zeke
/
loteria
A fine-tuned version SDXL for generating loteria cards
- Public
- 4.1K runs
-
L40S
Prediction
zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50IDtanxrv3bc7egpzubob6lm2edwiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @zekeInput
- width
- 1024
- height
- 1024
- prompt
- An astronaut card in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "mask": "https://replicate.delivery/pbxt/JKi2Z0xWo484fQYgNhNx5WqtES6wo0H7ql0ewOKwFMbpYbFl/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi2Yk93404W3qxHGisuHNnXdJYYm9oVQVMXb9czRxaBIvxg/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "An astronaut card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", { input: { mask: "https://replicate.delivery/pbxt/JKi2Z0xWo484fQYgNhNx5WqtES6wo0H7ql0ewOKwFMbpYbFl/loteria-mask.jpg", image: "https://replicate.delivery/pbxt/JKi2Yk93404W3qxHGisuHNnXdJYYm9oVQVMXb9czRxaBIvxg/loteria-blank-card.jpg", width: 1024, height: 1024, prompt: "An astronaut card in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", input={ "mask": "https://replicate.delivery/pbxt/JKi2Z0xWo484fQYgNhNx5WqtES6wo0H7ql0ewOKwFMbpYbFl/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi2Yk93404W3qxHGisuHNnXdJYYm9oVQVMXb9czRxaBIvxg/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "An astronaut card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", "input": { "mask": "https://replicate.delivery/pbxt/JKi2Z0xWo484fQYgNhNx5WqtES6wo0H7ql0ewOKwFMbpYbFl/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi2Yk93404W3qxHGisuHNnXdJYYm9oVQVMXb9czRxaBIvxg/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "An astronaut card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-08-11T18:26:14.944333Z", "created_at": "2023-08-11T18:26:01.171918Z", "data_removed": false, "error": null, "id": "tanxrv3bc7egpzubob6lm2edwi", "input": { "mask": "https://replicate.delivery/pbxt/JKi2Z0xWo484fQYgNhNx5WqtES6wo0H7ql0ewOKwFMbpYbFl/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi2Yk93404W3qxHGisuHNnXdJYYm9oVQVMXb9czRxaBIvxg/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "An astronaut card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 37791\nPrompt: An astronaut card in the style of <s0><s1>\ninpainting mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:10, 3.55it/s]\n 5%|▌ | 2/40 [00:00<00:10, 3.63it/s]\n 8%|▊ | 3/40 [00:00<00:10, 3.66it/s]\n 10%|█ | 4/40 [00:01<00:09, 3.66it/s]\n 12%|█▎ | 5/40 [00:01<00:09, 3.67it/s]\n 15%|█▌ | 6/40 [00:01<00:09, 3.67it/s]\n 18%|█▊ | 7/40 [00:01<00:08, 3.68it/s]\n 20%|██ | 8/40 [00:02<00:08, 3.68it/s]\n 22%|██▎ | 9/40 [00:02<00:08, 3.67it/s]\n 25%|██▌ | 10/40 [00:02<00:08, 3.67it/s]\n 28%|██▊ | 11/40 [00:03<00:07, 3.67it/s]\n 30%|███ | 12/40 [00:03<00:07, 3.67it/s]\n 32%|███▎ | 13/40 [00:03<00:07, 3.67it/s]\n 35%|███▌ | 14/40 [00:03<00:07, 3.67it/s]\n 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s]\n 40%|████ | 16/40 [00:04<00:06, 3.67it/s]\n 42%|████▎ | 17/40 [00:04<00:06, 3.67it/s]\n 45%|████▌ | 18/40 [00:04<00:05, 3.67it/s]\n 48%|████▊ | 19/40 [00:05<00:05, 3.67it/s]\n 50%|█████ | 20/40 [00:05<00:05, 3.67it/s]\n 52%|█████▎ | 21/40 [00:05<00:05, 3.66it/s]\n 55%|█████▌ | 22/40 [00:06<00:04, 3.66it/s]\n 57%|█████▊ | 23/40 [00:06<00:04, 3.66it/s]\n 60%|██████ | 24/40 [00:06<00:04, 3.66it/s]\n 62%|██████▎ | 25/40 [00:06<00:04, 3.66it/s]\n 65%|██████▌ | 26/40 [00:07<00:03, 3.66it/s]\n 68%|██████▊ | 27/40 [00:07<00:03, 3.66it/s]\n 70%|███████ | 28/40 [00:07<00:03, 3.66it/s]\n 72%|███████▎ | 29/40 [00:07<00:03, 3.66it/s]\n 75%|███████▌ | 30/40 [00:08<00:02, 3.66it/s]\n 78%|███████▊ | 31/40 [00:08<00:02, 3.66it/s]\n 80%|████████ | 32/40 [00:08<00:02, 3.66it/s]\n 82%|████████▎ | 33/40 [00:09<00:01, 3.66it/s]\n 85%|████████▌ | 34/40 [00:09<00:01, 3.66it/s]\n 88%|████████▊ | 35/40 [00:09<00:01, 3.66it/s]\n 90%|█████████ | 36/40 [00:09<00:01, 3.67it/s]\n 92%|█████████▎| 37/40 [00:10<00:00, 3.67it/s]\n 95%|█████████▌| 38/40 [00:10<00:00, 3.68it/s]\n 98%|█████████▊| 