wavespeedai
/
wan-2.1-t2v-480p
Accelerated inference for Wan 2.1 14B text to video, a comprehensive and open suite of video foundation models that pushes the boundaries of video generation.
Prediction
wavespeedai/wan-2.1-t2v-480pOfficial modelIDw6x78jsgmdrm80cn8g1bnc3g04StatusSucceededSourceWebTotal durationCreatedInput
- prompt
- An astronaut dancing vigorously on the moon with earth flying past in the background, hyperrealistic
- num_frames
- 81
- aspect_ratio
- 16:9
- sample_shift
- 5
- sample_steps
- 30
- frames_per_second
- 16
- sample_guide_scale
- 5
{ "prompt": "An astronaut dancing vigorously on the moon with earth flying past in the background, hyperrealistic", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run wavespeedai/wan-2.1-t2v-480p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const input = { prompt: "An astronaut dancing vigorously on the moon with earth flying past in the background, hyperrealistic", num_frames: 81, aspect_ratio: "16:9", sample_shift: 5, sample_steps: 30, frames_per_second: 16, sample_guide_scale: 5 }; const output = await replicate.run("wavespeedai/wan-2.1-t2v-480p", { input }); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run wavespeedai/wan-2.1-t2v-480p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "wavespeedai/wan-2.1-t2v-480p", input={ "prompt": "An astronaut dancing vigorously on the moon with earth flying past in the background, hyperrealistic", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run wavespeedai/wan-2.1-t2v-480p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "input": { "prompt": "An astronaut dancing vigorously on the moon with earth flying past in the background, hyperrealistic", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 } }' \ https://api.replicate.com/v1/models/wavespeedai/wan-2.1-t2v-480p/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-02-26T20:46:27.905401Z", "created_at": "2025-02-26T20:45:49.091000Z", "data_removed": false, "error": null, "id": "w6x78jsgmdrm80cn8g1bnc3g04", "input": { "prompt": "An astronaut dancing vigorously on the moon with earth flying past in the background, hyperrealistic", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 }, "logs": "Using seed: 851347977\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n/src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\nwith amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():\n 0%| | 0/30 [00:00<?, ?it/s]\n0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n 0%| | 0/30 [00:00<?, ?it/s]\n3%|▎ | 1/30 [00:01<00:34, 1.17s/it]\n3%|▎ | 1/30 [00:01<00:34, 1.17s/it]\n 3%|▎ | 1/30 [00:01<00:34, 1.17s/it]\n3%|▎ | 1/30 [00:01<00:34, 1.17s/it]\n 3%|▎ | 1/30 [00:01<00:34, 1.17s/it]\n 3%|▎ | 1/30 [00:01<00:34, 1.17s/it]\n 3%|▎ | 1/30 [00:01<00:34, 1.17s/it]\n 3%|▎ | 1/30 [00:01<00:34, 1.17s/it]\n 7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\n 7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\n 7%|▋ | 2/30 [00:02<00:32, 1.18s/it]\n7%|▋ | 2/30 [00:02<00:32, 1.18s/it]\n 7%|▋ | 2/30 [00:02<00:32, 1.18s/it]\n 7%|▋ | 2/30 [00:02<00:32, 1.18s/it]\n7%|▋ | 2/30 [00:02<00:32, 1.18s/it]\n 7%|▋ | 2/30 [00:02<00:32, 1.18s/it]\n 10%|█ | 3/30 [00:03<00:34, 1.29s/it]\n 10%|█ | 3/30 [00:03<00:35, 1.30s/it]\n 10%|█ | 3/30 [00:03<00:35, 1.30s/it]\n 10%|█ | 3/30 [00:03<00:35, 1.30s/it]\n 10%|█ | 3/30 [00:03<00:35, 1.30s/it]\n 10%|█ | 3/30 [00:03<00:35, 1.30s/it]\n 10%|█ | 3/30 [00:03<00:35, 1.30s/it]\n 10%|█ | 3/30 [00:03<00:35, 1.30s/it]\n13%|█▎ | 4/30 [00:04<00:32, 1.25s/it]\n13%|█▎ | 4/30 [00:04<00:32, 1.25s/it]\n13%|█▎ | 4/30 [00:04<00:32, 1.26s/it]\n13%|█▎ | 4/30 [00:04<00:32, 1.26s/it]\n 13%|█▎ | 4/30 [00:04<00:32, 1.25s/it]\n13%|█▎ | 4/30 [00:04<00:32, 1.25s/it]\n13%|█▎ | 4/30 [00:04<00:32, 1.26s/it]\n 13%|█▎ | 4/30 [00:04<00:32, 1.25s/it]\n17%|█▋ | 5/30 [00:06<00:30, 1.23s/it]\n17%|█▋ | 5/30 [00:06<00:30, 1.23s/it]\n17%|█▋ | 5/30 [00:06<00:30, 1.23s/it]\n17%|█▋ | 5/30 [00:06<00:30, 1.23s/it]\n 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it]\n 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it]\n17%|█▋ | 5/30 [00:06<00:30, 1.23s/it]\n 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it]\n20%|██ | 6/30 [00:07<00:29, 1.21s/it]\n20%|██ | 6/30 [00:07<00:29, 1.21s/it]\n20%|██ | 6/30 [00:07<00:29, 1.21s/it]\n 20%|██ | 6/30 [00:07<00:29, 1.21s/it]\n20%|██ | 6/30 [00:07<00:29, 1.21s/it]\n 20%|██ | 6/30 [00:07<00:29, 1.21s/it]\n 20%|██ | 6/30 [00:07<00:29, 1.21s/it]\n 20%|██ | 6/30 [00:07<00:29, 1.21s/it]\n23%|██▎ | 7/30 [00:08<00:27, 1.20s/it]\n 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it]\n23%|██▎ | 7/30 [00:08<00:27, 1.20s/it]\n 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it]\n 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it]\n23%|██▎ | 7/30 [00:08<00:27, 1.20s/it]\n23%|██▎ | 7/30 [00:08<00:27, 1.20s/it]\n 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it]\n27%|██▋ | 8/30 [00:09<00:26, 1.20s/it]\n27%|██▋ | 8/30 [00:09<00:26, 1.19s/it]\n 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it]\n27%|██▋ | 8/30 [00:09<00:26, 1.20s/it]\n 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it]\n 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it]\n27%|██▋ | 8/30 [00:09<00:26, 1.19s/it]\n 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it]\n30%|███ | 9/30 [00:10<00:25, 1.19s/it]\n30%|███ | 9/30 [00:10<00:25, 1.19s/it]\n30%|███ | 9/30 [00:10<00:25, 1.19s/it]\n 30%|███ | 9/30 [00:10<00:25, 1.19s/it]\n30%|███ | 9/30 [00:10<00:25, 1.19s/it]\n30%|███ | 9/30 [00:10<00:25, 1.19s/it]\n 30%|███ | 9/30 [00:10<00:25, 1.19s/it]\n 30%|███ | 9/30 [00:10<00:25, 1.19s/it]\n 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it]\n33%|███▎ | 10/30 [00:12<00:23, 1.19s/it]\n33%|███▎ | 10/30 [00:12<00:23, 1.19s/it]\n33%|███▎ | 10/30 [00:12<00:23, 1.19s/it]\n 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it]\n33%|███▎ | 10/30 [00:12<00:23, 1.19s/it]\n 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it]\n 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it]\n37%|███▋ | 11/30 [00:13<00:22, 1.19s/it]\n37%|███▋ | 11/30 [00:13<00:22, 