adirik/flux-cinestill

Flux lora, use "CNSTLL" to trigger

Text-Guided Image Generation and Manipulation

PyTorch version of Lightweight OpenPose as introduced in "Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose"

Modify images using line art

Modify images using canny edges

Modify images using sketches

Modify images using human pose

Modify images using depth maps

Inst-Inpaint: Instructing to Remove Objects with Diffusion Models

Zero-shot / open vocabulary object detection

Generate videos from text prompts with Kandinsky-2.2

Detect everything with language!

Generates 3D assets from images

Generate 3D assets using text descriptions

Detects objects in an image

Performs speaker identity verification

Generates speech from text

Generate texture for your mesh with text prompts

Kosmos-G: Generating Images in Context with Multimodal Large Language Models

Edit real or generated images

Edit real or generated images
Prediction
adirik/flux-cinestill:0a6ad486c5589dd78647fb44f0527bcae57f112e49b722455b289baa897232c5Input
- model
- dev
- prompt
- CNSTLL, Road trip, view through car window of desert highway
- lora_scale
- 0.6
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "CNSTLL, Road trip, view through car window of desert highway\n", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/flux-cinestill:0a6ad486c5589dd78647fb44f0527bcae57f112e49b722455b289baa897232c5", { input: { model: "dev", prompt: "CNSTLL, Road trip, view through car window of desert highway\n", lora_scale: 0.6, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/flux-cinestill:0a6ad486c5589dd78647fb44f0527bcae57f112e49b722455b289baa897232c5", input={ "model": "dev", "prompt": "CNSTLL, Road trip, view through car window of desert highway\n", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "adirik/flux-cinestill:0a6ad486c5589dd78647fb44f0527bcae57f112e49b722455b289baa897232c5", "input": { "model": "dev", "prompt": "CNSTLL, Road trip, view through car window of desert highway\\n", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T12:44:57.435576Z", "created_at": "2024-08-24T12:44:30.465000Z", "data_removed": false, "error": null, "id": "zjanp6dhg5rm00chghnb9bqj1m", "input": { "model": "dev", "prompt": "CNSTLL, Road trip, view through car window of desert highway\n", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 57711\nPrompt: CNSTLL, Road trip, view through car window of desert highway\ntxt2img mode\nUsing dev model\nfree=9659731640320\nDownloading weights\n2024-08-24T12:44:30Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpw4usuaxz/weights url=https://replicate.delivery/yhqm/GLO5igfTLkwNb6cZ7GvWXQ6e7BMvPZWOyJdgyWfDhHprqwrmA/trained_model.tar\n2024-08-24T12:44:33Z | INFO | [ Complete ] dest=/tmp/tmpw4usuaxz/weights size=\"688 MB\" total_elapsed=3.324s url=https://replicate.delivery/yhqm/GLO5igfTLkwNb6cZ7GvWXQ6e7BMvPZWOyJdgyWfDhHprqwrmA/trained_model.tar\nDownloaded weights in 3.37s\nLoaded LoRAs in 18.57s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.54it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.97it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.76it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.52it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.56it/s]", "metrics": { "predict_time": 26.959945308, "total_time": 26.970576 }, "output": [ "https://replicate.delivery/yhqm/WGqB1k5eQuQTVSfffr8RfI4qs6PcNyZesqN5MKXnegR0kP8qJA/out-0.webp" ], "started_at": "2024-08-24T12:44:30.475631Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zjanp6dhg5rm00chghnb9bqj1m", "cancel": "https://api.replicate.com/v1/predictions/zjanp6dhg5rm00chghnb9bqj1m/cancel" }, "version": "0a6ad486c5589dd78647fb44f0527bcae57f112e49b722455b289baa897232c5" }
Generated inUsing seed: 57711 Prompt: CNSTLL, Road trip, view through car window of desert highway txt2img mode Using dev model free=9659731640320 Downloading weights 2024-08-24T12:44:30Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpw4usuaxz/weights url=https://replicate.delivery/yhqm/GLO5igfTLkwNb6cZ7GvWXQ6e7BMvPZWOyJdgyWfDhHprqwrmA/trained_model.tar 2024-08-24T12:44:33Z | INFO | [ Complete ] dest=/tmp/tmpw4usuaxz/weights size="688 MB" total_elapsed=3.324s url=https://replicate.delivery/yhqm/GLO5igfTLkwNb6cZ7GvWXQ6e7BMvPZWOyJdgyWfDhHprqwrmA/trained_model.tar Downloaded weights in 3.37s Loaded LoRAs in 18.57s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.54it/s] 7%|▋ | 2/28 [00:00<00:06, 3.97it/s] 11%|█ | 3/28 [00:00<00:06, 3.76it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.52it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.56it/s]
Prediction
adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938fIDebhsqv3dh1rm40chgk8bx8s66cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- in the style of CNSTLL, an urban landscape with street sellers and a fish market at night, photorealistic
- lora_scale
- 0.6
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "in the style of CNSTLL, an urban landscape with street sellers and a fish market at night, photorealistic", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", { input: { model: "dev", prompt: "in the style of CNSTLL, an urban landscape with street sellers and a fish market at night, photorealistic", lora_scale: 0.6, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", input={ "model": "dev", "prompt": "in the style of CNSTLL, an urban landscape with street sellers and a fish market at night, photorealistic", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", "input": { "model": "dev", "prompt": "in the style of CNSTLL, an urban landscape with street sellers and a fish market at night, photorealistic", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T14:35:56.151735Z", "created_at": "2024-08-24T14:35:37.736000Z", "data_removed": false, "error": null, "id": "ebhsqv3dh1rm40chgk8bx8s66c", "input": { "model": "dev", "prompt": "in