39/40 [00:10<00:00, 3.68it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.68it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.67it/s]", "metrics": { "predict_time": 13.800611, "total_time": 13.772415 }, "output": [ "https://replicate.delivery/pbxt/Z4XUz4fc4v0ONaELd3Tk1eTtAvh4OeMn0q6iYQoMqhBM6FyiA/out-0.png" ], "started_at": "2023-08-11T18:26:01.143722Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/tanxrv3bc7egpzubob6lm2edwi", "cancel": "https://api.replicate.com/v1/predictions/tanxrv3bc7egpzubob6lm2edwi/cancel" }, "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50" }
Generated inUsing seed: 37791 Prompt: An astronaut card in the style of <s0><s1> inpainting mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:10, 3.55it/s] 5%|▌ | 2/40 [00:00<00:10, 3.63it/s] 8%|▊ | 3/40 [00:00<00:10, 3.66it/s] 10%|█ | 4/40 [00:01<00:09, 3.66it/s] 12%|█▎ | 5/40 [00:01<00:09, 3.67it/s] 15%|█▌ | 6/40 [00:01<00:09, 3.67it/s] 18%|█▊ | 7/40 [00:01<00:08, 3.68it/s] 20%|██ | 8/40 [00:02<00:08, 3.68it/s] 22%|██▎ | 9/40 [00:02<00:08, 3.67it/s] 25%|██▌ | 10/40 [00:02<00:08, 3.67it/s] 28%|██▊ | 11/40 [00:03<00:07, 3.67it/s] 30%|███ | 12/40 [00:03<00:07, 3.67it/s] 32%|███▎ | 13/40 [00:03<00:07, 3.67it/s] 35%|███▌ | 14/40 [00:03<00:07, 3.67it/s] 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s] 40%|████ | 16/40 [00:04<00:06, 3.67it/s] 42%|████▎ | 17/40 [00:04<00:06, 3.67it/s] 45%|████▌ | 18/40 [00:04<00:05, 3.67it/s] 48%|████▊ | 19/40 [00:05<00:05, 3.67it/s] 50%|█████ | 20/40 [00:05<00:05, 3.67it/s] 52%|█████▎ | 21/40 [00:05<00:05, 3.66it/s] 55%|█████▌ | 22/40 [00:06<00:04, 3.66it/s] 57%|█████▊ | 23/40 [00:06<00:04, 3.66it/s] 60%|██████ | 24/40 [00:06<00:04, 3.66it/s] 62%|██████▎ | 25/40 [00:06<00:04, 3.66it/s] 65%|██████▌ | 26/40 [00:07<00:03, 3.66it/s] 68%|██████▊ | 27/40 [00:07<00:03, 3.66it/s] 70%|███████ | 28/40 [00:07<00:03, 3.66it/s] 72%|███████▎ | 29/40 [00:07<00:03, 3.66it/s] 75%|███████▌ | 30/40 [00:08<00:02, 3.66it/s] 78%|███████▊ | 31/40 [00:08<00:02, 3.66it/s] 80%|████████ | 32/40 [00:08<00:02, 3.66it/s] 82%|████████▎ | 33/40 [00:09<00:01, 3.66it/s] 85%|████████▌ | 34/40 [00:09<00:01, 3.66it/s] 88%|████████▊ | 35/40 [00:09<00:01, 3.66it/s] 90%|█████████ | 36/40 [00:09<00:01, 3.67it/s] 92%|█████████▎| 37/40 [00:10<00:00, 3.67it/s] 95%|█████████▌| 38/40 [00:10<00:00, 3.68it/s] 98%|█████████▊| 39/40 [00:10<00:00, 3.68it/s] 100%|██████████| 40/40 [00:10<00:00, 3.68it/s] 100%|██████████| 40/40 [00:10<00:00, 3.67it/s]
Prediction
zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50IDjnasr4dbq7wcjzj7ertwdjtliaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A sandwich card in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "mask": "https://replicate.delivery/pbxt/JKi3qH11qtoAS8JveFp3cMRsCEpg3ChBCTf1m9yBma5724TV/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi3qPzheU0hH78V01sAIb2aJeJmR3Eb1Y5ueA0PaQW5O191/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A sandwich card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", { input: { mask: "https://replicate.delivery/pbxt/JKi3qH11qtoAS8JveFp3cMRsCEpg3ChBCTf1m9yBma5724TV/loteria-mask.jpg", image: "https://replicate.delivery/pbxt/JKi3qPzheU0hH78V01sAIb2aJeJmR3Eb1Y5ueA0PaQW5O191/loteria-blank-card.jpg", width: 1024, height: 1024, prompt: "A sandwich card in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", input={ "mask": "https://replicate.delivery/pbxt/JKi3qH11qtoAS8JveFp3cMRsCEpg3ChBCTf1m9yBma5724TV/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi3qPzheU0hH78V01sAIb2aJeJmR3Eb1Y5ueA0PaQW5O191/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A sandwich card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", "input": { "mask": "https://replicate.delivery/pbxt/JKi3qH11qtoAS8JveFp3cMRsCEpg3ChBCTf1m9yBma5724TV/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi3qPzheU0hH78V01sAIb2aJeJmR3Eb1Y5ueA0PaQW5O191/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A sandwich