1.19s/it]\n37%|███▋ | 11/30 [00:13<00:22, 1.19s/it]\n37%|███▋ | 11/30 [00:13<00:22, 1.19s/it]\n 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it]\n37%|███▋ | 11/30 [00:13<00:22, 1.19s/it]\n37%|███▋ | 11/30 [00:13<00:22, 1.19s/it]\n 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it]\n40%|████ | 12/30 [00:14<00:21, 1.19s/it]\n 40%|████ | 12/30 [00:14<00:21, 1.19s/it]\n40%|████ | 12/30 [00:14<00:21, 1.19s/it]\n40%|████ | 12/30 [00:14<00:21, 1.19s/it]\n40%|████ | 12/30 [00:14<00:21, 1.19s/it]\n 40%|████ | 12/30 [00:14<00:21, 1.19s/it]\n 40%|████ | 12/30 [00:14<00:21, 1.19s/it]\n 40%|████ | 12/30 [00:14<00:21, 1.19s/it]\n43%|████▎ | 13/30 [00:15<00:20, 1.19s/it]\n43%|████▎ | 13/30 [00:15<00:20, 1.19s/it]\n43%|████▎ | 13/30 [00:15<00:20, 1.19s/it]\n 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it]\n 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it]\n 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it]\n 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it]\n 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it]\n47%|████▋ | 14/30 [00:16<00:18, 1.19s/it]\n47%|████▋ | 14/30 [00:16<00:18, 1.19s/it]\n47%|████▋ | 14/30 [00:16<00:18, 1.19s/it]\n47%|████▋ | 14/30 [00:16<00:18, 1.19s/it]\n 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it]\n47%|████▋ | 14/30 [00:16<00:18, 1.19s/it]\n 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it]\n 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it]\n50%|█████ | 15/30 [00:17<00:17, 1.19s/it]\n 50%|█████ | 15/30 [00:17<00:17, 1.19s/it]\n 50%|█████ | 15/30 [00:17<00:17, 1.19s/it]\n 50%|█████ | 15/30 [00:17<00:17, 1.19s/it]\n50%|█████ | 15/30 [00:17<00:17, 1.19s/it]\n 50%|█████ | 15/30 [00:17<00:17, 1.19s/it]\n50%|█████ | 15/30 [00:17<00:17, 1.19s/it]\n 50%|█████ | 15/30 [00:17<00:17, 1.19s/it]\n53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it]\n53%|█████▎ | 16/30 [00:19<00:16, 1.18s/it]\n53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it]\n53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it]\n53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it]\n 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it]\n 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it]\n 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it]\n57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it]\n57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it]\n57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it]\n57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it]\n 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it]\n 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it]\n57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it]\n 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it]\n60%|██████ | 18/30 [00:21<00:14, 1.19s/it]\n 60%|██████ | 18/30 [00:21<00:14, 1.19s/it]\n 60%|██████ | 18/30 [00:21<00:14, 1.19s/it]\n60%|██████ | 18/30 [00:21<00:14, 1.19s/it]\n60%|██████ | 18/30 [00:21<00:14, 1.19s/it]\n60%|██████ | 18/30 [00:21<00:14, 1.19s/it]\n 60%|██████ | 18/30 [00:21<00:14, 1.19s/it]\n 60%|██████ | 18/30 [00:21<00:14, 1.19s/it]\n63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it]\n63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it]\n63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it]\n63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it]\n63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it]\n63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it]\n 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it]\n 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it]\n67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it]\n67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it]\n 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it]\n 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it]\n67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it]\n67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it]\n 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it]\n 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it]\n70%|███████ | 21/30 [00:25<00:10, 1.19s/it]\n70%|███████ | 21/30 [00:25<00:10, 1.19s/it]\n 70%|███████ | 21/30 [00:25<00:10, 1.19s/it]\n 70%|███████ | 21/30 [00:25<00:10, 1.19s/it]\n 70%|███████ | 21/30 [00:25<00:10, 1.19s/it]\n 70%|███████ | 21/30 [00:25<00:10, 1.19s/it]\n 70%|███████ | 21/30 [00:25<00:10, 1.19s/it]\n 70%|███████ | 21/30 [00:25<00:10, 1.19s/it]\n73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it]\n73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it]\n 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it]\n 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it]\n73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it]\n73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it]\n 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it]\n 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it]\n 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it]\n77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it]\n 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it]\n 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it]\n 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it]\n77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it]\n 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it]\n 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it]\n80%|████████ | 24/30 [00:28<00:07, 1.19s/it]\n80%|████████ | 24/30 [00:28<00:07, 1.19s/it]\n80%|████████ | 24/30 [00:28<00:07, 1.19s/it]\n 80%|████████ | 24/30 [00:28<00:07, 1.19s/it]\n 80%|████████ | 24/30 [00:28<00:07, 1.19s/it]\n80%|████████ | 24/30 [00:28<00:07, 1.19s/it]\n 80%|████████ | 24/30 [00:28<00:07, 1.19s/it]\n 80%|████████ | 24/30 [00:28<00:07, 1.19s/it]\n83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it]\n 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it]\n83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it]\n83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it]\n 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it]\n 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it]\n 