usamaehsan / juggernaut-xl-x-adapters-x-lightning

  • Public
  • 19 runs

Run usamaehsan/juggernaut-xl-x-adapters-x-lightning with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
Prompt - using compel, use +++ to increase words weight:: doc: https://github.com/damian0815/compel/tree/main/doc || https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#attention-weighting
negative_prompt
string
Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
Negative prompt - using compel, use +++ to increase words weight//// negative-embeddings available ///// FastNegativeV2 , boring_e621_v4 , verybadimagenegative_v1 || to use them, write their keyword in negative prompt
num_inference_steps
integer
20
Steps to run denoising
guidance_scale
number
7

Min: 0.1

Max: 30

Scale for classifier-free guidance
seed
integer
Seed
disable_safety_check
boolean
False
Disable safety check. Use at your own risk!
max_width
integer
512
Max width/Resolution of image
max_height
integer
512
Max height/Resolution of image
scheduler
string (enum)
DDIM

Options:

DDIM, DPMSolverMultistep, HeunDiscrete, K_EULER_ANCESTRAL, K_EULER, PNDM

Choose a scheduler.
lineart_image
string
Control image for lineart adapter
lineart_conditioning_scale
number
1
Conditioning scale for canny controlnet
depth_image
string
Control image for depth controlnet
depth_conditioning_scale
number
1
Conditioning scale for depth controlnet
ip_adapter_image
string
IP Adapter image
ip_adapter_weight
number
1
IP Adapter weight
lightning_lora_weight
number
0
disabled on 0
micro_detail_lora_weight
number
0
disabled on 0

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "array",
  "items": {
    "type": "string",
    "format": "uri"
  },
  "title": "Output"
}