card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-08-11T18:27:35.918113Z", "created_at": "2023-08-11T18:27:22.375061Z", "data_removed": false, "error": null, "id": "jnasr4dbq7wcjzj7ertwdjtlia", "input": { "mask": "https://replicate.delivery/pbxt/JKi3qH11qtoAS8JveFp3cMRsCEpg3ChBCTf1m9yBma5724TV/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi3qPzheU0hH78V01sAIb2aJeJmR3Eb1Y5ueA0PaQW5O191/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A sandwich card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 10258\nPrompt: A sandwich card in the style of <s0><s1>\ninpainting mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:10, 3.67it/s]\n 5%|▌ | 2/40 [00:00<00:10, 3.67it/s]\n 8%|▊ | 3/40 [00:00<00:10, 3.68it/s]\n 10%|█ | 4/40 [00:01<00:09, 3.67it/s]\n 12%|█▎ | 5/40 [00:01<00:09, 3.67it/s]\n 15%|█▌ | 6/40 [00:01<00:09, 3.68it/s]\n 18%|█▊ | 7/40 [00:01<00:08, 3.68it/s]\n 20%|██ | 8/40 [00:02<00:08, 3.68it/s]\n 22%|██▎ | 9/40 [00:02<00:08, 3.68it/s]\n 25%|██▌ | 10/40 [00:02<00:08, 3.68it/s]\n 28%|██▊ | 11/40 [00:02<00:07, 3.68it/s]\n 30%|███ | 12/40 [00:03<00:07, 3.67it/s]\n 32%|███▎ | 13/40 [00:03<00:07, 3.67it/s]\n 35%|███▌ | 14/40 [00:03<00:07, 3.67it/s]\n 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s]\n 40%|████ | 16/40 [00:04<00:06, 3.67it/s]\n 42%|████▎ | 17/40 [00:04<00:06, 3.67it/s]\n 45%|████▌ | 18/40 [00:04<00:05, 3.67it/s]\n 48%|████▊ | 19/40 [00:05<00:05, 3.67it/s]\n 50%|█████ | 20/40 [00:05<00:05, 3.67it/s]\n 52%|█████▎ | 21/40 [00:05<00:05, 3.67it/s]\n 55%|█████▌ | 22/40 [00:05<00:04, 3.67it/s]\n 57%|█████▊ | 23/40 [00:06<00:04, 3.67it/s]\n 60%|██████ | 24/40 [00:06<00:04, 3.67it/s]\n 62%|██████▎ | 25/40 [00:06<00:04, 3.67it/s]\n 65%|██████▌ | 26/40 [00:07<00:03, 3.67it/s]\n 68%|██████▊ | 27/40 [00:07<00:03, 3.67it/s]\n 70%|███████ | 28/40 [00:07<00:03, 3.67it/s]\n 72%|███████▎ | 29/40 [00:07<00:02, 3.67it/s]\n 75%|███████▌ | 30/40 [00:08<00:02, 3.67it/s]\n 78%|███████▊ | 31/40 [00:08<00:02, 3.67it/s]\n 80%|████████ | 32/40 [00:08<00:02, 3.67it/s]\n 82%|████████▎ | 33/40 [00:08<00:01, 3.67it/s]\n 85%|████████▌ | 34/40 [00:09<00:01, 3.67it/s]\n 88%|████████▊ | 35/40 [00:09<00:01, 3.67it/s]\n 90%|█████████ | 36/40 [00:09<00:01, 3.67it/s]\n 92%|█████████▎| 37/40 [00:10<00:00, 3.67it/s]\n 95%|█████████▌| 38/40 [00:10<00:00, 3.66it/s]\n 98%|█████████▊| 39/40 [00:10<00:00, 3.66it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.66it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.67it/s]", "metrics": { "predict_time": 13.620127, "total_time": 13.543052 }, "output": [ "https://replicate.delivery/pbxt/gSm6fqPW8jQMFaaPFef29TRLn68pE6PFNGl01bzw34du8FyiA/out-0.png" ], "started_at": "2023-08-11T18:27:22.297986Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jnasr4dbq7wcjzj7ertwdjtlia", "cancel": "https://api.replicate.com/v1/predictions/jnasr4dbq7wcjzj7ertwdjtlia/cancel" }, "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50" }
Generated inUsing seed: 10258 Prompt: A sandwich card in the style of <s0><s1> inpainting mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:10, 3.67it/s] 5%|▌ | 2/40 [00:00<00:10, 3.67it/s] 8%|▊ | 3/40 [00:00<00:10, 3.68it/s] 10%|█ | 4/40 [00:01<00:09, 3.67it/s] 12%|█▎ | 5/40 [00:01<00:09, 3.67it/s] 15%|█▌ | 6/40 [00:01<00:09, 3.68it/s] 18%|█▊ | 7/40 [00:01<00:08, 3.68it/s] 20%|██ | 8/40 [00:02<00:08, 3.68it/s] 22%|██▎ | 9/40 [00:02<00:08, 3.68it/s] 25%|██▌ | 10/40 [00:02<00:08, 3.68it/s] 28%|██▊ | 11/40 [00:02<00:07, 3.68it/s] 30%|███ | 12/40 [00:03<00:07, 3.67it/s] 32%|███▎ | 13/40 [00:03<00:07, 3.67it/s] 35%|███▌ | 14/40 [00:03<00:07, 3.67it/s] 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s] 40%|████ | 16/40 [00:04<00:06, 3.67it/s] 42%|████▎ | 17/40 [00:04<00:06, 3.67it/s] 45%|████▌ | 18/40 [00:04<00:05, 3.67it/s] 48%|████▊ | 19/40 [00:05<00:05, 3.67it/s] 50%|█████ | 20/40 [00:05<00:05, 3.67it/s] 52%|█████▎ | 21/40 [00:05<00:05, 3.67it/s] 55%|█████▌ | 22/40 [00:05<00:04, 3.67it/s] 57%|█████▊ | 23/40 [00:06<00:04, 