the style of CNSTLL, an urban landscape with street sellers and a fish market at night, photorealistic", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 33915\nPrompt: in the style of CNSTLL, an urban landscape with street sellers and a fish market at night, photorealistic\ntxt2img mode\nUsing dev model\nfree=9260846817280\nDownloading weights\n2024-08-24T14:35:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbtq2xt5j/weights url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar\n2024-08-24T14:35:39Z | INFO | [ Complete ] dest=/tmp/tmpbtq2xt5j/weights size=\"172 MB\" total_elapsed=1.549s url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar\nDownloaded weights in 1.58s\nLoaded LoRAs in 10.00s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.53it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.97it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.77it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.68it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.60it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.59it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.56it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.57it/s]", "metrics": { "predict_time": 18.408150834, "total_time": 18.415735 }, "output": [ "https://replicate.delivery/yhqm/KAdm9lK2TNYAGR2zTQKHDrzqbG51UvD2Nz0tWATMyeglD9qJA/out-0.webp" ], "started_at": "2024-08-24T14:35:37.743584Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ebhsqv3dh1rm40chgk8bx8s66c", "cancel": "https://api.replicate.com/v1/predictions/ebhsqv3dh1rm40chgk8bx8s66c/cancel" }, "version": "216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f" }
Generated inUsing seed: 33915 Prompt: in the style of CNSTLL, an urban landscape with street sellers and a fish market at night, photorealistic txt2img mode Using dev model free=9260846817280 Downloading weights 2024-08-24T14:35:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbtq2xt5j/weights url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar 2024-08-24T14:35:39Z | INFO | [ Complete ] dest=/tmp/tmpbtq2xt5j/weights size="172 MB" total_elapsed=1.549s url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar Downloaded weights in 1.58s Loaded LoRAs in 10.00s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.53it/s] 7%|▋ | 2/28 [00:00<00:06, 3.97it/s] 11%|█ | 3/28 [00:00<00:06, 3.77it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.68it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.60it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.59it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.57it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.56it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.54it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.57it/s]
Prediction
adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938fIDk8babgk525rm20chgk99k2cwy8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- in the style of CNSTLL, a woman hiking at dusk, photorealistic, cinestill 800T
- lora_scale
- 0.6
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "in the style of CNSTLL, a woman hiking at dusk, photorealistic, cinestill 800T", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", { input: { model: "dev", prompt: "in the style of CNSTLL, a woman hiking at dusk, photorealistic, cinestill 800T", lora_scale: 0.6, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", input={ "model": "dev", "prompt": "in the style of CNSTLL, a woman hiking at dusk, photorealistic, cinestill 800T", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", "input": { "model": "dev", "prompt": "in the style of CNSTLL, a woman hiking at dusk, photorealistic, cinestill 800T", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T14:38:05.249513Z", "created_at": "2024-08-24T14:37:46.641000Z", "data_removed": false, "error": null, "id": "k8babgk525rm20chgk99k2cwy8", "input": { "model": "dev", "prompt": "in the style of CNSTLL, a woman hiking at dusk, photorealistic, cinestill 800T", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 23954\nPrompt: in the style of CNSTLL, a woman hiking at dusk, photorealistic, cinestill 800T\ntxt2img mode\nUsing dev model\nfree=9767470870528\nDownloading weights\n2024-08-24T14:37:46Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbrncmfdz/weights url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar\n2024-08-24T14:37:48Z | INFO | [ Complete ] dest=/tmp/tmpbrncmfdz/weights size=\"172 MB\" total_elapsed=1.616s url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar\nDownloaded weights in 1.65s\nLoaded LoRAs in 10.21s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.52it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.96it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.75it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.52it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.51it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.53it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.51it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 18.598344056, "total_time": 18.608513 }, "output": [ "https://replicate.delivery/yhqm/HV9IE99vOlK3ERSVZ8l8NZxlMZbVzAzez2MnXMjRn6xmE9qJA/out-0.webp" ], "started_at": "2024-08-24T14:37:46.651169Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/k8babgk525rm20chgk99k2cwy8", "cancel": "https://api.replicate.com/v1/predictions/k8babgk525rm20chgk99k2cwy8/cancel" }, "version": "216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f" }