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it]\n 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it]\n87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it]\n 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it]\n 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it]\n87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it]\n 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it]\n 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it]\n87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it]\n 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it]\n90%|█████████ | 27/30 [00:32<00:03, 1.19s/it]\n90%|█████████ | 27/30 [00:32<00:03, 1.19s/it]\n90%|█████████ | 27/30 [00:32<00:03, 1.19s/it]\n 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it]\n90%|█████████ | 27/30 [00:32<00:03, 1.19s/it]\n 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it]\n 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it]\n 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it]\n93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it]\n93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it]\n93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it]\n93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it]\n 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it]\n 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it]\n 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it]\n 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it]\n97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it]\n97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it]\n97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it]\n97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it]\n97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it]\n97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it]\n97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it]\n 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\n100%|██████████| 30/30 [00:35<00:00, 1.19s/it]\nTime elapsed: 38.04s\nSaving generated video to output.mp4\n/root/.pyenv/versions/3.12.6/lib/python3.12/site-packages/cog/server/scope.py:22: ExperimentalFeatureWarning: current_scope is an experimental internal function. It may change or be removed without warning.\nwarnings.warn(", "metrics": { "predict_time": 38.802506573, "total_time": 38.814401 }, "output": "https://replicate.delivery/xezq/nhi1M7enxpSgHaj5lQfTlTlIn4fz1nmqI5wMkCmlHXyG9lmoA/output.mp4", "started_at": "2025-02-26T20:45:49.102895Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-txfb4ocdipyt4isnchrrdefygvckvzbfiqvtk2323tdgtkbtje4a", "get": "https://api.replicate.com/v1/predictions/w6x78jsgmdrm80cn8g1bnc3g04", "cancel": "https://api.replicate.com/v1/predictions/w6x78jsgmdrm80cn8g1bnc3g04/cancel" }, "version": "hidden" }
Generated inUsing seed: 851347977 /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): /src/wan/text2video.py:198: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:01<00:34, 1.17s/it] 3%|▎ | 1/30 [00:01<00:34, 1.17s/it] 3%|▎ | 1/30 [00:01<00:34, 1.17s/it] 3%|▎ | 1/30 [00:01<00:34, 1.17s/it] 3%|▎ | 1/30 [00:01<00:34, 1.17s/it] 3%|▎ | 1/30 [00:01<00:34, 1.17s/it] 3%|▎ | 1/30 [00:01<00:34, 1.17s/it] 3%|▎ | 1/30 [00:01<00:34, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.18s/it] 7%|▋ | 2/30 [00:02<00:32, 1.18s/it] 7%|▋ | 2/30 [00:02<00:32, 1.18s/it] 7%|▋ | 2/30 [00:02<00:32, 1.18s/it] 7%|▋ | 2/30 [00:02<00:32, 1.18s/it] 7%|▋ | 2/30 [00:02<00:32, 1.18s/it] 10%|█ | 3/30 [00:03<00:34, 1.29s/it] 10%|█ | 3/30 [00:03<00:35, 1.30s/it] 10%|█ | 3/30 [00:03<00:35, 1.30s/it] 10%|█ | 3/30 [00:03<00:35, 1.30s/it] 10%|█ | 3/30 [00:03<00:35, 1.30s/it] 10%|█ | 3/30 [00:03<00:35, 1.30s/it] 10%|█ | 3/30 [00:03<00:35, 1.30s/it] 10%|█ | 3/30 [00:03<00:35, 1.30s/it] 13%|█▎ | 4/30 [00:04<00:32, 1.25s/it] 13%|█▎ | 4/30 [00:04<00:32, 1.25s/it] 13%|█▎ | 4/30 [00:04<00:32, 1.26s/it] 13%|█▎ | 4/30 [00:04<00:32, 1.26s/it] 13%|█▎ | 4/30 [00:04<00:32, 1.25s/it] 13%|█▎ | 4/30 [00:04<00:32, 1.25s/it] 13%|█▎ | 4/30 [00:04<00:32, 1.26s/it] 13%|█▎ | 4/30 [00:04<00:32, 1.25s/it] 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it] 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it] 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it] 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it] 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it] 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it] 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it] 17%|█▋ | 5/30 [00:06<00:30, 1.23s/it] 20%|██ | 6/30 [00:07<00:29, 1.21s/it] 20%|██ | 6/30 [00:07<00:29, 1.21s/it] 20%|██ | 6/30 [00:07<00:29, 1.21s/it] 20%|██ | 6/30 [00:07<00:29, 1.21s/it] 20%|██ | 6/30 [00:07<00:29, 1.21s/it] 20%|██ | 6/30 [00:07<00:29, 1.21s/it] 20%|██ | 6/30 [00:07<00:29, 1.21s/it] 20%|██ | 6/30 [00:07<00:29, 1.21s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.20s/it] 27%|██▋ | 8/30 [00:09<00:26, 1.20s/it] 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it] 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it] 27%|██▋ | 8/30 [00:09<00:26, 1.20s/it] 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it] 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it] 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it] 27%|██▋ | 8/30 [00:09<00:26, 1.19s/it] 30%|███ | 9/30 [00:10<00:25, 1.19s/it] 30%|███ | 9/30 [00:10<00:25, 1.19s/it] 30%|███ | 9/30 [00:10<00:25, 1.19s/it] 30%|███ | 9/30 [00:10<00:25, 1.19s/it] 30%|███ | 9/30 [00:10<00:25, 1.19s/it] 30%|███ | 9/30 [00:10<00:25, 1.19s/it] 30%|███ | 9/30 [00:10<00:25, 1.19s/it] 30%|███ | 9/30 [00:10<00:25, 1.19s/it] 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it] 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it] 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it] 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it] 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it] 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it] 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it] 33%|███▎ | 10/30 [00:12<00:23, 1.19s/it] 