zzzziqi
/
multi-control
- Public
- 4 runs
Run zzzziqi/multi-control with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
Prompt for the model
|
|
canny_image |
string
|
Control image for canny controlnet
|
|
canny_conditioning_scale |
number
|
1
|
Conditioning scale for canny controlnet
|
depth_image |
string
|
Control image for depth controlnet
|
|
depth_conditioning_scale |
number
|
1
|
Conditioning scale for depth controlnet
|
hed_image |
string
|
Control image for hed controlnet
|
|
hed_conditioning_scale |
number
|
1
|
Conditioning scale for hed controlnet
|
hough_image |
string
|
Control image for hough controlnet
|
|
hough_conditioning_scale |
number
|
1
|
Conditioning scale for hough controlnet
|
normal_image |
string
|
Control image for normal controlnet
|
|
normal_conditioning_scale |
number
|
1
|
Conditioning scale for normal controlnet
|
pose_image |
string
|
Control image for pose controlnet
|
|
pose_conditioning_scale |
number
|
1
|
Conditioning scale for pose controlnet
|
scribble_image |
string
|
Control image for scribble controlnet
|
|
scribble_conditioning_scale |
number
|
1
|
Conditioning scale for scribble controlnet
|
seg_image |
string
|
Control image for seg controlnet
|
|
seg_conditioning_scale |
number
|
1
|
Conditioning scale for seg controlnet
|
qr_image |
string
|
Control image for qr controlnet
|
|
qr_conditioning_scale |
number
|
1
|
Conditioning scale for qr controlnet
|
num_outputs |
integer
|
1
Min: 1 Max: 10 |
Number of images to generate
|
image_resolution |
integer
(enum)
|
512
Options: 256, 512, 768 |
Resolution of image (smallest dimension)
|
scheduler |
string
(enum)
|
DDIM
Options: DDIM, DPMSolverMultistep, HeunDiscrete, K_EULER_ANCESTRAL, K_EULER, KLMS, PNDM, UniPCMultistep |
Choose a scheduler.
|
num_inference_steps |
integer
|
20
|
Steps to run denoising
|
guidance_scale |
number
|
9
Min: 0.1 Max: 30 |
Scale for classifier-free guidance
|
seed |
integer
|
Seed
|
|
eta |
number
|
0
|
Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise
|
negative_prompt |
string
|
Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
|
Negative prompt
|
low_threshold |
integer
|
100
Min: 1 Max: 255 |
[canny only] Line detection low threshold
|
high_threshold |
integer
|
200
Min: 1 Max: 255 |
[canny only] Line detection high threshold
|
guess_mode |
boolean
|
False
|
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
disable_safety_check |
boolean
|
False
|
Disable safety check. Use at your own risk!
|
{
"type": "object",
"title": "Input",
"required": [
"prompt"
],
"properties": {
"eta": {
"type": "number",
"title": "Eta",
"default": 0,
"x-order": 25,
"description": "Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise"
},
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 24,
"description": "Seed"
},
"prompt": {
"type": "string",
"title": "Prompt",
"x-order": 0,
"description": "Prompt for the model"
},
"qr_image": {
"type": "string",
"title": "Qr Image",
"format": "uri",
"x-order": 17,
"description": "Control image for qr controlnet"
},
"hed_image": {
"type": "string",
"title": "Hed Image",
"format": "uri",
"x-order": 5,
"description": "Control image for hed controlnet"
},
"scheduler": {
"enum": [
"DDIM",
"DPMSolverMultistep",
"HeunDiscrete",
"K_EULER_ANCESTRAL",
"K_EULER",
"KLMS",
"PNDM",
"UniPCMultistep"
],
"type": "string",
"title": "scheduler",
"description": "Choose a scheduler.",
"default": "DDIM",
"x-order": 21
},
"seg_image": {
"type": "string",
"title": "Seg Image",
"format": "uri",
"x-order": 15,
"description": "Control image for seg controlnet"
},
"guess_mode": {
"type": "boolean",
"title": "Guess Mode",
"default": false,
"x-order": 29,
"description": "In this mode, the ControlNet encoder will try best to recognize the content of the input image even if you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended."