Generated inUsing seed: 23954 Prompt: in the style of CNSTLL, a woman hiking at dusk, photorealistic, cinestill 800T txt2img mode Using dev model free=9767470870528 Downloading weights 2024-08-24T14:37:46Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpbrncmfdz/weights url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar 2024-08-24T14:37:48Z | INFO | [ Complete ] dest=/tmp/tmpbrncmfdz/weights size="172 MB" total_elapsed=1.616s url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar Downloaded weights in 1.65s Loaded LoRAs in 10.21s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.52it/s] 7%|▋ | 2/28 [00:00<00:06, 3.96it/s] 11%|█ | 3/28 [00:00<00:06, 3.75it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s] 61%|██████ | 17/28 [00:04<00:03, 3.52it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.51it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.53it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.51it/s] 100%|██████████| 28/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Prediction
adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938fIDrathzs9kfxrm00chgk9rnj321wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- in the style of CNSTLL, a white car parked in front of a gas station, night time, cinestill 800T
- lora_scale
- 0.6
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "in the style of CNSTLL, a white car parked in front of a gas station, night time, cinestill 800T", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", { input: { model: "dev", prompt: "in the style of CNSTLL, a white car parked in front of a gas station, night time, cinestill 800T", lora_scale: 0.6, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", input={ "model": "dev", "prompt": "in the style of CNSTLL, a white car parked in front of a gas station, night time, cinestill 800T", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", "input": { "model": "dev", "prompt": "in the style of CNSTLL, a white car parked in front of a gas station, night time, cinestill 800T", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T14:38:47.964812Z", "created_at": "2024-08-24T14:38:39.487000Z", "data_removed": false, "error": null, "id": "rathzs9kfxrm00chgk9rnj321w", "input": { "model": "dev", "prompt": "in the style of CNSTLL, a white car parked in front of a gas station, night time, cinestill 800T", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 51759\nPrompt: in the style of CNSTLL, a white car parked in front of a gas station, night time, cinestill 800T\ntxt2img mode\nUsing dev model\nWeights already loaded\nLoaded LoRAs in 0.04s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.52it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.94it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.74it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.51it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.53it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.52it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.51it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.51it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 8.467421274, "total_time": 8.477812 }, "output": [ "https://replicate.delivery/yhqm/v3ZpxG5gyA50JR1iiWanP1avoGFMOVf0fYGXOeU6DfKfORvaC/out-0.webp" ], "started_at": "2024-08-24T14:38:39.497391Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rathzs9kfxrm00chgk9rnj321w", "cancel": "https://api.replicate.com/v1/predictions/rathzs9kfxrm00chgk9rnj321w/cancel" }, "version": "216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f" }
Generated inUsing seed: 51759 Prompt: in the style of CNSTLL, a white car parked in front of a gas station, night time, cinestill 800T txt2img mode Using dev model Weights already loaded Loaded LoRAs in 0.04s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.52it/s] 7%|▋ | 2/28 [00:00<00:06, 3.94it/s] 11%|█ | 3/28 [00:00<00:06, 3.74it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s] 50%|█████ | 14/28 [00:03<00:03, 3.51it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s] 61%|██████ | 17/28 [00:04<00:03, 3.53it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.52it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.51it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.51it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Prediction
adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938fID0pdag5vzthrm00chgkbs9a8c3cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- in the style of CNSTLL, a group of people talking and drinking beer at the pub in front a window, cinestill 800T, photorealistic
- lora_scale
- 0.6
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "in the style of CNSTLL, a group of people talking and drinking beer at the pub in front a window, cinestill 800T, photorealistic", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", { input: { model: "dev", prompt: "in the style of CNSTLL, a group of people talking and drinking beer at the pub in front a window, cinestill 800T, photorealistic", lora_scale: 0.6, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", input={ "model": "dev", "prompt": "in the style of CNSTLL, a group of people talking and drinking beer at the pub in front a window, cinestill 800T, photorealistic", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", "input": { "model": "dev", "prompt": "in the style of CNSTLL, a group of people talking and drinking beer at the pub in front a window, cinestill 800T, photorealistic", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T14:43:43.227045Z", "created_at": "2024-08-24T14:43:21.172000Z", "data_removed": false, "error": null, "id": "0pdag5vzthrm00chgkbs9a8c3c", "input": { "model": "dev", "prompt": "in the style of CNSTLL, a group of people talking and drinking beer at the pub in front a window, cinestill 800T, photorealistic", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 50680\nPrompt: in the style of CNSTLL, a group of people talking and drinking beer at the pub in