56it/s] 3%|▎ | 60/1857 [00:01<00:32, 55.55it/s] 4%|▎ | 66/1857 [00:01<00:32, 55.52it/s] 4%|▍ | 72/1857 [00:01<00:32, 55.56it/s] 4%|▍ | 78/1857 [00:01<00:32, 55.21it/s] 4%|▍ | 81/1857 [00:01<00:32, 54.48it/s] 2025-01-30 17:01:27.699 | INFO | tools.llama.generate:generate_long:565 - Generated 83 tokens in 1.59 seconds, 52.28 tokens/sec 2025-01-30 17:01:27.700 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 53.67 GB/s 2025-01-30 17:01:27.700 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 4.01 GB 2025-01-30 17:01:27.700 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 2/4 of sample 1/1 0%| | 0/1726 [00:00<?, ?it/s] 0%| | 6/1726 [00:00<00:30, 55.57it/s] 1%| | 12/1726 [00:00<00:30, 55.47it/s] 1%| | 18/1726 [00:00<00:30, 55.52it/s] 1%|▏ | 24/1726 [00:00<00:30, 55.57it/s] 2%|▏ | 30/1726 [00:00<00:30, 55.51it/s] 2%|▏ | 36/1726 [00:00<00:30, 55.52it/s] 2%|▏ | 42/1726 [00:00<00:30, 55.54it/s] 3%|▎ | 48/1726 [00:00<00:30, 55.53it/s] 3%|▎ | 50/1726 [00:00<00:30, 54.43it/s] 2025-01-30 17:01:28.645 | INFO | tools.llama.generate:generate_long:565 - Generated 52 tokens in 0.94 seconds, 55.04 tokens/sec 2025-01-30 17:01:28.645 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 56.50 GB/s 2025-01-30 17:01:28.645 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 4.01 GB 2025-01-30 17:01:28.646 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 3/4 of sample 1/1 0%| | 0/1629 [00:00<?, ?it/s] 0%| | 6/1629 [00:00<00:29, 55.72it/s] 1%| | 12/1629 [00:00<00:29, 55.44it/s] 1%| | 18/1629 [00:00<00:29, 55.43it/s] 1%|▏ | 24/1629 [00:00<00:28, 55.44it/s] 2%|▏ | 30/1629 [00:00<00:28, 55.51it/s] 2%|▏ | 36/1629 [00:00<00:28, 55.53it/s] 3%|▎ | 42/1629 [00:00<00:28, 55.52it/s] 3%|▎ | 43/1629 [00:00<00:29, 54.22it/s] 2025-01-30 17:01:29.459 | INFO | tools.llama.generate:generate_long:565 - Generated 45 tokens in 0.81 seconds, 55.34 tokens/sec 2025-01-30 17:01:29.459 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 56.81 GB/s 2025-01-30 17:01:29.459 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 4.01 GB 2025-01-30 17:01:29.459 | INFO | tools.llama.generate:generate_long:509 - Generating sentence 4/4 of sample 1/1 0%| | 0/1561 [00:00<?, ?it/s] 0%| | 6/1561 [00:00<00:28, 54.37it/s] 1%| | 12/1561 [00:00<00:28, 55.05it/s] 1%| | 18/1561 [00:00<00:28, 54.63it/s] 1%|▏ | 22/1561 [00:00<00:29, 52.42it/s] 2025-01-30 17:01:29.899 | INFO | tools.llama.generate:generate_long:565 - Generated 24 tokens in 0.44 seconds, 54.53 tokens/sec 2025-01-30 17:01:29.900 | INFO | tools.llama.generate:generate_long:568 - Bandwidth achieved: 55.97 GB/s 2025-01-30 17:01:29.900 | INFO | tools.llama.generate:generate_long:573 - GPU Memory used: 4.01 GB /root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/torch/nn/modules/conv.py:306: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.) return F.conv1d(input, weight, bias, self.stride, Next sample
Want to make some of these yourself?
Run this model