3.67it/s] 60%|██████ | 24/40 [00:06<00:04, 3.67it/s] 62%|██████▎ | 25/40 [00:06<00:04, 3.67it/s] 65%|██████▌ | 26/40 [00:07<00:03, 3.67it/s] 68%|██████▊ | 27/40 [00:07<00:03, 3.67it/s] 70%|███████ | 28/40 [00:07<00:03, 3.67it/s] 72%|███████▎ | 29/40 [00:07<00:02, 3.67it/s] 75%|███████▌ | 30/40 [00:08<00:02, 3.67it/s] 78%|███████▊ | 31/40 [00:08<00:02, 3.67it/s] 80%|████████ | 32/40 [00:08<00:02, 3.67it/s] 82%|████████▎ | 33/40 [00:08<00:01, 3.67it/s] 85%|████████▌ | 34/40 [00:09<00:01, 3.67it/s] 88%|████████▊ | 35/40 [00:09<00:01, 3.67it/s] 90%|█████████ | 36/40 [00:09<00:01, 3.67it/s] 92%|█████████▎| 37/40 [00:10<00:00, 3.67it/s] 95%|█████████▌| 38/40 [00:10<00:00, 3.66it/s] 98%|█████████▊| 39/40 [00:10<00:00, 3.66it/s] 100%|██████████| 40/40 [00:10<00:00, 3.66it/s] 100%|██████████| 40/40 [00:10<00:00, 3.67it/s]
Prediction
zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50IDoi3k6bdb6lt6astdkwkpnsuzfuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A taco card in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "mask": "https://replicate.delivery/pbxt/JKi4BBTHkMQ9JtXHuzzHOw4t0BJtDZOwVOonDf1Y59CGSvw7/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi4Bf4zhOh2rrI3qanLNJxzGT9Tzi1fANo9OhJq06HqEYoD/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A taco card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", { input: { mask: "https://replicate.delivery/pbxt/JKi4BBTHkMQ9JtXHuzzHOw4t0BJtDZOwVOonDf1Y59CGSvw7/loteria-mask.jpg", image: "https://replicate.delivery/pbxt/JKi4Bf4zhOh2rrI3qanLNJxzGT9Tzi1fANo9OhJq06HqEYoD/loteria-blank-card.jpg", width: 1024, height: 1024, prompt: "A taco card in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", input={ "mask": "https://replicate.delivery/pbxt/JKi4BBTHkMQ9JtXHuzzHOw4t0BJtDZOwVOonDf1Y59CGSvw7/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi4Bf4zhOh2rrI3qanLNJxzGT9Tzi1fANo9OhJq06HqEYoD/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A taco card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", "input": { "mask": "https://replicate.delivery/pbxt/JKi4BBTHkMQ9JtXHuzzHOw4t0BJtDZOwVOonDf1Y59CGSvw7/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi4Bf4zhOh2rrI3qanLNJxzGT9Tzi1fANo9OhJq06HqEYoD/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A taco card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-08-11T18:27:57.756599Z", "created_at": "2023-08-11T18:27:44.419286Z", "data_removed": false, "error": null, "id": "oi3k6bdb6lt6astdkwkpnsuzfu", "input": { "mask": "https://replicate.delivery/pbxt/JKi4BBTHkMQ9JtXHuzzHOw4t0BJtDZOwVOonDf1Y59CGSvw7/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi4Bf4zhOh2rrI3qanLNJxzGT9Tzi1fANo9OhJq06HqEYoD/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A taco card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 47287\nPrompt: A taco card in the style of <s0><s1>\ninpainting mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:10, 3.67it/s]\n 5%|▌ | 2/40 [00:00<00:10, 3.67it/s]\n 8%|▊ | 3/40 [00:00<00:10, 3.68it/s]\n 10%|█ | 4/40 [00:01<00:09, 3.67it/s]\n 12%|█▎ | 5/40 [00:01<00:09, 3.67it/s]\n 15%|█▌ | 6/40 [00:01<00:09, 3.67it/s]\n 18%|█▊ | 7/40 [00:01<00:08, 3.67it/s]\n 20%|██ | 8/40 [00:02<00:08, 3.68it/s]\n 22%|██▎ | 9/40 [00:02<00:08, 3.67it/s]\n 25%|██▌ | 10/40 [00:02<00:08, 3.67it/s]\n 28%|██▊ | 11/40 [00:02<00:07, 3.67it/s]\n 30%|███ | 12/40 [00:03<00:07, 3.67it/s]\n 32%|███▎ | 13/40 [00:03<00:07, 3.67it/s]\n 35%|███▌ | 14/40 [00:03<00:07, 3.67it/s]\n 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s]\n 40%|████ | 16/40 [00:04<00:06, 3.67it/s]\n 42%|████▎ | 17/40 [00:04<00:06, 3.67it/s]\n 45%|████▌ | 18/40 [00:04<00:05, 3.67it/s]\n 48%|████▊ | 19/40 [00:05<00:05, 3.67it/s]\n 50%|█████ | 20/40 [00:05<00:05, 3.67it/s]\n 52%|█████▎ | 21/40 [00:05<00:05, 3.67it/s]\n 55%|█████▌ | 22/40 [00:05<00:04, 3.67it/s]\n 57%|█████▊ | 23/40 [00:06<00:04, 3.67it/s]\n 60%|██████ | 24/40 [00:06<00:04, 3.67it/s]\n 62%|██████▎ | 25/40 [00:06<00:04, 