FILM: Frame Interpolation for Large Scene Motion
Same as https://replicate.com/google-research/frame-interpolation but for Video Inputs (Interpolate Recursively)
Paper | YouTube | Benchmark Scores
ÎÎ
Tensorflow 2 implementation of our high quality frame interpolation neural network. We present a unified single-network approach that doesn’t use additional pre-trained networks, like optical flow or depth, and yet achieve state-of-the-art results. We use a multi-scale feature extractor that shares the same convolution weights across the scales. Our model is trainable from frame triplets alone.
FILM: Frame Interpolation for Large Motion
Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, Brian Curless
Google Research
Technical Report 2022.
Citation
If you find this implementation useful in your works, please acknowledge it appropriately by citing:
@inproceedings{reda2022film,
title = {Frame Interpolation for Large Motion},
author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
booktitle = {arXiv},
year = {2022}
}
@misc{film-tf,
title = {Tensorflow 2 Implementation of "FILM: Frame Interpolation for Large Scene Motion"},
author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/google-research/frame-interpolation}}
}