You're looking at a specific version of this model. Jump to the model overview.
cuuupid /sdxl-lineart:832244dd
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cuuupid/sdxl-lineart using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cuuupid/sdxl-lineart:832244dd34fc61d4938103f1723db31a1c601bacd9b203858d4b4ab6399fa0f4",
{
input: {
width: 1024,
height: 1024,
prompt: "a line art image of TOK astronaut riding a rainbow unicorn in black and white, thin lines, black background",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cuuupid/sdxl-lineart using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cuuupid/sdxl-lineart:832244dd34fc61d4938103f1723db31a1c601bacd9b203858d4b4ab6399fa0f4",
input={
"width": 1024,
"height": 1024,
"prompt": "a line art image of TOK astronaut riding a rainbow unicorn in black and white, thin lines, black background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cuuupid/sdxl-lineart using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cuuupid/sdxl-lineart:832244dd34fc61d4938103f1723db31a1c601bacd9b203858d4b4ab6399fa0f4",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a line art image of TOK astronaut riding a rainbow unicorn in black and white, thin lines, black background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/cuuupid/sdxl-lineart@sha256:832244dd34fc61d4938103f1723db31a1c601bacd9b203858d4b4ab6399fa0f4 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a line art image of TOK astronaut riding a rainbow unicorn in black and white, thin lines, black background"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/cuuupid/sdxl-lineart@sha256:832244dd34fc61d4938103f1723db31a1c601bacd9b203858d4b4ab6399fa0f4
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a line art image of TOK astronaut riding a rainbow unicorn in black and white, thin lines, black background", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.014. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-06-06T14:39:34.448840Z",
"created_at": "2024-06-06T14:39:17.104000Z",
"data_removed": false,
"error": null,
"id": "3a2y5bv2e1rgg0cfxqysh6g9v0",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a line art image of TOK astronaut riding a rainbow unicorn in black and white, thin lines, black background",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 11775\nskipping loading .. weights already loaded\nPrompt: a line art image of <s0><s1> astronaut riding a rainbow unicorn in black and white, thin lines, black background\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:11, 4.28it/s]\n 4%|▍ | 2/50 [00:00<00:11, 4.26it/s]\n 6%|▌ | 3/50 [00:00<00:11, 4.26it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.26it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.26it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.27it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.28it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.28it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.28it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.28it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.28it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.28it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.28it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.28it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.28it/s]\n 32%|███▏ | 16/50 [00:03<00:07, 4.27it/s]\n 34%|███▍ | 17/50 [00:03<00:07, 4.27it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.27it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.27it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.27it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.27it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.27it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.27it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.27it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.27it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.27it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.27it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.26it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.26it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.26it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.26it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.26it/s]\n 66%|██████▌ | 33/50 [00:07<00:03, 4.26it/s]\n 68%|██████▊ | 34/50 [00:07<00:03, 4.26it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.26it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.26it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.25it/s]\n 76%|███████▌ | 38/50 [00:08<00:02, 4.25it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.25it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.25it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.25it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.25it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.25it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.25it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.24it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.26it/s]",
"metrics": {
"predict_time": 14.44199,
"total_time": 17.34484
},
"output": [
"https://replicate.delivery/pbxt/rwfAKT3YeOlfipN5oJos02qUT7Q6DQDomZah8JzV7YIJhv3lA/out-0.png"
],
"started_at": "2024-06-06T14:39:20.006850Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/3a2y5bv2e1rgg0cfxqysh6g9v0",
"cancel": "https://api.replicate.com/v1/predictions/3a2y5bv2e1rgg0cfxqysh6g9v0/cancel"
},
"version": "832244dd34fc61d4938103f1723db31a1c601bacd9b203858d4b4ab6399fa0f4"
}
Using seed: 11775
skipping loading .. weights already loaded
Prompt: a line art image of <s0><s1> astronaut riding a rainbow unicorn in black and white, thin lines, black background
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:11, 4.28it/s]
4%|▍ | 2/50 [00:00<00:11, 4.26it/s]
6%|▌ | 3/50 [00:00<00:11, 4.26it/s]
8%|▊ | 4/50 [00:00<00:10, 4.26it/s]
10%|█ | 5/50 [00:01<00:10, 4.26it/s]
12%|█▏ | 6/50 [00:01<00:10, 4.27it/s]
14%|█▍ | 7/50 [00:01<00:10, 4.28it/s]
16%|█▌ | 8/50 [00:01<00:09, 4.28it/s]
18%|█▊ | 9/50 [00:02<00:09, 4.28it/s]
20%|██ | 10/50 [00:02<00:09, 4.28it/s]
22%|██▏ | 11/50 [00:02<00:09, 4.28it/s]
24%|██▍ | 12/50 [00:02<00:08, 4.28it/s]
26%|██▌ | 13/50 [00:03<00:08, 4.28it/s]
28%|██▊ | 14/50 [00:03<00:08, 4.28it/s]
30%|███ | 15/50 [00:03<00:08, 4.28it/s]
32%|███▏ | 16/50 [00:03<00:07, 4.27it/s]
34%|███▍ | 17/50 [00:03<00:07, 4.27it/s]
36%|███▌ | 18/50 [00:04<00:07, 4.27it/s]
38%|███▊ | 19/50 [00:04<00:07, 4.27it/s]
40%|████ | 20/50 [00:04<00:07, 4.27it/s]
42%|████▏ | 21/50 [00:04<00:06, 4.27it/s]
44%|████▍ | 22/50 [00:05<00:06, 4.27it/s]
46%|████▌ | 23/50 [00:05<00:06, 4.27it/s]
48%|████▊ | 24/50 [00:05<00:06, 4.27it/s]
50%|█████ | 25/50 [00:05<00:05, 4.27it/s]
52%|█████▏ | 26/50 [00:06<00:05, 4.27it/s]
54%|█████▍ | 27/50 [00:06<00:05, 4.27it/s]
56%|█████▌ | 28/50 [00:06<00:05, 4.26it/s]
58%|█████▊ | 29/50 [00:06<00:04, 4.26it/s]
60%|██████ | 30/50 [00:07<00:04, 4.26it/s]
62%|██████▏ | 31/50 [00:07<00:04, 4.26it/s]
64%|██████▍ | 32/50 [00:07<00:04, 4.26it/s]
66%|██████▌ | 33/50 [00:07<00:03, 4.26it/s]
68%|██████▊ | 34/50 [00:07<00:03, 4.26it/s]
70%|███████ | 35/50 [00:08<00:03, 4.26it/s]
72%|███████▏ | 36/50 [00:08<00:03, 4.26it/s]
74%|███████▍ | 37/50 [00:08<00:03, 4.25it/s]
76%|███████▌ | 38/50 [00:08<00:02, 4.25it/s]
78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s]
80%|████████ | 40/50 [00:09<00:02, 4.25it/s]
82%|████████▏ | 41/50 [00:09<00:02, 4.25it/s]
84%|████████▍ | 42/50 [00:09<00:01, 4.25it/s]
86%|████████▌ | 43/50 [00:10<00:01, 4.25it/s]
88%|████████▊ | 44/50 [00:10<00:01, 4.25it/s]
90%|█████████ | 45/50 [00:10<00:01, 4.25it/s]
92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s]
94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s]
96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s]
98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s]
100%|██████████| 50/50 [00:11<00:00, 4.24it/s]
100%|██████████| 50/50 [00:11<00:00, 4.26it/s]