You're looking at a specific version of this model. Jump to the model overview.
zylim0702 /qr_code_controlnet:0d525cb4
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
url |
string
|
Link Url for QR Code.
|
|
prompt |
string
|
Prompt for the model
|
|
canny_image |
string
|
Control image for canny controlnet
|
|
canny_conditioning_scale |
number
|
1
|
Conditioning scale for canny controlnet
|
depth_image |
string
|
Control image for depth controlnet
|
|
depth_conditioning_scale |
number
|
1
|
Conditioning scale for depth controlnet
|
hed_image |
string
|
Control image for hed controlnet
|
|
hed_conditioning_scale |
number
|
1
|
Conditioning scale for hed controlnet
|
hough_image |
string
|
Control image for hough controlnet
|
|
hough_conditioning_scale |
number
|
1
|
Conditioning scale for hough controlnet
|
normal_image |
string
|
Control image for normal controlnet
|
|
normal_conditioning_scale |
number
|
1
|
Conditioning scale for normal controlnet
|
pose_image |
string
|
Control image for pose controlnet
|
|
pose_conditioning_scale |
number
|
1
|
Conditioning scale for pose controlnet
|
scribble_image |
string
|
Control image for scribble controlnet
|
|
scribble_conditioning_scale |
number
|
1
|
Conditioning scale for scribble controlnet
|
seg_image |
string
|
Control image for seg controlnet
|
|
seg_conditioning_scale |
number
|
1
|
Conditioning scale for seg controlnet
|
qr_conditioning_scale |
number
|
1
|
Conditioning scale for qr controlnet
|
num_outputs |
integer
|
1
Min: 1 Max: 10 |
Number of images to generate
|
image_resolution |
integer
(enum)
|
512
Options: 256, 512, 768 |
Resolution of image (smallest dimension)
|
scheduler |
string
(enum)
|
DDIM
Options: DDIM, DPMSolverMultistep, HeunDiscrete, K_EULER_ANCESTRAL, K_EULER, KLMS, PNDM, UniPCMultistep |
Choose a scheduler.
|
num_inference_steps |
integer
|
20
|
Steps to run denoising
|
guidance_scale |
number
|
9
Min: 0.1 Max: 30 |
Scale for classifier-free guidance
|
seed |
integer
|
Seed
|
|
eta |
number
|
0
|
Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise
|
negative_prompt |
string
|
Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
|
Negative prompt
|
low_threshold |
integer
|
100
Min: 1 Max: 255 |
[canny only] Line detection low threshold
|
high_threshold |
integer
|
200
Min: 1 Max: 255 |
[canny only] Line detection high threshold
|
guess_mode |
boolean
|
False
|
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
disable_safety_check |
boolean
|
False
|
Disable safety check. Use at your own risk!
|
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{'items': {'format': 'uri', 'type': 'string'},
'title': 'Output',
'type': 'array'}