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it] 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it] 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it] 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it] 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it] 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it] 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it] 37%|███▋ | 11/30 [00:13<00:22, 1.19s/it] 40%|████ | 12/30 [00:14<00:21, 1.19s/it] 40%|████ | 12/30 [00:14<00:21, 1.19s/it] 40%|████ | 12/30 [00:14<00:21, 1.19s/it] 40%|████ | 12/30 [00:14<00:21, 1.19s/it] 40%|████ | 12/30 [00:14<00:21, 1.19s/it] 40%|████ | 12/30 [00:14<00:21, 1.19s/it] 40%|████ | 12/30 [00:14<00:21, 1.19s/it] 40%|████ | 12/30 [00:14<00:21, 1.19s/it] 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it] 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it] 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it] 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it] 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it] 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it] 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it] 43%|████▎ | 13/30 [00:15<00:20, 1.19s/it] 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it] 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it] 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it] 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it] 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it] 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it] 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it] 47%|████▋ | 14/30 [00:16<00:18, 1.19s/it] 50%|█████ | 15/30 [00:17<00:17, 1.19s/it] 50%|█████ | 15/30 [00:17<00:17, 1.19s/it] 50%|█████ | 15/30 [00:17<00:17, 1.19s/it] 50%|█████ | 15/30 [00:17<00:17, 1.19s/it] 50%|█████ | 15/30 [00:17<00:17, 1.19s/it] 50%|█████ | 15/30 [00:17<00:17, 1.19s/it] 50%|█████ | 15/30 [00:17<00:17, 1.19s/it] 50%|█████ | 15/30 [00:17<00:17, 1.19s/it] 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it] 53%|█████▎ | 16/30 [00:19<00:16, 1.18s/it] 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it] 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it] 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it] 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it] 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it] 53%|█████▎ | 16/30 [00:19<00:16, 1.19s/it] 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it] 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it] 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it] 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it] 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it] 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it] 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it] 57%|█████▋ | 17/30 [00:20<00:15, 1.18s/it] 60%|██████ | 18/30 [00:21<00:14, 1.19s/it] 60%|██████ | 18/30 [00:21<00:14, 1.19s/it] 60%|██████ | 18/30 [00:21<00:14, 1.19s/it] 60%|██████ | 18/30 [00:21<00:14, 1.19s/it] 60%|██████ | 18/30 [00:21<00:14, 1.19s/it] 60%|██████ | 18/30 [00:21<00:14, 1.19s/it] 60%|██████ | 18/30 [00:21<00:14, 1.19s/it] 60%|██████ | 18/30 [00:21<00:14, 1.19s/it] 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it] 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it] 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it] 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it] 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it] 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it] 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it] 63%|██████▎ | 19/30 [00:22<00:13, 1.19s/it] 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it] 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it] 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it] 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it] 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it] 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it] 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it] 67%|██████▋ | 20/30 [00:23<00:11, 1.19s/it] 70%|███████ | 21/30 [00:25<00:10, 1.19s/it] 70%|███████ | 21/30 [00:25<00:10, 1.19s/it] 70%|███████ | 21/30 [00:25<00:10, 1.19s/it] 70%|███████ | 21/30 [00:25<00:10, 1.19s/it] 70%|███████ | 21/30 [00:25<00:10, 1.19s/it] 70%|███████ | 21/30 [00:25<00:10, 1.19s/it] 70%|███████ | 21/30 [00:25<00:10, 1.19s/it] 70%|███████ | 21/30 [00:25<00:10, 1.19s/it] 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it] 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it] 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it] 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it] 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it] 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it] 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it] 73%|███████▎ | 22/30 [00:26<00:09, 1.19s/it] 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it] 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it] 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it] 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it] 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it] 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it] 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it] 77%|███████▋ | 23/30 [00:27<00:08, 1.19s/it] 80%|████████ | 24/30 [00:28<00:07, 1.19s/it] 80%|████████ | 24/30 [00:28<00:07, 1.19s/it] 80%|████████ | 24/30 [00:28<00:07, 1.19s/it] 80%|████████ | 24/30 [00:28<00:07, 1.19s/it] 80%|████████ | 24/30 [00:28<00:07, 1.19s/it] 80%|████████ | 24/30 [00:28<00:07, 1.19s/it] 80%|████████ | 24/30 [00:28<00:07, 1.19s/it] 80%|████████ | 24/30 [00:28<00:07, 1.19s/it] 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it] 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it] 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it] 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it] 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it] 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it] 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it] 83%|████████▎ | 25/30 [00:29<00:05, 1.19s/it] 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it] 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it] 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it] 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it] 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it] 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it] 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it] 87%|████████▋ | 26/30 [00:31<00:04, 1.19s/it] 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it] 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it] 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it] 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it] 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it] 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it] 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it] 90%|█████████ | 27/30 [00:32<00:03, 1.19s/it] 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it] 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it] 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it] 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it] 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it] 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it] 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it] 93%|█████████▎| 28/30 [00:33<00:02, 1.19s/it] 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it] 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it] 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it] 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it] 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it] 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it] 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it] 97%|█████████▋| 29/30 [00:34<00:01, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] 100%|██████████| 30/30 [00:35<00:00, 1.19s/it] Time elapsed: 38.04s Saving generated video to output.mp4 /root/.pyenv/versions/3.12.6/lib/python3.12/site-packages/cog/server/scope.py:22: ExperimentalFeatureWarning: current_scope is an experimental internal function. It may change or be removed without warning. warnings.warn(
Prediction
wavespeedai/wan-2.1-t2v-480pOfficial modelIDgh27r84yxdrma0cnbesbaaphr0StatusSucceededSourceWebTotal durationCreatedby @wavespeedaiInput
- prompt
- A cat is doing an acrobatic dive into a swimming pool at the olympics, from a 10m high diving board, flips and spins
- fast_mode
- Balanced
- num_frames
- 81
- aspect_ratio
- 16:9
- sample_shift
- 5
- sample_steps
- 30
- frames_per_second
- 16
- sample_guide_scale
- 5
{ "prompt": "A cat is doing an acrobatic dive into a swimming pool at the olympics, from a 10m high diving board, flips and spins", "fast_mode": "Balanced", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run wavespeedai/wan-2.1-t2v-480p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const input = { prompt: "A cat is doing an acrobatic dive into a swimming pool at the olympics, from a 10m high diving board, flips and spins", fast_mode: "Balanced", num_frames: 81, aspect_ratio: "16:9", sample_shift: 5, sample_steps: 30, frames_per_second: 16, sample_guide_scale: 5 }; const output = await replicate.run("wavespeedai/wan-2.1-t2v-480p", { input }); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run wavespeedai/wan-2.1-t2v-480p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "wavespeedai/wan-2.1-t2v-480p", input={ "prompt": "A cat is doing an acrobatic dive into a swimming pool at the olympics, from a 10m high diving board, flips and spins", "fast_mode": "Balanced", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run wavespeedai/wan-2.1-t2v-480p using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "input": { "prompt": "A cat is doing an acrobatic dive into a swimming pool at the olympics, from a 10m high diving board, flips and spins", "fast_mode": "Balanced", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 } }' \ https://api.replicate.com/v1/models/wavespeedai/wan-2.1-t2v-480p/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2025-03-03T11:10:17Z", "created_at": "2025-03-03T11:09:47.627000Z", "data_removed": false, "error": "", "id": "gh27r84yxdrma0cnbesbaaphr0", "input": { "prompt": "A cat is doing an acrobatic dive into a swimming pool at the olympics, from a 10m high diving board, flips and spins", "fast_mode": "Balanced", "num_frames": 81, "aspect_ratio": "16:9", "sample_shift": 5, "sample_steps": 30, "frames_per_second": 16, "sample_guide_scale": 5 }, "logs": "Moderating content...\r\nModeration complete in 0.20sec\r\nUsing seed: 1765621119\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n0%| | 0/30 [00:00<?, ?it/s]\r\n 0%| | 0/30 [00:00<?, ?it/s]\r\n3%|▎ | 1/30 [00:01<00:33, 1.16s/it]\r\n3%|▎ | 1/30 [00:01<00:33, 1.16s/it]\r\n3%|▎ | 1/30 [00:01<00:33, 1.16s/it]\r\n3%|▎ | 1/30 [00:01<00:33, 1.17s/it]\r\n3%|▎ | 1/30 [00:01<00:33, 1.16s/it]\r\n3%|▎ | 1/30 [00:01<00:33, 1.16s/it]\r\n3%|▎ | 1/30 [00:01<00:33, 1.16s/it]\r\n 3%|▎ | 1/30 [00:01<00:33, 1.17s/it]\r\n7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\r\n7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\r\n7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\r\n7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\r\n7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\r\n7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\r\n7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\r\n 7%|▋ | 2/30 [00:02<00:32, 1.17s/it]\r\n10%|█ | 3/30 [00:03<00:31, 1.17s/it]\r\n10%|█ | 3/30 [00:03<00:31, 1.17s/it]\r\n10%|█ | 3/30 [00:03<00:31, 1.17s/it]\r\n10%|█ | 3/30 [00:03<00:31, 1.17s/it]\r\n10%|█ | 3/30 [00:03<00:31, 1.17s/it]\r\n10%|█ | 3/30 [00:03<00:31, 1.17s/it]\r\n10%|█ | 3/30 [00:03<00:31, 1.17s/it]\r\n 10%|█ | 3/30 [00:03<00:31, 1.17s/it]\r\n13%|█▎ | 4/30 [00:04<00:30, 1.17s/it]\r\n13%|█▎ | 4/30 [00:04<00:30, 1.17s/it]\r\n13%|█▎ | 4/30 [00:04<00:30, 1.17s/it]\r\n13%|█▎ | 4/30 [00:04<00:30, 1.17s/it]\r\n13%|█▎ | 4/30 [00:04<00:30, 1.17s/it]\r\n13%|█▎ | 4/30 [00:04<00:30, 1.17s/it]\r\n13%|█▎ | 4/30 [00:04<00:30, 