You're looking at a specific version of this model. Jump to the model overview.

zylim0702 /qr_code_controlnet:0d525cb4

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
url
string
Link Url for QR Code.
prompt
string
Prompt for the model
canny_image
string
Control image for canny controlnet
canny_conditioning_scale
number
1
Conditioning scale for canny controlnet
depth_image
string
Control image for depth controlnet
depth_conditioning_scale
number
1
Conditioning scale for depth controlnet
hed_image
string
Control image for hed controlnet
hed_conditioning_scale
number
1
Conditioning scale for hed controlnet
hough_image
string
Control image for hough controlnet
hough_conditioning_scale
number
1
Conditioning scale for hough controlnet
normal_image
string
Control image for normal controlnet
normal_conditioning_scale
number
1
Conditioning scale for normal controlnet
pose_image
string
Control image for pose controlnet
pose_conditioning_scale
number
1
Conditioning scale for pose controlnet
scribble_image
string
Control image for scribble controlnet
scribble_conditioning_scale
number
1
Conditioning scale for scribble controlnet
seg_image
string
Control image for seg controlnet
seg_conditioning_scale
number
1
Conditioning scale for seg controlnet
qr_conditioning_scale
number
1
Conditioning scale for qr controlnet
num_outputs
integer
1

Min: 1

Max: 10

Number of images to generate
image_resolution
integer (enum)
512

Options:

256, 512, 768

Resolution of image (smallest dimension)
scheduler
string (enum)
DDIM

Options:

DDIM, DPMSolverMultistep, HeunDiscrete, K_EULER_ANCESTRAL, K_EULER, KLMS, PNDM, UniPCMultistep

Choose a scheduler.
num_inference_steps
integer
20
Steps to run denoising
guidance_scale
number
9

Min: 0.1

Max: 30

Scale for classifier-free guidance
seed
integer
Seed
eta
number
0
Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise
negative_prompt
string
Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
Negative prompt
low_threshold
integer
100

Min: 1

Max: 255

[canny only] Line detection low threshold
high_threshold
integer
200

Min: 1

Max: 255

[canny only] Line detection high threshold
guess_mode
boolean
False
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
disable_safety_check
boolean
False
Disable safety check. Use at your own risk!

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'items': {'format': 'uri', 'type': 'string'},
 'title': 'Output',
 'type': 'array'}