front a window, cinestill 800T, photorealistic\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 10.11s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.54it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.91it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.72it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.63it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.59it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.56it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.54it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.53it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.53it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.51it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.51it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.51it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.51it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.51it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.50it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.50it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.50it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.50it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.50it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.50it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.50it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.50it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.50it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.50it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.50it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.50it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.50it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.50it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.52it/s]", "metrics": { "predict_time": 18.577725171, "total_time": 22.055045 }, "output": [ "https://replicate.delivery/yhqm/PByDqy7naMJJAlcBjdaQRkVLBYEKCgXYzmiI3Re9sR3PH9qJA/out-0.webp" ], "started_at": "2024-08-24T14:43:24.649320Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/0pdag5vzthrm00chgkbs9a8c3c", "cancel": "https://api.replicate.com/v1/predictions/0pdag5vzthrm00chgkbs9a8c3c/cancel" }, "version": "216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f" }
Generated inUsing seed: 50680 Prompt: in the style of CNSTLL, a group of people talking and drinking beer at the pub in front a window, cinestill 800T, photorealistic txt2img mode Using dev model Loaded LoRAs in 10.11s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.54it/s] 7%|▋ | 2/28 [00:00<00:06, 3.91it/s] 11%|█ | 3/28 [00:00<00:06, 3.72it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.63it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.59it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.56it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.54it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.53it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.53it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.51it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.51it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.51it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.51it/s] 50%|█████ | 14/28 [00:03<00:03, 3.51it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.50it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.50it/s] 61%|██████ | 17/28 [00:04<00:03, 3.50it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.50it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.50it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.50it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.50it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.50it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.50it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.50it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.50it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.50it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.50it/s] 100%|██████████| 28/28 [00:07<00:00, 3.50it/s] 100%|██████████| 28/28 [00:07<00:00, 3.52it/s]
Prediction
adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938fIDy65k0davq9rm60chgkdrkbb9gcStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- in the style of CNSTLL , urban landscape, people fishing on Galata bridge in Istanbul at night
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "in the style of CNSTLL , urban landscape, people fishing on Galata bridge in Istanbul at night", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", { input: { model: "dev", prompt: "in the style of CNSTLL , urban landscape, people fishing on Galata bridge in Istanbul at night", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", input={ "model": "dev", "prompt": "in the style of CNSTLL , urban landscape, people fishing on Galata bridge in Istanbul at night", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", "input": { "model": "dev", "prompt": "in the style of CNSTLL , urban landscape, people fishing on Galata bridge in Istanbul at night", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T14:47:51.268900Z", "created_at": "2024-08-24T14:47:34.074000Z", "data_removed": false, "error": null, "id": "y65k0davq9rm60chgkdrkbb9gc", "input": { "model": "dev", "prompt": "in the style of CNSTLL , urban landscape, people fishing on Galata bridge in Istanbul at night", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 19502\nPrompt: in the style of CNSTLL , urban landscape, people fishing on Galata bridge in Istanbul at night\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 