zacharylazzara / tent-detector
Detects tents in satellite images
- Public
- 36 runs
-
CPU
- GitHub
Prediction
zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9aIDiacy7dt5yrhuvaznqlpqimti5mStatusSucceededSourceWebHardware–Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/ImcpFUY2ygBs2PAxi3bCrs8Fv5kZN6zZYze0Jko3ywXMl9ap/x_overview_smaller_smaller.png" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", { input: { image: "https://replicate.delivery/pbxt/ImcpFUY2ygBs2PAxi3bCrs8Fv5kZN6zZYze0Jko3ywXMl9ap/x_overview_smaller_smaller.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", input={ "image": "https://replicate.delivery/pbxt/ImcpFUY2ygBs2PAxi3bCrs8Fv5kZN6zZYze0Jko3ywXMl9ap/x_overview_smaller_smaller.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", "input": { "image": "https://replicate.delivery/pbxt/ImcpFUY2ygBs2PAxi3bCrs8Fv5kZN6zZYze0Jko3ywXMl9ap/x_overview_smaller_smaller.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-05-07T17:52:48.945682Z", "created_at": "2023-05-07T17:52:23.948838Z", "data_removed": false, "error": null, "id": "iacy7dt5yrhuvaznqlpqimti5m", "input": { "image": "https://replicate.delivery/pbxt/ImcpFUY2ygBs2PAxi3bCrs8Fv5kZN6zZYze0Jko3ywXMl9ap/x_overview_smaller_smaller.png" }, "logs": "Using device: cpu\nUsing supplied model\n 0%| | 0/2 [00:00<?, ?it/s]\nEvaluating UNet: 0%| | 0/2 [00:00<?, ?it/s]\nEvaluating UNet: 50%|█████ | 1/2 [00:08<00:08, 8.46s/it]\nEvaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 3.74s/it]\nEvaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 4.45s/it]\nSaving overviews\n 0%| | 0/2 [00:00<?, ?it/s]\nTiling: 0%| | 0/2 [00:00<?, ?it/s]\nTiling: 50%|█████ | 1/2 [00:07<00:07, 7.89s/it]\nTiling: 100%|██████████| 2/2 [00:07<00:00, 3.95s/it]\nSaving overlays\nSaving overview overlay\nSaving heatmap\nResults saved to output", "metrics": { "predict_time": 24.95119, "total_time": 24.996844 }, "output": "https://replicate.delivery/pbxt/lzoPUeA8Q2SzHS4CsS0Ufj4uPfxZOzKerf0e9KpRTF3AcXWOE/result.png", "started_at": "2023-05-07T17:52:23.994492Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/iacy7dt5yrhuvaznqlpqimti5m", "cancel": "https://api.replicate.com/v1/predictions/iacy7dt5yrhuvaznqlpqimti5m/cancel" }, "version": "16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a" }
Generated inUsing device: cpu Using supplied model 0%| | 0/2 [00:00<?, ?it/s] Evaluating UNet: 0%| | 0/2 [00:00<?, ?it/s] Evaluating UNet: 50%|█████ | 1/2 [00:08<00:08, 8.46s/it] Evaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 3.74s/it] Evaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 4.45s/it] Saving overviews 0%| | 0/2 [00:00<?, ?it/s] Tiling: 0%| | 0/2 [00:00<?, ?it/s] Tiling: 50%|█████ | 1/2 [00:07<00:07, 7.89s/it] Tiling: 100%|██████████| 2/2 [00:07<00:00, 3.95s/it] Saving overlays Saving overview overlay Saving heatmap Results saved to output
Prediction
zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9aIDqbrvz7be7re5zpoobc3cy7wm54StatusSucceededSourceWebHardware–Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/Imce9FWNcY9Onflaj2MKNV1AlWhTyfIXSPHDBKdXahKByyxg/sarpol_035.jpg" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", { input: { image: "https://replicate.delivery/pbxt/Imce9FWNcY9Onflaj2MKNV1AlWhTyfIXSPHDBKdXahKByyxg/sarpol_035.jpg" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", input={ "image": "https://replicate.delivery/pbxt/Imce9FWNcY9Onflaj2MKNV1AlWhTyfIXSPHDBKdXahKByyxg/sarpol_035.jpg" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", "input": { "image": "https://replicate.delivery/pbxt/Imce9FWNcY9Onflaj2MKNV1AlWhTyfIXSPHDBKdXahKByyxg/sarpol_035.jpg" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-05-07T17:40:58.124888Z", "created_at": "2023-05-07T17:40:37.895396Z", "data_removed": false, "error": null, "id": "qbrvz7be7re5zpoobc3cy7wm54", "input": { "image": "https://replicate.delivery/pbxt/Imce9FWNcY9Onflaj2MKNV1AlWhTyfIXSPHDBKdXahKByyxg/sarpol_035.jpg" }, "logs": "Using