usamaehsan / controlnet-lineart-brightness-tile-inpainting
controlnet-lineart-brightness-tile-inpainting + low res fix with tile
- Public
- 708 runs
-
L40S
- GitHub
Prediction
usamaehsan/controlnet-lineart-brightness-tile-inpainting:c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64eIDcdmlu23b5d6zuq34fx7v3xx6w4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- eta
- 0
- prompt
- underwater kingdom
- max_width
- 512
- scheduler
- DDIM
- guess_mode
- max_height
- 512
- num_outputs
- 1
- guidance_scale
- 7
- negative_prompt
- Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
- sorted_controlnets
- tile, inpainting, lineart
- num_inference_steps
- 20
- disable_safety_check
- tile_conditioning_scale
- 1
- lineart_conditioning_scale
- 1
- brightness_conditioning_scale
- 1
- inpainting_conditioning_scale
- 1
{ "eta": 0, "prompt": "underwater kingdom", "max_width": 512, "scheduler": "DDIM", "guess_mode": false, "max_height": 512, "num_outputs": 1, "lineart_image": "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "usamaehsan/controlnet-lineart-brightness-tile-inpainting:c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64e", { input: { eta: 0, prompt: "underwater kingdom", max_width: 512, scheduler: "DDIM", guess_mode: false, max_height: 512, num_outputs: 1, lineart_image: "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", guidance_scale: 7, negative_prompt: "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", sorted_controlnets: "tile, inpainting, lineart", num_inference_steps: 20, disable_safety_check: false, tile_conditioning_scale: 1, lineart_conditioning_scale: 1, brightness_conditioning_scale: 1, inpainting_conditioning_scale: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "usamaehsan/controlnet-lineart-brightness-tile-inpainting:c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64e", input={ "eta": 0, "prompt": "underwater kingdom", "max_width": 512, "scheduler": "DDIM", "guess_mode": False, "max_height": 512, "num_outputs": 1, "lineart_image": "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": False, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "usamaehsan/controlnet-lineart-brightness-tile-inpainting:c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64e", "input": { "eta": 0, "prompt": "underwater kingdom", "max_width": 512, "scheduler": "DDIM", "guess_mode": false, "max_height": 512, "num_outputs": 1, "lineart_image": "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-19T01:28:10.428207Z", "created_at": "2023-11-19T01:28:07.551522Z", "data_removed": false, "error": null, "id": "cdmlu23b5d6zuq34fx7v3xx6w4", "input": { "eta": 0, "prompt": "underwater kingdom", "max_width": 512, "scheduler": "DDIM", "guess_mode": false, "max_height": 512, "num_outputs": 1, "lineart_image": "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 }, "logs": "tile\ninpainting\nlineart\nbrightness\nUsing seed: 58469\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:03, 5.27it/s]\n 20%|██ | 4/20 [00:00<00:01, 13.07it/s]\n 30%|███ | 6/20 [00:00<00:00, 15.34it/s]\n 40%|████ | 8/20 [00:00<00:00, 16.78it/s]\n 50%|█████ | 10/20 [00:00<00:00, 17.71it/s]\n 60%|██████ | 12/20 [00:00<00:00, 18.33it/s]\n 70%|███████ | 14/20 [00:00<00:00, 18.75it/s]\n 80%|████████ | 16/20 [00:00<00:00, 19.04it/s]\n 90%|█████████ | 18/20 [00:01<00:00, 19.20it/s]\n100%|██████████| 20/20 [00:01<00:00, 19.32it/s]\n100%|██████████| 20/20 [00:01<00:00, 17.35it/s]", "metrics": { "predict_time": 2.842191, "total_time": 2.876685 }, "output": [ "https://replicate.delivery/pbxt/AwpAbmIbs4IvDVGe6lpYDo8OBfFcWeNOhXWOGIDe0BalqFnHB/seed-58469.png" ], "started_at": "2023-11-19T01:28:07.586016Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/cdmlu23b5d6zuq34fx7v3xx6w4", "cancel": "https://api.replicate.com/v1/predictions/cdmlu23b5d6zuq34fx7v3xx6w4/cancel" }, "version": "c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64e" }
