zenaivn / dreambooth-training
- Public
- 293 runs
Run zenaivn/dreambooth-training with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
train_dreambooth |
boolean
|
True
|
Whether to train dreambooth or not.
|
train_lora |
boolean
|
False
|
Whether to train lora or not.
|
train_lora_sliders |
boolean
|
False
|
Whether to train lora sliders or not.
|
model_replicate_link |
string
|
(Optional) Enter your model replicate link for lora sliders training. In case you don't have your own, here is a test link: https://replicate.delivery/pbxt/mu6jfnIIdQWIMKpBXRX3AkRltbjmwEX7kERNInQptcSM3VIJA/output.zip
|
|
breast |
boolean
|
True
|
(Optional) Choose if you want to train lora slider for breast
|
butt |
boolean
|
False
|
(Optional) Choose if you want to train lora slider for butt
|
weight |
boolean
|
False
|
(Optional) Choose if you want to train lora slider for weight
|
class_name |
string
|
Specify the class name (for example: man/woman/style/...).
|
|
identifier |
string
|
ohwx
|
Unique identifier for the model instance.
|
num_repeats |
string
|
1
|
Number of times the input images should be repeated.
|
output_name |
string
|
Name of the model's output file. (for example: output_model)
|
|
instance_data |
string
|
A ZIP file containing your training images (JPG, PNG, etc. size not restricted). These images contain your 'subject' that you want the trained model to embed in the output domain for later generating customized scenes beyond the training images. For best results, use images without noise or unrelated objects in the background.
|
|
class_data |
string
|
An optional ZIP file containing the training data of class images. This corresponds to `class_prompt` above, also with the purpose of keeping the model generalizable. By default, the pretrained stable-diffusion model will generate N images (determined by the `num_class_images` you set) based on the `class_prompt` provided. But to save time or to have your preferred specific set of `class_data`, you can also provide them in a ZIP file.
|
|
using_crop_images |
boolean
|
True
|
Whether to use crop images or not.
|
train_batch_size |
integer
|
1
|
Batch size for training data loader, applied per device.
|
learning_rate |
number
|
0.000001
|
Initial learning rate (after the potential warmup period) to use. For training LoRA, use 0.0005.
|
learning_rate_te |
number
|
0.000001
|
Initial learning rate te (after the potential warmup period) to use. For training LoRA, use 0.0005
|
lr_scheduler |
string
(enum)
|
cosine
Options: linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup |
The scheduler type to use. For training LoRA, use constant
|
seed |
integer
|
1337
|
Your seed for training script.
|
{
"type": "object",
"title": "Input",
"required": [
"class_name",
"output_name",
"instance_data"
],
"properties": {
"butt": {
"type": "boolean",
"title": "Butt",
"default": false,
"x-order": 5,
"description": "(Optional) Choose if you want to train lora slider for butt"
},
"seed": {
"type": "integer",
"title": "Seed",
"default": 1337,
"x-order": 18,
"description": "Your seed for training script."
},
"breast": {
"type": "boolean",
"title": "Breast",
"default": true,
"x-order": 4,
"description": "(Optional) Choose if you want to train lora slider for breast"
},
"weight": {
"type": "boolean",
"title": "Weight",
"default": false,
"x-order": 6,
"description": "(Optional) Choose if you want to train lora slider for weight"
},
"class_data": {
"type": "string",
"title": "Class Data",
"format": "uri",
"x-order": 12,
"description": "An optional ZIP file containing the training data of class images. This corresponds to `class_prompt` above, also with the purpose of keeping the model generalizable. By default, the pretrained stable-diffusion model will generate N images (determined by the `num_class_images` you set) based on the `class_prompt` provided. But to save time or to have your preferred specific set of `class_data`, you can also provide them in a ZIP file."
},
"class_name": {
"type": "string",
"title": "Class Name",
"x-order": 7,
"description": "Specify the class name (for example: man/woman/style/...)."
},
"identifier": {
"type": "string",
"title": "Identifier",
"default": "ohwx",
"x-order": 8,
"description": "Unique identifier for the model instance."
},
"train_lora": {
"type": "boolean",
"title": "Train Lora",
"default": false,
"x-order": 1,
"description": "Whether to train lora or not."
},
"num_repeats": {
"type": "string",
"title": "Num Repeats",
"default": "1",
"x-order": 9,
"description": "Number of times the input images should be repeated."
},
"output_name": {
"type": "string",
"title": "Output Name",
"x-order": 10,
"description": "Name of the model's output file. (for example: output_model)"
},
"lr_scheduler": {
"enum": [
"linear",
"cosine",
"cosine_with_restarts",
"polynomial",
"constant",
"constant_with_warmup"
],
"type": "string",
"title": "lr_scheduler",
"description": "The scheduler type to use. For training LoRA, use constant",
"default": "cosine",
"x-order": 17
},
"instance_data": {
"type": "string",
"title": "Instance Data",
"x-order": 11,
"description": "A ZIP file containing your training images (JPG, PNG, etc. size not restricted). These images contain your 'subject' that you want the trained model to embed in the output domain for later generating customized scenes beyond the training images. For best results, use images without noise or unrelated objects in the background."
},
"learning_rate": {
"type": "number",
"title": "Learning Rate",
"default": 1e-06,
"x-order": 15,
"description": "Initial learning rate (after the potential warmup period) to use. For training LoRA, use 0.0005."
},
"learning_rate_te": {
"type": "number",
"title": "Learning Rate Te",
"default": 1e-06,
"x-order": 16,
"description": "Initial learning rate te (after the potential warmup period) to use. For training LoRA, use 0.0005"
},
"train_batch_size": {
"type": "integer",
"title": "Train Batch Size",
"default": 1,
"x-order": 14,
"description": "Batch size for training data loader, applied per device."
},
"train_dreambooth": {
"type": "boolean",
"title": "Train Dreambooth",
"default": true,
"x-order": 0,
"description": "Whether to train dreambooth or not."
},
"using_crop_images": {
"type": "boolean",
"title": "Using Crop Images",
"default": true,
"x-order": 13,
"description": "Whether to use crop images or not."
},
"train_lora_sliders": {
"type": "boolean",
"title": "Train Lora Sliders",
"default": false,
"x-order": 2,
"description": "Whether to train lora sliders or not."
},
"model_replicate_link": {
"type": "string",
"title": "Model Replicate Link",
"x-order": 3,
"description": "(Optional) Enter your model replicate link for lora sliders training. In case you don't have your own, here is a test link: https://replicate.delivery/pbxt/mu6jfnIIdQWIMKpBXRX3AkRltbjmwEX7kERNInQptcSM3VIJA/output.zip"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{
"type": "string",
"title": "Output",
"format": "uri"
}