9.07s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.66it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.21it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.95it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.84it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.72it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.68it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.67it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.67it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.68it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.67it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.68it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.68it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.68it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.68it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.70it/s]", "metrics": { "predict_time": 17.186433884, "total_time": 17.1949 }, "output": [ "https://replicate.delivery/yhqm/0okKZOOvyUZDGFz5VFufOYFjwCKIrNQvQ4LeSGyz4jrXS6VTA/out-0.webp" ], "started_at": "2024-08-24T14:47:34.082466Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/y65k0davq9rm60chgkdrkbb9gc", "cancel": "https://api.replicate.com/v1/predictions/y65k0davq9rm60chgkdrkbb9gc/cancel" }, "version": "216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f" }
Generated inUsing seed: 19502 Prompt: in the style of CNSTLL , urban landscape, people fishing on Galata bridge in Istanbul at night txt2img mode Using dev model Loaded LoRAs in 9.07s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.66it/s] 7%|▋ | 2/28 [00:00<00:06, 4.21it/s] 11%|█ | 3/28 [00:00<00:06, 3.95it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.84it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.72it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.68it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.68it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.67it/s] 50%|█████ | 14/28 [00:03<00:03, 3.67it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.68it/s] 61%|██████ | 17/28 [00:04<00:02, 3.67it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.67it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.68it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.68it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.68it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s] 100%|██████████| 28/28 [00:07<00:00, 3.68it/s] 100%|██████████| 28/28 [00:07<00:00, 3.70it/s]
Prediction
adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938fIDz90tbfk47drm20chgkg9fxb11rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- in the style of CNSTLL , photo of New York City at night, 4k
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "in the style of CNSTLL , photo of New York City at night, 4k", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", { input: { model: "dev", prompt: "in the style of CNSTLL , photo of New York City at night, 4k", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", input={ "model": "dev", "prompt": "in the style of CNSTLL , photo of New York City at night, 4k", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", "input": { "model": "dev", "prompt": "in the style of CNSTLL , photo of New York City at night, 4k", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T14:53:20.988723Z", "created_at": "2024-08-24T14:53:03.931000Z", "data_removed": false, "error": null, "id": "z90tbfk47drm20chgkg9fxb11r", "input": { "model": "dev", "prompt": "in the style of CNSTLL , photo of New York City at night, 4k", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 63529\nPrompt: in the style of CNSTLL , photo of New York City at night, 4k\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 8.90s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.69it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.25it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.96it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.74it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.72it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.68it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.68it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.67it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.67it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.67it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.70it/s]", "metrics": { "predict_time": 17.048015349, "total_time": 17.057723 }, "output": [ "https://replicate.delivery/yhqm/bYobZuwZkOaZBBeMz0crqzyBdUliW53ia3s3MSpZJ6KwL9qJA/out-0.webp" ], "started_at": "2024-08-24T14:53:03.940708Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/z90tbfk47drm20chgkg9fxb11r", "cancel": "https://api.replicate.com/v1/predictions/z90tbfk47drm20chgkg9fxb11r/cancel" }, "version": "216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f" }
Generated inUsing seed: 63529 Prompt: in the style of CNSTLL , photo of New York City at night, 4k txt2img mode Using dev model Loaded LoRAs in 8.90s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.69it/s] 7%|▋ | 2/28 [00:00<00:06, 4.25it/s] 11%|█ | 3/28 [00:00<00:06, 3.96it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.78it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.74it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.72it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.69it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.69it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.68it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.68it/s] 50%|█████ | 14/28 [00:03<00:03, 3.68it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.67it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.67it/s] 61%|██████ | 17/28 [00:04<00:02, 3.67it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.67it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.67it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.67it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.67it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.67it/s] 100%|██████████| 28/28 [00:07<00:00, 3.67it/s] 100%|██████████| 28/28 [00:07<00:00, 3.70it/s]