1.17s/it]\r\n 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it]\r\n17%|█▋ | 5/30 [00:05<00:29, 1.17s/it]\r\n17%|█▋ | 5/30 [00:05<00:29, 1.17s/it]\r\n17%|█▋ | 5/30 [00:05<00:29, 1.17s/it]\r\n17%|█▋ | 5/30 [00:05<00:29, 1.17s/it]\r\n17%|█▋ | 5/30 [00:05<00:29, 1.17s/it]\r\n17%|█▋ | 5/30 [00:05<00:29, 1.17s/it]\r\n17%|█▋ | 5/30 [00:05<00:29, 1.17s/it]\r\n 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it]\r\n20%|██ | 6/30 [00:07<00:28, 1.17s/it]\r\n20%|██ | 6/30 [00:07<00:28, 1.17s/it]\r\n20%|██ | 6/30 [00:07<00:28, 1.17s/it]\r\n20%|██ | 6/30 [00:07<00:28, 1.18s/it]\r\n20%|██ | 6/30 [00:07<00:28, 1.17s/it]\r\n20%|██ | 6/30 [00:07<00:28, 1.17s/it]\r\n 20%|██ | 6/30 [00:07<00:28, 1.18s/it]\r\n 20%|██ | 6/30 [00:07<00:28, 1.18s/it]\r\n23%|██▎ | 7/30 [00:08<00:27, 1.18s/it]\r\n23%|██▎ | 7/30 [00:08<00:27, 1.18s/it]\r\n23%|██▎ | 7/30 [00:08<00:27, 1.18s/it]\r\n23%|██▎ | 7/30 [00:08<00:27, 1.18s/it]\r\n23%|██▎ | 7/30 [00:08<00:27, 1.18s/it]\r\n23%|██▎ | 7/30 [00:08<00:27, 1.18s/it]\r\n 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it]\r\n 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it]\r\n27%|██▋ | 8/30 [00:09<00:25, 1.18s/it]\r\n27%|██▋ | 8/30 [00:09<00:25, 1.18s/it]\r\n27%|██▋ | 8/30 [00:09<00:25, 1.18s/it]\r\n27%|██▋ | 8/30 [00:09<00:25, 1.18s/it]\r\n27%|██▋ | 8/30 [00:09<00:25, 1.18s/it]\r\n27%|██▋ | 8/30 [00:09<00:25, 1.18s/it]\r\n27%|██▋ | 8/30 [00:09<00:25, 1.18s/it]\r\n 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it]\r\n33%|███▎ | 10/30 [00:10<00:18, 1.10it/s]\r\n33%|███▎ | 10/30 [00:10<00:18, 1.10it/s]\r\n33%|███▎ | 10/30 [00:10<00:18, 1.10it/s]\r\n33%|███▎ | 10/30 [00:10<00:18, 1.10it/s]\r\n33%|███▎ | 10/30 [00:10<00:18, 1.10it/s]\r\n33%|███▎ | 10/30 [00:10<00:18, 1.10it/s]\r\n33%|███▎ | 10/30 [00:10<00:18, 1.10it/s]\r\n 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s]\r\n40%|████ | 12/30 [00:11<00:14, 1.27it/s]\r\n40%|████ | 12/30 [00:11<00:14, 1.27it/s]\r\n40%|████ | 12/30 [00:11<00:14, 1.27it/s]\r\n40%|████ | 12/30 [00:11<00:14, 1.27it/s]\r\n40%|████ | 12/30 [00:11<00:14, 1.27it/s]\r\n40%|████ | 12/30 [00:11<00:14, 1.27it/s]\r\n40%|████ | 12/30 [00:11<00:14, 1.27it/s]\r\n 40%|████ | 12/30 [00:11<00:14, 1.27it/s]\r\n47%|████▋ | 14/30 [00:13<00:11, 1.38it/s]\r\n47%|████▋ | 14/30 [00:13<00:11, 1.38it/s]\r\n47%|████▋ | 14/30 [00:13<00:11, 1.38it/s]\r\n47%|████▋ | 14/30 [00:13<00:11, 1.38it/s]\r\n47%|████▋ | 14/30 [00:13<00:11, 1.38it/s]\r\n47%|████▋ | 14/30 [00:13<00:11, 1.38it/s]\r\n47%|████▋ | 14/30 [00:13<00:11, 1.38it/s]\r\n 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s]\r\n53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s]\r\n53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s]\r\n53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s]\r\n53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s]\r\n53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s]\r\n53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s]\r\n53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s]\r\n 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s]\r\n60%|██████ | 18/30 [00:15<00:07, 1.52it/s]\r\n60%|██████ | 18/30 [00:15<00:07, 1.52it/s]\r\n60%|██████ | 18/30 [00:15<00:07, 1.52it/s]\r\n60%|██████ | 18/30 [00:15<00:07, 1.52it/s]\r\n60%|██████ | 18/30 [00:15<00:07, 1.52it/s]\r\n60%|██████ | 18/30 [00:15<00:07, 1.52it/s]\r\n60%|██████ | 18/30 [00:15<00:07, 1.52it/s]\r\n 60%|██████ | 18/30 [00:15<00:07, 1.52it/s]\r\n67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s]\r\n67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s]\r\n67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s]\r\n67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s]\r\n67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s]\r\n67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s]\r\n 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s]\r\n 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s]\r\n73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s]\r\n73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s]\r\n73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s]\r\n73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s]\r\n73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s]\r\n73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s]\r\n73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s]\r\n 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s]\r\n77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s]\r\n77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s]\r\n77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s]\r\n77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s]\r\n77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s]\r\n77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s]\r\n77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s]\r\n 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s]\r\n80%|████████ | 24/30 [00:20<00:04, 1.21it/s]\r\n80%|████████ | 24/30 [00:20<00:04, 1.21it/s]\r\n80%|████████ | 24/30 [00:20<00:04, 1.21it/s]\r\n80%|████████ | 24/30 [00:20<00:04, 1.21it/s]\r\n80%|████████ | 24/30 [00:20<00:04, 1.21it/s]\r\n80%|████████ | 24/30 [00:20<00:04, 1.21it/s]\r\n80%|████████ | 24/30 [00:20<00:04, 1.21it/s]\r\n 80%|████████ | 24/30 [00:20<00:04, 1.21it/s]\r\n83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s]\r\n83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s]\r\n83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s]\r\n83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s]\r\n83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s]\r\n83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s]\r\n83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s]\r\n 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s]\r\n87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s]\r\n87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s]\r\n87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s]\r\n87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s]\r\n87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s]\r\n87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s]\r\n87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s]\r\n 