usamaehsan / controlnet-x-realistic-vision

  • Public
  • 69 runs

Run usamaehsan/controlnet-x-realistic-vision with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
Prompt - using compel, use +++ to increase words weight:: doc: https://github.com/damian0815/compel/tree/main/doc || https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#attention-weighting
negative_prompt
string
Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
Negative prompt - using compel, use +++ to increase words weight//// negative-embeddings available ///// FastNegativeV2 , boring_e621_v4 , verybadimagenegative_v1 || to use them, write their keyword in negative prompt
num_inference_steps
integer
20
Steps to run denoising
guidance_scale
number
7

Min: 0.1

Max: 30

Scale for classifier-free guidance
seed
integer
Seed
eta
number
0
Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise
guess_mode
boolean
False
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
disable_safety_check
boolean
False
Disable safety check. Use at your own risk!
num_outputs
integer
1

Min: 1

Max: 10

Number of images to generate
max_width
integer
512
Max width/Resolution of image
max_height
integer
512
Max height/Resolution of image
scheduler
string (enum)
DDIM

Options:

DDIM, DPMSolverMultistep, HeunDiscrete, K_EULER_ANCESTRAL, K_EULER, KLMS, PNDM, UniPCMultistep, KDPM2DiscreteScheduler, KDPM2AncestralDiscreteScheduler

Choose a scheduler.
lineart_image
string
Control image for canny controlnet
lineart_conditioning_scale
number
1
Conditioning scale for canny controlnet
depth_image
string
Control image for depth controlnet
depth_conditioning_scale
number
1
Conditioning scale for depth controlnet
canny_image
string
Control image for canny controlnet
canny_conditioning_scale
number
1
Conditioning scale for canny controlnet
mlsd_image
string
Control image for mlsd controlnet
mlsd_conditioning_scale
number
1
Conditioning scale for mlsd controlnet
inpainting_image
string
Control image for inpainting controlnet
mask_image
string
mask image for inpainting controlnet
positive_auto_mask_text
string
comma seperated list of objects for mask, AI will auto create mask of these objects, if mask text is given, mask image will not work
negative_auto_mask_text
string
comma seperated list of objects you dont want to mask, AI will auto delete these objects from mask, only works if positive_auto_mask_text is given
inpainting_conditioning_scale
number
1
Conditioning scale for brightness controlnet
sorted_controlnets
string
tile, inpainting, lineart
Comma seperated string of controlnet names, list of names: tile, inpainting, lineart,depth ,scribble , brightness /// example value: tile, inpainting, lineart
ip_adapter_ckpt
string (enum)
ip-adapter_sd15.bin

Options:

ip-adapter_sd15.bin, ip-adapter-plus_sd15.bin, ip-adapter-plus-face_sd15.bin

IP Adapter checkpoint
ip_adapter_image
string
IP Adapter image
ip_adapter_weight
number
1
IP Adapter weight
img2img_image
string
Image2image image
img2img_strength
number
0.5
img2img strength, does not work when inpainting image is given, 0.1-same image, 0.99-complete destruction of image
add_more_detail_lora_scale
number
0.5
Scale/ weight of more_details lora, more scale = more details, disabled on 0
detail_tweaker_lora_weight
number
0
disabled on 0
film_grain_lora_weight
number
0
disabled on 0
epi_noise_offset_lora_weight
number
0
disabled on 0
color_temprature_slider_lora_weight
number
0
disabled on 0

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "array",
  "items": {
    "type": "string",
    "format": "uri"
  },
  "title": "Output"
}