Prediction
adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938fID8bgmdxj5d1rm60chgm0rytva98StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- CNSTLL, portrait of a woman standing against a door, night time, high resolution, 4k, cinestill 800t
- lora_scale
- 0.6
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "CNSTLL, portrait of a woman standing against a door, night time, high resolution, 4k, cinestill 800t\n", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", { input: { model: "dev", prompt: "CNSTLL, portrait of a woman standing against a door, night time, high resolution, 4k, cinestill 800t\n", lora_scale: 0.6, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", input={ "model": "dev", "prompt": "CNSTLL, portrait of a woman standing against a door, night time, high resolution, 4k, cinestill 800t\n", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run adirik/flux-cinestill using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "adirik/flux-cinestill:216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f", "input": { "model": "dev", "prompt": "CNSTLL, portrait of a woman standing against a door, night time, high resolution, 4k, cinestill 800t\\n", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T15:29:18.125404Z", "created_at": "2024-08-24T15:28:58.728000Z", "data_removed": false, "error": null, "id": "8bgmdxj5d1rm60chgm0rytva98", "input": { "model": "dev", "prompt": "CNSTLL, portrait of a woman standing against a door, night time, high resolution, 4k, cinestill 800t\n", "lora_scale": 0.6, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 4506\nPrompt: CNSTLL, portrait of a woman standing against a door, night time, high resolution, 4k, cinestill 800t\ntxt2img mode\nUsing dev model\nfree=9839779209216\nDownloading weights\n2024-08-24T15:28:58Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpdr4ixfvh/weights url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar\n2024-08-24T15:29:00Z | INFO | [ Complete ] dest=/tmp/tmpdr4ixfvh/weights size=\"172 MB\" total_elapsed=2.118s url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar\nDownloaded weights in 2.15s\nLoaded LoRAs in 11.04s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.55it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.98it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.78it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.69it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.64it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.61it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.59it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.58it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.57it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.56it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.56it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.56it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.56it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.55it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.55it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.55it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.55it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.55it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.56it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.58it/s]", "metrics": { "predict_time": 19.385723191, "total_time": 19.397404 }, "output": [ "https://replicate.delivery/yhqm/uzYBDUdl3qqGEZQRLr310BKloBcEeCapyiLleSCd7O5N56VTA/out-0.webp" ], "started_at": "2024-08-24T15:28:58.739681Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/8bgmdxj5d1rm60chgm0rytva98", "cancel": "https://api.replicate.com/v1/predictions/8bgmdxj5d1rm60chgm0rytva98/cancel" }, "version": "216a43b9975de9768114644bbf8cd0cba54a923c6d0f65adceaccfc9383a938f" }
Generated inUsing seed: 4506 Prompt: CNSTLL, portrait of a woman standing against a door, night time, high resolution, 4k, cinestill 800t txt2img mode Using dev model free=9839779209216 Downloading weights 2024-08-24T15:28:58Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpdr4ixfvh/weights url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar 2024-08-24T15:29:00Z | INFO | [ Complete ] dest=/tmp/tmpdr4ixfvh/weights size="172 MB" total_elapsed=2.118s url=https://replicate.delivery/yhqm/3vhWyl3iACrCN9x53rEu7Lwit5hzZ9qDrKVi0wngSrNNheqJA/trained_model.tar Downloaded weights in 2.15s Loaded LoRAs in 11.04s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.55it/s] 7%|▋ | 2/28 [00:00<00:06, 3.98it/s] 11%|█ | 3/28 [00:00<00:06, 3.78it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.69it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.64it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.61it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.59it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.58it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.57it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.56it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.56it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.56it/s] 50%|█████ | 14/28 [00:03<00:03, 3.56it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s] 61%|██████ | 17/28 [00:04<00:03, 3.55it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.55it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.55it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.55it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.55it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.56it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s] 100%|██████████| 28/28 [00:07<00:00, 3.58it/s]
Want to make some of these yourself?
Run this model