3.67it/s]\n 65%|██████▌ | 26/40 [00:07<00:03, 3.67it/s]\n 68%|██████▊ | 27/40 [00:07<00:03, 3.67it/s]\n 70%|███████ | 28/40 [00:07<00:03, 3.67it/s]\n 72%|███████▎ | 29/40 [00:07<00:02, 3.67it/s]\n 75%|███████▌ | 30/40 [00:08<00:02, 3.67it/s]\n 78%|███████▊ | 31/40 [00:08<00:02, 3.67it/s]\n 80%|████████ | 32/40 [00:08<00:02, 3.66it/s]\n 82%|████████▎ | 33/40 [00:08<00:01, 3.66it/s]\n 85%|████████▌ | 34/40 [00:09<00:01, 3.66it/s]\n 88%|████████▊ | 35/40 [00:09<00:01, 3.66it/s]\n 90%|█████████ | 36/40 [00:09<00:01, 3.66it/s]\n 92%|█████████▎| 37/40 [00:10<00:00, 3.66it/s]\n 95%|█████████▌| 38/40 [00:10<00:00, 3.66it/s]\n 98%|█████████▊| 39/40 [00:10<00:00, 3.66it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.65it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.67it/s]", "metrics": { "predict_time": 13.365575, "total_time": 13.337313 }, "output": [ "https://replicate.delivery/pbxt/MzP7nBbZxValA515KmnR5NeyNk9GEbNEJfZbeEggtNPb9FyiA/out-0.png" ], "started_at": "2023-08-11T18:27:44.391024Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/oi3k6bdb6lt6astdkwkpnsuzfu", "cancel": "https://api.replicate.com/v1/predictions/oi3k6bdb6lt6astdkwkpnsuzfu/cancel" }, "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50" }
Generated inUsing seed: 47287 Prompt: A taco card in the style of <s0><s1> inpainting mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:10, 3.67it/s] 5%|▌ | 2/40 [00:00<00:10, 3.67it/s] 8%|▊ | 3/40 [00:00<00:10, 3.68it/s] 10%|█ | 4/40 [00:01<00:09, 3.67it/s] 12%|█▎ | 5/40 [00:01<00:09, 3.67it/s] 15%|█▌ | 6/40 [00:01<00:09, 3.67it/s] 18%|█▊ | 7/40 [00:01<00:08, 3.67it/s] 20%|██ | 8/40 [00:02<00:08, 3.68it/s] 22%|██▎ | 9/40 [00:02<00:08, 3.67it/s] 25%|██▌ | 10/40 [00:02<00:08, 3.67it/s] 28%|██▊ | 11/40 [00:02<00:07, 3.67it/s] 30%|███ | 12/40 [00:03<00:07, 3.67it/s] 32%|███▎ | 13/40 [00:03<00:07, 3.67it/s] 35%|███▌ | 14/40 [00:03<00:07, 3.67it/s] 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s] 40%|████ | 16/40 [00:04<00:06, 3.67it/s] 42%|████▎ | 17/40 [00:04<00:06, 3.67it/s] 45%|████▌ | 18/40 [00:04<00:05, 3.67it/s] 48%|████▊ | 19/40 [00:05<00:05, 3.67it/s] 50%|█████ | 20/40 [00:05<00:05, 3.67it/s] 52%|█████▎ | 21/40 [00:05<00:05, 3.67it/s] 55%|█████▌ | 22/40 [00:05<00:04, 3.67it/s] 57%|█████▊ | 23/40 [00:06<00:04, 3.67it/s] 60%|██████ | 24/40 [00:06<00:04, 3.67it/s] 62%|██████▎ | 25/40 [00:06<00:04, 3.67it/s] 65%|██████▌ | 26/40 [00:07<00:03, 3.67it/s] 68%|██████▊ | 27/40 [00:07<00:03, 3.67it/s] 70%|███████ | 28/40 [00:07<00:03, 3.67it/s] 72%|███████▎ | 29/40 [00:07<00:02, 3.67it/s] 75%|███████▌ | 30/40 [00:08<00:02, 3.67it/s] 78%|███████▊ | 31/40 [00:08<00:02, 3.67it/s] 80%|████████ | 32/40 [00:08<00:02, 3.66it/s] 82%|████████▎ | 33/40 [00:08<00:01, 3.66it/s] 85%|████████▌ | 34/40 [00:09<00:01, 3.66it/s] 88%|████████▊ | 35/40 [00:09<00:01, 3.66it/s] 90%|█████████ | 36/40 [00:09<00:01, 3.66it/s] 92%|█████████▎| 37/40 [00:10<00:00, 3.66it/s] 95%|█████████▌| 38/40 [00:10<00:00, 3.66it/s] 98%|█████████▊| 39/40 [00:10<00:00, 3.66it/s] 100%|██████████| 40/40 [00:10<00:00, 3.65it/s] 100%|██████████| 40/40 [00:10<00:00, 3.67it/s]
Prediction
zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50ID5e3jjndbfa3uc7au5qtzewj6myStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A taco card in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "mask": "https://replicate.delivery/pbxt/JKi55Ld06Fx7WZoKGTofbHZB0yssTsqDNFMT7dcjB7Thd3xT/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi54yjPUGIfuWWlOKv9D6TjVuUH3suXNnU6rPJu0Q0Pb1te/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A taco card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", { input: { mask: "https://replicate.delivery/pbxt/JKi55Ld06Fx7WZoKGTofbHZB0yssTsqDNFMT7dcjB7Thd3xT/loteria-mask.jpg", image: "https://replicate.delivery/pbxt/JKi54yjPUGIfuWWlOKv9D6TjVuUH3suXNnU6rPJu0Q0Pb1te/loteria-blank-card.jpg", width: 1024, height: 1024, prompt: "A taco card in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", input={ "mask": "https://replicate.delivery/pbxt/JKi55Ld06Fx7WZoKGTofbHZB0yssTsqDNFMT7dcjB7Thd3xT/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi54yjPUGIfuWWlOKv9D6TjVuUH3suXNnU6rPJu0Q0Pb1te/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A taco card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", "input": { "mask": "https://replicate.delivery/pbxt/JKi55Ld06Fx7WZoKGTofbHZB0yssTsqDNFMT7dcjB7Thd3xT/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi54yjPUGIfuWWlOKv9D6TjVuUH3suXNnU6rPJu0Q0Pb1te/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A taco card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-08-11T18:28:54.228736Z", "created_at": "2023-08-11T18:28:40.914342Z", "data_removed": false, "error": null, "id": "5e3jjndbfa3uc7au5qtzewj6my", "input": { "mask": "https://replicate.delivery/pbxt/JKi55Ld06Fx7WZoKGTofbHZB0yssTsqDNFMT7dcjB7Thd3xT/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi54yjPUGIfuWWlOKv9D6TjVuUH3suXNnU6rPJu0Q0Pb1te/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A taco card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 47220\nPrompt: A taco card in the style of <s0><s1>\ninpainting mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:10, 3.68it/s]\n 5%|▌ | 2/40 [00:00<00:10, 3.67it/s]\n 8%|▊ | 3/40 [00:00<00:10, 3.67it/s]\n 10%|█ | 4/40 [00:01<00:09, 3.66it/s]\n 12%|█▎ | 5/40 [00:01<00:09, 3.66it/s]\n 15%|█▌ | 6/40 [00:01<00:09, 3.66it/s]\n 18%|█▊ | 7/40 [00:01<00:09, 3.66it/s]\n 20%|██ | 8/40 [00:02<00:08, 3.65it/s]\n 22%|██▎ | 9/40 [00:02<00:08, 3.65it/s]\n 25%|██▌ | 10/40 [00:02<00:08, 3.66it/s]\n 28%|██▊ | 11/40 [00:03<00:07, 3.67it/s]\n 30%|███ | 12/40 [00:03<00:07, 3.67it/s]\n 32%|███▎ | 13/40 [00:03<00:07, 3.68it/s]\n 35%|███▌ | 14/40 [00:03<00:07, 3.68it/s]\n 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s]\n 40%|████ | 16/40 [00:04<00:06, 3.68it/s]\n 42%|████▎ | 17/40 [00:04<00:06, 3.68it/s]\n 45%|████▌ | 18/40 [00:04<00:05, 3.68it/s]\n 48%|████▊ | 19/40 [00:05<00:05, 3.67it/s]\n 50%|█████ | 20/40 [00:05<00:05, 3.68it/s]\n 52%|█████▎ | 21/40 [00:05<00:05, 3.68it/s]\n 55%|█████▌ | 22/40 [00:05<00:04, 3.67it/s]\n 57%|█████▊ | 23/40 [00:06<00:04, 3.67it/s]\n 60%|██████ | 24/40 [00:06<00:04, 3.67it/s]\n 62%|██████▎ | 25/40 [00:06<00:04, 3.67it/s]\n 65%|██████▌ | 26/40 [00:07<00:03, 3.67it/s]\n 68%|██████▊ | 27/40 [00:07<00:03, 3.67it/s]\n 70%|███████ | 28/40 [00:07<00:03, 3.67it/s]\n 72%|███████▎ | 29/40 [00:07<00:02, 3.67it/s]\n 75%|███████▌ | 30/40 [00:08<00:02, 3.67it/s]\n 78%|███████▊ | 31/40 [00:08<00:02, 3.67it/s]\n 80%|████████ | 32/40 [00:08<00:02, 3.67it/s]\n 82%|████████▎ | 33/40 [00:08<00:01, 3.67it/s]\n 85%|████████▌ | 34/40 [00:09<00:01, 3.67it/s]\n 88%|████████▊ | 35/40 [00:09<00:01, 3.67it/s]\n 90%|█████████ | 36/40 [00:09<00:01, 3.67it/s]\n 92%|█████████▎| 37/40 [00:10<00:00, 3.67it/s]\n 95%|█████████▌| 38/40 [00:10<00:00, 3.67it/s]\n 98%|█████████▊| 39/40 [00:10<00:00, 3.67it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.67it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.67it/s]", "metrics": { "predict_time": 13.386897, "total_time": 13.314394 }, "output": [ "https://replicate.delivery/pbxt/Rsl80SRj1DKyOZtiRi6PGeGPHYYoSN9X7D16kJnlDA6yfCZRA/out-0.png" ], "started_at": "2023-08-11T18:28:40.841839Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5e3jjndbfa3uc7au5qtzewj6my", "cancel": "https://api.replicate.com/v1/predictions/5e3jjndbfa3uc7au5qtzewj6my/cancel" }, "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50" }