Generated intile inpainting lineart brightness Using seed: 58469 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:03, 5.27it/s] 20%|██ | 4/20 [00:00<00:01, 13.07it/s] 30%|███ | 6/20 [00:00<00:00, 15.34it/s] 40%|████ | 8/20 [00:00<00:00, 16.78it/s] 50%|█████ | 10/20 [00:00<00:00, 17.71it/s] 60%|██████ | 12/20 [00:00<00:00, 18.33it/s] 70%|███████ | 14/20 [00:00<00:00, 18.75it/s] 80%|████████ | 16/20 [00:00<00:00, 19.04it/s] 90%|█████████ | 18/20 [00:01<00:00, 19.20it/s] 100%|██████████| 20/20 [00:01<00:00, 19.32it/s] 100%|██████████| 20/20 [00:01<00:00, 17.35it/s]
Prediction
usamaehsan/controlnet-lineart-brightness-tile-inpainting:c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64eID4imrzedbh3wp53ip2xmjvg2b4aStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- eta
- 0
- prompt
- -
- max_width
- 512
- scheduler
- DDIM
- guess_mode
- max_height
- 512
- num_outputs
- 1
- guidance_scale
- 7
- negative_prompt
- Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
- sorted_controlnets
- tile, inpainting, lineart
- num_inference_steps
- 20
- disable_safety_check
- tile_conditioning_scale
- 1
- lineart_conditioning_scale
- 1
- brightness_conditioning_scale
- 1
- inpainting_conditioning_scale
- 1
{ "eta": 0, "prompt": "-", "max_width": 512, "scheduler": "DDIM", "guess_mode": true, "max_height": 512, "tile_image": "https://replicate.delivery/pbxt/JtxFlAjPMqT3H841t12tmadlf4VPKjfE3GdeZLtuQKpMWMUc/WhatsApp%20Image%202023-11-19%20at%206.29.12%20AM.jpeg", "num_outputs": 1, "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "usamaehsan/controlnet-lineart-brightness-tile-inpainting:c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64e", { input: { eta: 0, prompt: "-", max_width: 512, scheduler: "DDIM", guess_mode: true, max_height: 512, tile_image: "https://replicate.delivery/pbxt/JtxFlAjPMqT3H841t12tmadlf4VPKjfE3GdeZLtuQKpMWMUc/WhatsApp%20Image%202023-11-19%20at%206.29.12%20AM.jpeg", num_outputs: 1, guidance_scale: 7, negative_prompt: "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", sorted_controlnets: "tile, inpainting, lineart", num_inference_steps: 20, disable_safety_check: false, tile_conditioning_scale: 1, lineart_conditioning_scale: 1, brightness_conditioning_scale: 1, inpainting_conditioning_scale: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "usamaehsan/controlnet-lineart-brightness-tile-inpainting:c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64e", input={ "eta": 0, "prompt": "-", "max_width": 512, "scheduler": "DDIM", "guess_mode": True, "max_height": 512, "tile_image": "https://replicate.delivery/pbxt/JtxFlAjPMqT3H841t12tmadlf4VPKjfE3GdeZLtuQKpMWMUc/WhatsApp%20Image%202023-11-19%20at%206.29.12%20AM.jpeg", "num_outputs": 1, "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": False, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "usamaehsan/controlnet-lineart-brightness-tile-inpainting:c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64e", "input": { "eta": 0, "prompt": "-", "max_width": 512, "scheduler": "DDIM", "guess_mode": true, "max_height": 512, "tile_image": "https://replicate.delivery/pbxt/JtxFlAjPMqT3H841t12tmadlf4VPKjfE3GdeZLtuQKpMWMUc/WhatsApp%20Image%202023-11-19%20at%206.29.12%20AM.jpeg", "num_outputs": 1, "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-19T01:30:48.897779Z", "created_at": "2023-11-19T01:30:46.178534Z", "data_removed": false, "error": null, "id": "4imrzedbh3wp53ip2xmjvg2b4a", "input": { "eta": 0, "prompt": "-", "max_width": 512, "scheduler": "DDIM", "guess_mode": true, "max_height": 512, "tile_image": "https://replicate.delivery/pbxt/JtxFlAjPMqT3H841t12tmadlf4VPKjfE3GdeZLtuQKpMWMUc/WhatsApp%20Image%202023-11-19%20at%206.29.12%20AM.jpeg", "num_outputs": 1, "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 }, "logs": "tile\ninpainting\nlineart\nbrightness\nUsing seed: 59639\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:02, 7.27it/s]\n 15%|█▌ | 3/20 [00:00<00:01, 13.67it/s]\n 30%|███ | 6/20 [00:00<00:00, 17.01it/s]\n 45%|████▌ | 9/20 [00:00<00:00, 