},
"pose_image": {
"type": "string",
"title": "Pose Image",
"format": "uri",
"x-order": 11,
"description": "Control image for pose controlnet"
},
"canny_image": {
"type": "string",
"title": "Canny Image",
"format": "uri",
"x-order": 1,
"description": "Control image for canny controlnet"
},
"depth_image": {
"type": "string",
"title": "Depth Image",
"format": "uri",
"x-order": 3,
"description": "Control image for depth controlnet"
},
"hough_image": {
"type": "string",
"title": "Hough Image",
"format": "uri",
"x-order": 7,
"description": "Control image for hough controlnet"
},
"num_outputs": {
"type": "integer",
"title": "Num Outputs",
"default": 1,
"maximum": 10,
"minimum": 1,
"x-order": 19,
"description": "Number of images to generate"
},
"normal_image": {
"type": "string",
"title": "Normal Image",
"format": "uri",
"x-order": 9,
"description": "Control image for normal controlnet"
},
"low_threshold": {
"type": "integer",
"title": "Low Threshold",
"default": 100,
"maximum": 255,
"minimum": 1,
"x-order": 27,
"description": "[canny only] Line detection low threshold"
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 9,
"maximum": 30,
"minimum": 0.1,
"x-order": 23,
"description": "Scale for classifier-free guidance"
},
"high_threshold": {
"type": "integer",
"title": "High Threshold",
"default": 200,
"maximum": 255,
"minimum": 1,
"x-order": 28,
"description": "[canny only] Line detection high threshold"
},
"scribble_image": {
"type": "string",
"title": "Scribble Image",
"format": "uri",
"x-order": 13,
"description": "Control image for scribble controlnet"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"default": "Longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"x-order": 26,
"description": "Negative prompt"
},
"image_resolution": {
"enum": [
256,
512,
768
],
"type": "integer",
"title": "image_resolution",
"description": "Resolution of image (smallest dimension)",
"default": 512,
"x-order": 20
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 20,
"x-order": 22,
"description": "Steps to run denoising"
},
"disable_safety_check": {
"type": "boolean",
"title": "Disable Safety Check",
"default": false,
"x-order": 30,
"description": "Disable safety check. Use at your own risk!"
},
"qr_conditioning_scale": {
"type": "number",
"title": "Qr Conditioning Scale",
"default": 1,
"x-order": 18,
"description": "Conditioning scale for qr controlnet"
},
"hed_conditioning_scale": {
"type": "number",
"title": "Hed Conditioning Scale",
"default": 1,
"x-order": 6,
"description": "Conditioning scale for hed controlnet"
},
"seg_conditioning_scale": {
"type": "number",
"title": "Seg Conditioning Scale",
"default": 1,
"x-order": 16,
"description": "Conditioning scale for seg controlnet"
},
"pose_conditioning_scale": {
"type": "number",
"title": "Pose Conditioning Scale",
"default": 1,
"x-order": 12,
"description": "Conditioning scale for pose controlnet"
},
"canny_conditioning_scale": {
"type": "number",
"title": "Canny Conditioning Scale",
"default": 1,
"x-order": 2,
"description": "Conditioning scale for canny controlnet"
},
"depth_conditioning_scale": {
"type": "number",
"title": "Depth Conditioning Scale",
"default": 1,
"x-order": 4,
"description": "Conditioning scale for depth controlnet"
},
"hough_conditioning_scale": {
"type": "number",
"title": "Hough Conditioning Scale",
"default": 1,
"x-order": 8,
"description": "Conditioning scale for hough controlnet"
},
"normal_conditioning_scale": {
"type": "number",
"title": "Normal Conditioning Scale",
"default": 1,
"x-order": 10,
"description": "Conditioning scale for normal controlnet"
},
"scribble_conditioning_scale": {
"type": "number",
"title": "Scribble Conditioning Scale",
"default": 1,
"x-order": 14,
"description": "Conditioning scale for scribble controlnet"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}