Generated inUsing seed: 47220 Prompt: A taco card in the style of <s0><s1> inpainting mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:10, 3.68it/s] 5%|▌ | 2/40 [00:00<00:10, 3.67it/s] 8%|▊ | 3/40 [00:00<00:10, 3.67it/s] 10%|█ | 4/40 [00:01<00:09, 3.66it/s] 12%|█▎ | 5/40 [00:01<00:09, 3.66it/s] 15%|█▌ | 6/40 [00:01<00:09, 3.66it/s] 18%|█▊ | 7/40 [00:01<00:09, 3.66it/s] 20%|██ | 8/40 [00:02<00:08, 3.65it/s] 22%|██▎ | 9/40 [00:02<00:08, 3.65it/s] 25%|██▌ | 10/40 [00:02<00:08, 3.66it/s] 28%|██▊ | 11/40 [00:03<00:07, 3.67it/s] 30%|███ | 12/40 [00:03<00:07, 3.67it/s] 32%|███▎ | 13/40 [00:03<00:07, 3.68it/s] 35%|███▌ | 14/40 [00:03<00:07, 3.68it/s] 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s] 40%|████ | 16/40 [00:04<00:06, 3.68it/s] 42%|████▎ | 17/40 [00:04<00:06, 3.68it/s] 45%|████▌ | 18/40 [00:04<00:05, 3.68it/s] 48%|████▊ | 19/40 [00:05<00:05, 3.67it/s] 50%|█████ | 20/40 [00:05<00:05, 3.68it/s] 52%|█████▎ | 21/40 [00:05<00:05, 3.68it/s] 55%|█████▌ | 22/40 [00:05<00:04, 3.67it/s] 57%|█████▊ | 23/40 [00:06<00:04, 3.67it/s] 60%|██████ | 24/40 [00:06<00:04, 3.67it/s] 62%|██████▎ | 25/40 [00:06<00:04, 3.67it/s] 65%|██████▌ | 26/40 [00:07<00:03, 3.67it/s] 68%|██████▊ | 27/40 [00:07<00:03, 3.67it/s] 70%|███████ | 28/40 [00:07<00:03, 3.67it/s] 72%|███████▎ | 29/40 [00:07<00:02, 3.67it/s] 75%|███████▌ | 30/40 [00:08<00:02, 3.67it/s] 78%|███████▊ | 31/40 [00:08<00:02, 3.67it/s] 80%|████████ | 32/40 [00:08<00:02, 3.67it/s] 82%|████████▎ | 33/40 [00:08<00:01, 3.67it/s] 85%|████████▌ | 34/40 [00:09<00:01, 3.67it/s] 88%|████████▊ | 35/40 [00:09<00:01, 3.67it/s] 90%|█████████ | 36/40 [00:09<00:01, 3.67it/s] 92%|█████████▎| 37/40 [00:10<00:00, 3.67it/s] 95%|█████████▌| 38/40 [00:10<00:00, 3.67it/s] 98%|█████████▊| 39/40 [00:10<00:00, 3.67it/s] 100%|██████████| 40/40 [00:10<00:00, 3.67it/s] 100%|██████████| 40/40 [00:10<00:00, 3.67it/s]
Prediction
zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50IDo53duadbgoetqdiesw63mxpl2qStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A llama card in the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "mask": "https://replicate.delivery/pbxt/JKi5c4VtYANrvyqKm2uthgP3O5ieCdevhGgyHUcdawCalxrG/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi5bg3gJ1l6v87rxL2xFGVco38v0PXU7BlL3EOVazn4G0u8/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A llama card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", { input: { mask: "https://replicate.delivery/pbxt/JKi5c4VtYANrvyqKm2uthgP3O5ieCdevhGgyHUcdawCalxrG/loteria-mask.jpg", image: "https://replicate.delivery/pbxt/JKi5bg3gJ1l6v87rxL2xFGVco38v0PXU7BlL3EOVazn4G0u8/loteria-blank-card.jpg", width: 1024, height: 1024, prompt: "A llama card in the style of TOK", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zeke/loteria:03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", input={ "mask": "https://replicate.delivery/pbxt/JKi5c4VtYANrvyqKm2uthgP3O5ieCdevhGgyHUcdawCalxrG/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi5bg3gJ1l6v87rxL2xFGVco38v0PXU7BlL3EOVazn4G0u8/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A llama card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zeke/loteria using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50", "input": { "mask": "https://replicate.delivery/pbxt/JKi5c4VtYANrvyqKm2uthgP3O5ieCdevhGgyHUcdawCalxrG/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi5bg3gJ1l6v87rxL2xFGVco38v0PXU7BlL3EOVazn4G0u8/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A llama card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-08-11T18:29:27.836189Z", "created_at": "2023-08-11T18:29:14.486774Z", "data_removed": false, "error": null, "id": "o53duadbgoetqdiesw63mxpl2q", "input": { "mask": "https://replicate.delivery/pbxt/JKi5c4VtYANrvyqKm2uthgP3O5ieCdevhGgyHUcdawCalxrG/loteria-mask.jpg", "image": "https://replicate.delivery/pbxt/JKi5bg3gJ1l6v87rxL2xFGVco38v0PXU7BlL3EOVazn4G0u8/loteria-blank-card.jpg", "width": 1024, "height": 1024, "prompt": "A llama card in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 40907\nPrompt: A llama card in the style of <s0><s1>\ninpainting mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:10, 3.68it/s]\n 5%|▌ | 2/40 [00:00<00:10, 3.67it/s]\n 8%|▊ | 3/40 [00:00<00:10, 3.67it/s]\n 10%|█ | 4/40 [00:01<00:09, 3.67it/s]\n 12%|█▎ | 5/40 [00:01<00:09, 3.66it/s]\n 15%|█▌ | 6/40 [00:01<00:09, 3.66it/s]\n 18%|█▊ | 7/40 [00:01<00:09, 