18.33it/s]\n 55%|█████▌ | 11/20 [00:00<00:00, 18.79it/s]\n 70%|███████ | 14/20 [00:00<00:00, 19.37it/s]\n 85%|████████▌ | 17/20 [00:00<00:00, 19.72it/s]\n100%|██████████| 20/20 [00:01<00:00, 19.95it/s]\n100%|██████████| 20/20 [00:01<00:00, 18.52it/s]", "metrics": { "predict_time": 2.682879, "total_time": 2.719245 }, "output": [ "https://replicate.delivery/pbxt/fA3raeDtKlmZukFlW69oTmX0YQcjAywRPzT662w70iqIdx5RA/seed-59639.png" ], "started_at": "2023-11-19T01:30:46.214900Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4imrzedbh3wp53ip2xmjvg2b4a", "cancel": "https://api.replicate.com/v1/predictions/4imrzedbh3wp53ip2xmjvg2b4a/cancel" }, "version": "c6ca77102e4aa453fc188f824c8230ffb5ea6b6abec33731b2f08b0a9be8a64e" }
Generated intile inpainting lineart brightness Using seed: 59639 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:02, 7.27it/s] 15%|█▌ | 3/20 [00:00<00:01, 13.67it/s] 30%|███ | 6/20 [00:00<00:00, 17.01it/s] 45%|████▌ | 9/20 [00:00<00:00, 18.33it/s] 55%|█████▌ | 11/20 [00:00<00:00, 18.79it/s] 70%|███████ | 14/20 [00:00<00:00, 19.37it/s] 85%|████████▌ | 17/20 [00:00<00:00, 19.72it/s] 100%|██████████| 20/20 [00:01<00:00, 19.95it/s] 100%|██████████| 20/20 [00:01<00:00, 18.52it/s]
Prediction
usamaehsan/controlnet-lineart-brightness-tile-inpainting:22f3c902303d2ebefec06a4a53d96af6a41cf46ef30de46c5ad9cd8f70b30a84ID2yehosdb2qrbky2rsp7co2wvjqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- eta
- 0
- prompt
- underwater kingdom
- max_width
- 412
- scheduler
- DDIM
- guess_mode
- max_height
- 412
- low_res_fix
- num_outputs
- 1
- guidance_scale
- 7
- negative_prompt
- Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
- low_res_fix_steps
- 10
- sorted_controlnets
- tile, inpainting, lineart
- num_inference_steps
- 20
- disable_safety_check
- low_res_fix_resolution
- 768
- tile_conditioning_scale
- 1
- lineart_conditioning_scale
- 1
- brightness_conditioning_scale
- 1
- inpainting_conditioning_scale
- 1
{ "eta": 0, "prompt": "underwater kingdom", "max_width": 412, "scheduler": "DDIM", "guess_mode": false, "max_height": 412, "low_res_fix": true, "num_outputs": 1, "lineart_image": "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "low_res_fix_steps": 10, "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "low_res_fix_resolution": 768, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "usamaehsan/controlnet-lineart-brightness-tile-inpainting:22f3c902303d2ebefec06a4a53d96af6a41cf46ef30de46c5ad9cd8f70b30a84", { input: { eta: 0, prompt: "underwater kingdom", max_width: 412, scheduler: "DDIM", guess_mode: false, max_height: 412, low_res_fix: true, num_outputs: 1, lineart_image: "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", guidance_scale: 7, negative_prompt: "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", low_res_fix_steps: 10, sorted_controlnets: "tile, inpainting, lineart", num_inference_steps: 20, disable_safety_check: false, low_res_fix_resolution: 768, tile_conditioning_scale: 1, lineart_conditioning_scale: 1, brightness_conditioning_scale: 1, inpainting_conditioning_scale: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "usamaehsan/controlnet-lineart-brightness-tile-inpainting:22f3c902303d2ebefec06a4a53d96af6a41cf46ef30de46c5ad9cd8f70b30a84", input={ "eta": 0, "prompt": "underwater kingdom", "max_width": 412, "scheduler": "DDIM", "guess_mode": False, "max_height": 412, "low_res_fix": True, "num_outputs": 1, "lineart_image": "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "low_res_fix_steps": 10, "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": False, "low_res_fix_resolution": 768, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run usamaehsan/controlnet-lineart-brightness-tile-inpainting using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "usamaehsan/controlnet-lineart-brightness-tile-inpainting:22f3c902303d2ebefec06a4a53d96af6a41cf46ef30de46c5ad9cd8f70b30a84", "input": { "eta": 0, "prompt": "underwater