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s]\r\n90%|█████████ | 27/30 [00:23<00:03, 1.03s/it]\r\n90%|█████████ | 27/30 [00:23<00:03, 1.03s/it]\r\n90%|█████████ | 27/30 [00:23<00:03, 1.03s/it]\r\n90%|█████████ | 27/30 [00:23<00:03, 1.03s/it]\r\n90%|█████████ | 27/30 [00:23<00:03, 1.03s/it]\r\n90%|█████████ | 27/30 [00:23<00:03, 1.03s/it]\r\n90%|█████████ | 27/30 [00:23<00:03, 1.03s/it]\r\n 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it]\r\n93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it]\r\n93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it]\r\n93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it]\r\n93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it]\r\n93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it]\r\n93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it]\r\n93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it]\r\n 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it]\r\n97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it]\r\n97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it]\r\n97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it]\r\n97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it]\r\n97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it]\r\n97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it]\r\n97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it]\r\n 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.12s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.12s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.12s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.12s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.12s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.12s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.12s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.10it/s]\r\n100%|██████████| 30/30 [00:27<00:00, 1.10it/s]\r\n100%|██████████| 30/30 [00:27<00:00, 1.10it/s]\r\n100%|██████████| 30/30 [00:27<00:00, 1.10it/s]\r\n100%|██████████| 30/30 [00:27<00:00, 1.10it/s]\r\n100%|██████████| 30/30 [00:27<00:00, 1.10it/s]\r\n100%|██████████| 30/30 [00:27<00:00, 1.10it/s]\r\n100%|██████████| 30/30 [00:27<00:00, 1.12s/it]\r\n100%|██████████| 30/30 [00:27<00:00, 1.10it/s]\r\nTime elapsed: 29.23s\r\nSaving generated video to output.mp4", "metrics": { "predict_time": 30.174848852, "total_time": 29.373 }, "output": "https://replicate.delivery/xezq/1Cr8exFBJ9X5BqOvabmkoxe5eHC2FFE6GDlw8Xva064yAopoA/output.mp4", "started_at": "2025-03-03T11:09:47Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-nbjkkjkhbxljcr4b6go3wywp4udmmuizilyrobxzb3ni5zqjf3za", "get": "https://api.replicate.com/v1/predictions/gh27r84yxdrma0cnbesbaaphr0", "cancel": "https://api.replicate.com/v1/predictions/gh27r84yxdrma0cnbesbaaphr0/cancel" }, "version": "hidden" }
Generated inModerating content... Moderation complete in 0.20sec Using seed: 1765621119 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:01<00:33, 1.16s/it] 3%|▎ | 1/30 [00:01<00:33, 1.16s/it] 3%|▎ | 1/30 [00:01<00:33, 1.16s/it] 3%|▎ | 1/30 [00:01<00:33, 1.17s/it] 3%|▎ | 1/30 [00:01<00:33, 1.16s/it] 3%|▎ | 1/30 [00:01<00:33, 1.16s/it] 3%|▎ | 1/30 [00:01<00:33, 1.16s/it] 3%|▎ | 1/30 [00:01<00:33, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 7%|▋ | 2/30 [00:02<00:32, 1.17s/it] 10%|█ | 3/30 [00:03<00:31, 1.17s/it] 10%|█ | 3/30 [00:03<00:31, 1.17s/it] 10%|█ | 3/30 [00:03<00:31, 1.17s/it] 10%|█ | 3/30 [00:03<00:31, 1.17s/it] 10%|█ | 3/30 [00:03<00:31, 1.17s/it] 10%|█ | 3/30 [00:03<00:31, 1.17s/it] 10%|█ | 3/30 [00:03<00:31, 1.17s/it] 10%|█ | 3/30 [00:03<00:31, 1.17s/it] 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it] 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it] 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it] 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it] 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it] 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it] 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it] 13%|█▎ | 4/30 [00:04<00:30, 1.17s/it] 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it] 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it] 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it] 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it] 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it] 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it] 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it] 17%|█▋ | 5/30 [00:05<00:29, 1.17s/it] 20%|██ | 6/30 [00:07<00:28, 1.17s/it] 20%|██ | 6/30 [00:07<00:28, 1.17s/it] 20%|██ | 6/30 [00:07<00:28, 1.17s/it] 20%|██ | 6/30 [00:07<00:28, 1.18s/it] 20%|██ | 6/30 [00:07<00:28, 1.17s/it] 20%|██ | 6/30 [00:07<00:28, 1.17s/it] 20%|██ | 6/30 [00:07<00:28, 1.18s/it] 20%|██ | 6/30 [00:07<00:28, 1.18s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it] 23%|██▎ | 7/30 [00:08<00:27, 1.18s/it] 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it] 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it] 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it] 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it] 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it] 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it] 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it] 27%|██▋ | 8/30 [00:09<00:25, 1.18s/it] 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s] 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s] 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s] 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s] 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s] 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s] 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s] 33%|███▎ | 10/30 [00:10<00:18, 1.10it/s] 40%|████ | 12/30 [00:11<00:14, 1.27it/s] 40%|████ | 12/30 [00:11<00:14, 1.27it/s] 40%|████ | 12/30 [00:11<00:14, 1.27it/s] 40%|████ | 12/30 [00:11<00:14, 1.27it/s] 40%|████ | 12/30 [00:11<00:14, 1.27it/s] 