3.66it/s]\n 20%|██ | 8/40 [00:02<00:08, 3.66it/s]\n 22%|██▎ | 9/40 [00:02<00:08, 3.66it/s]\n 25%|██▌ | 10/40 [00:02<00:08, 3.66it/s]\n 28%|██▊ | 11/40 [00:03<00:07, 3.66it/s]\n 30%|███ | 12/40 [00:03<00:07, 3.66it/s]\n 32%|███▎ | 13/40 [00:03<00:07, 3.66it/s]\n 35%|███▌ | 14/40 [00:03<00:07, 3.67it/s]\n 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s]\n 40%|████ | 16/40 [00:04<00:06, 3.67it/s]\n 42%|████▎ | 17/40 [00:04<00:06, 3.68it/s]\n 45%|████▌ | 18/40 [00:04<00:05, 3.68it/s]\n 48%|████▊ | 19/40 [00:05<00:05, 3.68it/s]\n 50%|█████ | 20/40 [00:05<00:05, 3.68it/s]\n 52%|█████▎ | 21/40 [00:05<00:05, 3.68it/s]\n 55%|█████▌ | 22/40 [00:05<00:04, 3.68it/s]\n 57%|█████▊ | 23/40 [00:06<00:04, 3.68it/s]\n 60%|██████ | 24/40 [00:06<00:04, 3.68it/s]\n 62%|██████▎ | 25/40 [00:06<00:04, 3.68it/s]\n 65%|██████▌ | 26/40 [00:07<00:03, 3.68it/s]\n 68%|██████▊ | 27/40 [00:07<00:03, 3.68it/s]\n 70%|███████ | 28/40 [00:07<00:03, 3.68it/s]\n 72%|███████▎ | 29/40 [00:07<00:02, 3.68it/s]\n 75%|███████▌ | 30/40 [00:08<00:02, 3.68it/s]\n 78%|███████▊ | 31/40 [00:08<00:02, 3.68it/s]\n 80%|████████ | 32/40 [00:08<00:02, 3.68it/s]\n 82%|████████▎ | 33/40 [00:08<00:01, 3.68it/s]\n 85%|████████▌ | 34/40 [00:09<00:01, 3.67it/s]\n 88%|████████▊ | 35/40 [00:09<00:01, 3.67it/s]\n 90%|█████████ | 36/40 [00:09<00:01, 3.67it/s]\n 92%|█████████▎| 37/40 [00:10<00:00, 3.67it/s]\n 95%|█████████▌| 38/40 [00:10<00:00, 3.67it/s]\n 98%|█████████▊| 39/40 [00:10<00:00, 3.67it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.67it/s]\n100%|██████████| 40/40 [00:10<00:00, 3.67it/s]", "metrics": { "predict_time": 13.380343, "total_time": 13.349415 }, "output": [ "https://replicate.delivery/pbxt/fKa2cif9XghvzU4XdiEIZPVdZlKx7R2kIVTz0KRamIjHADZRA/out-0.png" ], "started_at": "2023-08-11T18:29:14.455846Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/o53duadbgoetqdiesw63mxpl2q", "cancel": "https://api.replicate.com/v1/predictions/o53duadbgoetqdiesw63mxpl2q/cancel" }, "version": "03843f4992ae68b5721d7e36473f7b66872769567652777fd62ee16bd806db50" }
Generated inUsing seed: 40907 Prompt: A llama card in the style of <s0><s1> inpainting mode 0%| | 0/40 [00:00<?, ?it/s] 2%|▎ | 1/40 [00:00<00:10, 3.68it/s] 5%|▌ | 2/40 [00:00<00:10, 3.67it/s] 8%|▊ | 3/40 [00:00<00:10, 3.67it/s] 10%|█ | 4/40 [00:01<00:09, 3.67it/s] 12%|█▎ | 5/40 [00:01<00:09, 3.66it/s] 15%|█▌ | 6/40 [00:01<00:09, 3.66it/s] 18%|█▊ | 7/40 [00:01<00:09, 3.66it/s] 20%|██ | 8/40 [00:02<00:08, 3.66it/s] 22%|██▎ | 9/40 [00:02<00:08, 3.66it/s] 25%|██▌ | 10/40 [00:02<00:08, 3.66it/s] 28%|██▊ | 11/40 [00:03<00:07, 3.66it/s] 30%|███ | 12/40 [00:03<00:07, 3.66it/s] 32%|███▎ | 13/40 [00:03<00:07, 3.66it/s] 35%|███▌ | 14/40 [00:03<00:07, 3.67it/s] 38%|███▊ | 15/40 [00:04<00:06, 3.67it/s] 40%|████ | 16/40 [00:04<00:06, 3.67it/s] 42%|████▎ | 17/40 [00:04<00:06, 3.68it/s] 45%|████▌ | 18/40 [00:04<00:05, 3.68it/s] 48%|████▊ | 19/40 [00:05<00:05, 3.68it/s] 50%|█████ | 20/40 [00:05<00:05, 3.68it/s] 52%|█████▎ | 21/40 [00:05<00:05, 3.68it/s] 55%|█████▌ | 22/40 [00:05<00:04, 3.68it/s] 57%|█████▊ | 23/40 [00:06<00:04, 3.68it/s] 60%|██████ | 24/40 [00:06<00:04, 3.68it/s] 62%|██████▎ | 25/40 [00:06<00:04, 3.68it/s] 65%|██████▌ | 26/40 [00:07<00:03, 3.68it/s] 68%|██████▊ | 27/40 [00:07<00:03, 3.68it/s] 70%|███████ | 28/40 [00:07<00:03, 3.68it/s] 72%|███████▎ | 29/40 [00:07<00:02, 3.68it/s] 75%|███████▌ | 30/40 [00:08<00:02, 3.68it/s] 78%|███████▊ | 31/40 [00:08<00:02, 3.68it/s] 80%|████████ | 32/40 [00:08<00:02, 3.68it/s] 82%|████████▎ | 33/40 [00:08<00:01, 3.68it/s] 85%|████████▌ | 34/40 [00:09<00:01, 3.67it/s] 88%|████████▊ | 35/40 [00:09<00:01, 3.67it/s] 90%|█████████ | 36/40 [00:09<00:01, 3.67it/s] 92%|█████████▎| 37/40 [00:10<00:00, 3.67it/s] 95%|█████████▌| 38/40 [00:10<00:00, 3.67it/s] 98%|█████████▊| 39/40 [00:10<00:00, 3.67it/s] 100%|██████████| 40/40 [00:10<00:00, 3.67it/s] 100%|██████████| 40/40 [00:10<00:00, 3.67it/s]
Want to make some of these yourself?
Run this model