device: cpu\nUsing supplied model\n 0%| | 0/1 [00:00<?, ?it/s]\nEvaluating UNet: 0%| | 0/1 [00:00<?, ?it/s]\nEvaluating UNet: 100%|██████████| 1/1 [00:08<00:00, 8.09s/it]\nEvaluating UNet: 100%|██████████| 1/1 [00:08<00:00, 8.09s/it]\nSaving overviews\n 0%| | 0/1 [00:00<?, ?it/s]\nTiling: 0%| | 0/1 [00:00<?, ?it/s]\nTiling: 100%|██████████| 1/1 [00:07<00:00, 7.86s/it]\nTiling: 100%|██████████| 1/1 [00:07<00:00, 7.86s/it]\nSaving overlays\nSaving overview overlay\nSaving heatmap\nResults saved to output", "metrics": { "predict_time": 20.178218, "total_time": 20.229492 }, "output": "https://replicate.delivery/pbxt/dMsFKAYvyNrpEFb6qqW3zSUefAzMm5ECEEl3Beefsb6JVKLHC/result.jpg", "started_at": "2023-05-07T17:40:37.946670Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qbrvz7be7re5zpoobc3cy7wm54", "cancel": "https://api.replicate.com/v1/predictions/qbrvz7be7re5zpoobc3cy7wm54/cancel" }, "version": "16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a" }
Generated inUsing device: cpu Using supplied model 0%| | 0/1 [00:00<?, ?it/s] Evaluating UNet: 0%| | 0/1 [00:00<?, ?it/s] Evaluating UNet: 100%|██████████| 1/1 [00:08<00:00, 8.09s/it] Evaluating UNet: 100%|██████████| 1/1 [00:08<00:00, 8.09s/it] Saving overviews 0%| | 0/1 [00:00<?, ?it/s] Tiling: 0%| | 0/1 [00:00<?, ?it/s] Tiling: 100%|██████████| 1/1 [00:07<00:00, 7.86s/it] Tiling: 100%|██████████| 1/1 [00:07<00:00, 7.86s/it] Saving overlays Saving overview overlay Saving heatmap Results saved to output
Prediction
zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9aID5wub73pp2jeshpczjdzwadgzd4StatusSucceededSourceWebHardware–Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/Ip4GWuckD0EQYJUexIXYiaID0XHKdZQmCsk5s1SRdD2DhOK1/x_overview_subset2.png" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", { input: { image: "https://replicate.delivery/pbxt/Ip4GWuckD0EQYJUexIXYiaID0XHKdZQmCsk5s1SRdD2DhOK1/x_overview_subset2.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", input={ "image": "https://replicate.delivery/pbxt/Ip4GWuckD0EQYJUexIXYiaID0XHKdZQmCsk5s1SRdD2DhOK1/x_overview_subset2.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", "input": { "image": "https://replicate.delivery/pbxt/Ip4GWuckD0EQYJUexIXYiaID0XHKdZQmCsk5s1SRdD2DhOK1/x_overview_subset2.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-05-14T15:01:55.370949Z", "created_at": "2023-05-14T15:01:30.353737Z", "data_removed": false, "error": null, "id": "5wub73pp2jeshpczjdzwadgzd4", "input": { "image": "https://replicate.delivery/pbxt/Ip4GWuckD0EQYJUexIXYiaID0XHKdZQmCsk5s1SRdD2DhOK1/x_overview_subset2.png" }, "logs": "Using device: cpu\nUsing supplied model\n 0%| | 0/2 [00:00<?, ?it/s]\nEvaluating UNet: 0%| | 0/2 [00:00<?, ?it/s]\nEvaluating UNet: 50%|█████ | 1/2 [00:08<00:08, 8.50s/it]\nEvaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 3.78s/it]\nEvaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 4.48s/it]\nSaving overviews\n 0%| | 0/2 [00:00<?, ?it/s]\nTiling: 0%| | 0/2 [00:00<?, ?it/s]\nTiling: 50%|█████ | 1/2 [00:07<00:07, 7.87s/it]\nTiling: 100%|██████████| 2/2 [00:07<00:00, 3.94s/it]\nSaving overlays\nSaving overview overlay\nSaving heatmap\nResults saved to output", "metrics": { "predict_time": 24.96326, "total_time": 25.017212 }, "output": "https://replicate.delivery/pbxt/MtLTEHK1TOoQGtfKbtcBZ3mADli3oNSIneXtr87qn4Binq7QA/result.png", "started_at": "2023-05-14T15:01:30.407689Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5wub73pp2jeshpczjdzwadgzd4", "cancel": "https://api.replicate.com/v1/predictions/5wub73pp2jeshpczjdzwadgzd4/cancel" }, "version": "16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a" }