kingdom", "max_width": 412, "scheduler": "DDIM", "guess_mode": false, "max_height": 412, "low_res_fix": true, "num_outputs": 1, "lineart_image": "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "low_res_fix_steps": 10, "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "low_res_fix_resolution": 768, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-19T17:41:52.009888Z", "created_at": "2023-11-19T17:41:41.861875Z", "data_removed": false, "error": null, "id": "2yehosdb2qrbky2rsp7co2wvjq", "input": { "eta": 0, "prompt": "underwater kingdom", "max_width": 412, "scheduler": "DDIM", "guess_mode": false, "max_height": 412, "low_res_fix": true, "num_outputs": 1, "lineart_image": "https://replicate.delivery/pbxt/JtxDFtHe0rVC4pvGUVGbnR8BOHLaFhGLA4YAScgno1FomeD9/ceb71f061de43744a245456771d6f95d.jpg", "guidance_scale": 7, "negative_prompt": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", "low_res_fix_steps": 10, "sorted_controlnets": "tile, inpainting, lineart", "num_inference_steps": 20, "disable_safety_check": false, "low_res_fix_resolution": 768, "tile_conditioning_scale": 1, "lineart_conditioning_scale": 1, "brightness_conditioning_scale": 1, "inpainting_conditioning_scale": 1 }, "logs": "lineart\nUsing seed: 29179\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:04, 4.69it/s]\n 20%|██ | 4/20 [00:00<00:01, 13.02it/s]\n 35%|███▌ | 7/20 [00:00<00:00, 16.80it/s]\n 50%|█████ | 10/20 [00:00<00:00, 18.66it/s]\n 65%|██████▌ | 13/20 [00:00<00:00, 19.80it/s]\n 80%|████████ | 16/20 [00:00<00:00, 20.65it/s]\n 95%|█████████▌| 19/20 [00:01<00:00, 21.24it/s]\n100%|██████████| 20/20 [00:01<00:00, 18.73it/s]\nsize: (352, 408)\nRunning low res fix...\ncondition image resize took 0.014973163604736328 seconds\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:03, 2.63it/s]\n 20%|██ | 2/10 [00:00<00:02, 3.98it/s]\n 30%|███ | 3/10 [00:00<00:01, 4.75it/s]\n 40%|████ | 4/10 [00:00<00:01, 5.22it/s]\n 50%|█████ | 5/10 [00:01<00:00, 5.54it/s]\n 60%|██████ | 6/10 [00:01<00:00, 5.74it/s]\n 70%|███████ | 7/10 [00:01<00:00, 5.88it/s]\n 80%|████████ | 8/10 [00:01<00:00, 5.97it/s]\n 90%|█████████ | 9/10 [00:01<00:00, 6.03it/s]\n100%|██████████| 10/10 [00:01<00:00, 6.07it/s]\n100%|██████████| 10/10 [00:01<00:00, 5.44it/s]\nlow-res-fix took 2.102013349533081seconds", "metrics": { "predict_time": 8.40441, "total_time": 10.148013 }, "output": [ "https://replicate.delivery/pbxt/3MyrCc47OoL5Fp92B27f3KUqxgueXySQUkfjrGgND5L9WfnHB/seed-29179.png", "https://replicate.delivery/pbxt/9x52xSzNWV4kKZejt8W78yU5GF82nu78fgfeWiRKwF6fb9PPC/low-res-40977.png" ], "started_at": "2023-11-19T17:41:43.605478Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2yehosdb2qrbky2rsp7co2wvjq", "cancel": "https://api.replicate.com/v1/predictions/2yehosdb2qrbky2rsp7co2wvjq/cancel" }, "version": "22f3c902303d2ebefec06a4a53d96af6a41cf46ef30de46c5ad9cd8f70b30a84" }
Generated inlineart Using seed: 29179 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:04, 4.69it/s] 20%|██ | 4/20 [00:00<00:01, 13.02it/s] 35%|███▌ | 7/20 [00:00<00:00, 16.80it/s] 50%|█████ | 10/20 [00:00<00:00, 18.66it/s] 65%|██████▌ | 13/20 [00:00<00:00, 19.80it/s] 80%|████████ | 16/20 [00:00<00:00, 20.65it/s] 95%|█████████▌| 19/20 [00:01<00:00, 21.24it/s] 100%|██████████| 20/20 [00:01<00:00, 18.73it/s] size: (352, 408) Running low res fix... condition image resize took 0.014973163604736328 seconds 0%| | 0/10 [00:00<?, ?it/s] 10%|█ | 1/10 [00:00<00:03, 2.63it/s] 20%|██ | 2/10 [00:00<00:02, 3.98it/s] 30%|███ | 3/10 [00:00<00:01, 4.75it/s] 40%|████ | 4/10 [00:00<00:01, 5.22it/s] 50%|█████ | 5/10 [00:01<00:00, 5.54it/s] 60%|██████ | 6/10 [00:01<00:00, 5.74it/s] 70%|███████ | 7/10 [00:01<00:00, 5.88it/s] 80%|████████ | 8/10 [00:01<00:00, 5.97it/s] 90%|█████████ | 9/10 [00:01<00:00, 6.03it/s] 100%|██████████| 10/10 [00:01<00:00, 6.07it/s] 100%|██████████| 10/10 [00:01<00:00, 5.44it/s] low-res-fix took 2.102013349533081seconds
Want to make some of these yourself?
Run this model