40%|████ | 12/30 [00:11<00:14, 1.27it/s] 40%|████ | 12/30 [00:11<00:14, 1.27it/s] 40%|████ | 12/30 [00:11<00:14, 1.27it/s] 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s] 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s] 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s] 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s] 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s] 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s] 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s] 47%|████▋ | 14/30 [00:13<00:11, 1.38it/s] 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s] 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s] 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s] 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s] 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s] 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s] 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s] 53%|█████▎ | 16/30 [00:14<00:09, 1.46it/s] 60%|██████ | 18/30 [00:15<00:07, 1.52it/s] 60%|██████ | 18/30 [00:15<00:07, 1.52it/s] 60%|██████ | 18/30 [00:15<00:07, 1.52it/s] 60%|██████ | 18/30 [00:15<00:07, 1.52it/s] 60%|██████ | 18/30 [00:15<00:07, 1.52it/s] 60%|██████ | 18/30 [00:15<00:07, 1.52it/s] 60%|██████ | 18/30 [00:15<00:07, 1.52it/s] 60%|██████ | 18/30 [00:15<00:07, 1.52it/s] 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s] 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s] 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s] 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s] 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s] 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s] 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s] 67%|██████▋ | 20/30 [00:16<00:06, 1.55it/s] 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s] 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s] 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s] 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s] 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s] 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s] 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s] 73%|███████▎ | 22/30 [00:17<00:05, 1.58it/s] 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s] 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s] 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s] 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s] 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s] 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s] 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s] 77%|███████▋ | 23/30 [00:19<00:05, 1.36it/s] 80%|████████ | 24/30 [00:20<00:04, 1.21it/s] 80%|████████ | 24/30 [00:20<00:04, 1.21it/s] 80%|████████ | 24/30 [00:20<00:04, 1.21it/s] 80%|████████ | 24/30 [00:20<00:04, 1.21it/s] 80%|████████ | 24/30 [00:20<00:04, 1.21it/s] 80%|████████ | 24/30 [00:20<00:04, 1.21it/s] 80%|████████ | 24/30 [00:20<00:04, 1.21it/s] 80%|████████ | 24/30 [00:20<00:04, 1.21it/s] 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s] 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s] 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s] 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s] 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s] 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s] 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s] 83%|████████▎ | 25/30 [00:21<00:04, 1.10it/s] 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s] 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s] 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s] 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s] 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s] 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s] 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s] 87%|████████▋ | 26/30 [00:22<00:03, 1.03it/s] 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it] 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it] 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it] 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it] 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it] 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it] 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it] 90%|█████████ | 27/30 [00:23<00:03, 1.03s/it] 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it] 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it] 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it] 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it] 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it] 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it] 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it] 93%|█████████▎| 28/30 [00:25<00:02, 1.07s/it] 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it] 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it] 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it] 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it] 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it] 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it] 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it] 97%|█████████▋| 29/30 [00:26<00:01, 1.10s/it] 100%|██████████| 30/30 [00:27<00:00, 1.12s/it] 100%|██████████| 30/30 [00:27<00:00, 1.12s/it] 100%|██████████| 30/30 [00:27<00:00, 1.12s/it] 100%|██████████| 30/30 [00:27<00:00, 1.12s/it] 100%|██████████| 30/30 [00:27<00:00, 1.12s/it] 100%|██████████| 30/30 [00:27<00:00, 1.12s/it] 100%|██████████| 30/30 [00:27<00:00, 1.12s/it] 100%|██████████| 30/30 [00:27<00:00, 1.10it/s] 100%|██████████| 30/30 [00:27<00:00, 1.10it/s] 100%|██████████| 30/30 [00:27<00:00, 1.10it/s] 100%|██████████| 30/30 [00:27<00:00, 1.10it/s] 100%|██████████| 30/30 [00:27<00:00, 1.10it/s] 100%|██████████| 30/30 [00:27<00:00, 1.10it/s] 100%|██████████| 30/30 [00:27<00:00, 1.10it/s] 100%|██████████| 30/30 [00:27<00:00, 1.12s/it] 100%|██████████| 30/30 [00:27<00:00, 1.10it/s] Time elapsed: 29.23s Saving generated video to output.mp4
Want to make some of these yourself?
Run this model