Generated inUsing device: cpu Using supplied model 0%| | 0/2 [00:00<?, ?it/s] Evaluating UNet: 0%| | 0/2 [00:00<?, ?it/s] Evaluating UNet: 50%|█████ | 1/2 [00:08<00:08, 8.50s/it] Evaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 3.78s/it] Evaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 4.48s/it] Saving overviews 0%| | 0/2 [00:00<?, ?it/s] Tiling: 0%| | 0/2 [00:00<?, ?it/s] Tiling: 50%|█████ | 1/2 [00:07<00:07, 7.87s/it] Tiling: 100%|██████████| 2/2 [00:07<00:00, 3.94s/it] Saving overlays Saving overview overlay Saving heatmap Results saved to output
Prediction
zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9aID2cxkcbyznbgevml3f6r7njn45qStatusSucceededSourceWebHardware–Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/Ip4HAFNkSUHmEkgT2l9qKzyEwuAC44Hmpnrvf9MzDwRzUwhG/x_overview_subset3.png" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", { input: { image: "https://replicate.delivery/pbxt/Ip4HAFNkSUHmEkgT2l9qKzyEwuAC44Hmpnrvf9MzDwRzUwhG/x_overview_subset3.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", input={ "image": "https://replicate.delivery/pbxt/Ip4HAFNkSUHmEkgT2l9qKzyEwuAC44Hmpnrvf9MzDwRzUwhG/x_overview_subset3.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zacharylazzara/tent-detector using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "zacharylazzara/tent-detector:16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a", "input": { "image": "https://replicate.delivery/pbxt/Ip4HAFNkSUHmEkgT2l9qKzyEwuAC44Hmpnrvf9MzDwRzUwhG/x_overview_subset3.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-05-14T15:02:36.384115Z", "created_at": "2023-05-14T15:02:11.165889Z", "data_removed": false, "error": null, "id": "2cxkcbyznbgevml3f6r7njn45q", "input": { "image": "https://replicate.delivery/pbxt/Ip4HAFNkSUHmEkgT2l9qKzyEwuAC44Hmpnrvf9MzDwRzUwhG/x_overview_subset3.png" }, "logs": "Using device: cpu\nUsing supplied model\n 0%| | 0/2 [00:00<?, ?it/s]\nEvaluating UNet: 0%| | 0/2 [00:00<?, ?it/s]\nEvaluating UNet: 50%|█████ | 1/2 [00:08<00:08, 8.42s/it]\nEvaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 3.77s/it]\nEvaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 4.47s/it]\nSaving overviews\n 0%| | 0/2 [00:00<?, ?it/s]\nTiling: 0%| | 0/2 [00:00<?, ?it/s]\nTiling: 50%|█████ | 1/2 [00:07<00:07, 7.98s/it]\nTiling: 100%|██████████| 2/2 [00:07<00:00, 3.99s/it]\nSaving overlays\nSaving overview overlay\nSaving heatmap\nResults saved to output", "metrics": { "predict_time": 25.177413, "total_time": 25.218226 }, "output": "https://replicate.delivery/pbxt/AK6mPg3LYyb1CdqAZC6IIOrQzYT3QaDFGRU2HfdM4SqFU1dIA/result.png", "started_at": "2023-05-14T15:02:11.206702Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2cxkcbyznbgevml3f6r7njn45q", "cancel": "https://api.replicate.com/v1/predictions/2cxkcbyznbgevml3f6r7njn45q/cancel" }, "version": "16484a7e7762f550a2a5c87a54cbd7978cd656b98f1eb8826bfa6e27a774db9a" }
Generated inUsing device: cpu Using supplied model 0%| | 0/2 [00:00<?, ?it/s] Evaluating UNet: 0%| | 0/2 [00:00<?, ?it/s] Evaluating UNet: 50%|█████ | 1/2 [00:08<00:08, 8.42s/it] Evaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 3.77s/it] Evaluating UNet: 100%|██████████| 2/2 [00:08<00:00, 4.47s/it] Saving overviews 0%| | 0/2 [00:00<?, ?it/s] Tiling: 0%| | 0/2 [00:00<?, ?it/s] Tiling: 50%|█████ | 1/2 [00:07<00:07, 7.98s/it] Tiling: 100%|██████████| 2/2 [00:07<00:00, 3.99s/it] Saving overlays Saving overview overlay Saving heatmap Results saved to output
Want to make some of these yourself?
Run this model