diaphinus / divebar
Trained on 65 NYC Dive Bar Bathrooms (Updated 1 year, 8 months ago)
- Public
- 197 runs
- SDXL fine-tune
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID576hkkdbnwanrqm4ty6mouezxqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic
- refine
- base_image_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 1
- num_inference_steps
- 100
{ "width": 1024, "height": 1024, "prompt": "punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic ", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { width: 1024, height: 1024, prompt: "punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic ", refine: "base_image_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 1, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "width": 1024, "height": 1024, "prompt": "punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic ", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "width": 1024, "height": 1024, "prompt": "punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic ", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic "' \ -i 'refine="base_image_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=1' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic ", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T02:28:52.113421Z", "created_at": "2023-09-30T02:25:44.583323Z", "data_removed": false, "error": null, "id": "576hkkdbnwanrqm4ty6mouezxq", "input": { "width": 1024, "height": 1024, "prompt": "punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic ", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 }, "logs": "Using seed: 751\nPrompt: punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic\ntxt2img mode\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:01<02:31, 1.53s/it]\n 2%|▏ | 2/100 [00:02<01:59, 1.22s/it]\n 3%|▎ | 3/100 [00:03<01:48, 1.12s/it]\n 4%|▍ | 4/100 [00:04<01:43, 1.07s/it]\n 5%|▌ | 5/100 [00:05<01:39, 1.05s/it]\n 6%|▌ | 6/100 [00:06<01:36, 1.03s/it]\n 7%|▋ | 7/100 [00:07<01:34, 1.02s/it]\n 8%|▊ | 8/100 [00:08<01:33, 1.01s/it]\n 9%|▉ | 9/100 [00:09<01:31, 1.01s/it]\n 10%|█ | 10/100 [00:10<01:30, 1.01s/it]\n 11%|█ | 11/100 [00:11<01:29, 1.00s/it]\n 12%|█▏ | 12/100 [00:12<01:28, 1.00s/it]\n 13%|█▎ | 13/100 [00:13<01:27, 1.00s/it]\n 14%|█▍ | 14/100 [00:14<01:26, 1.00s/it]\n 15%|█▌ | 15/100 [00:15<01:25, 1.00s/it]\n 16%|█▌ | 16/100 [00:16<01:24, 1.00s/it]\n 17%|█▋ | 17/100 [00:17<01:23, 1.00s/it]\n 18%|█▊ | 18/100 [00:18<01:22, 1.00s/it]\n 19%|█▉ | 19/100 [00:19<01:21, 1.00s/it]\n 20%|██ | 20/100 [00:20<01:20, 1.00s/it]\n 21%|██ | 21/100 [00:21<01:19, 1.00s/it]\n 22%|██▏ | 22/100 [00:22<01:18, 1.00s/it]\n 23%|██▎ | 23/100 [00:23<01:17, 1.00s/it]\n 24%|██▍ | 24/100 [00:24<01:16, 1.00s/it]\n 25%|██▌ | 25/100 [00:25<01:15, 1.00s/it]\n 26%|██▌ | 26/100 [00:26<01:14, 1.00s/it]\n 27%|██▋ | 27/100 [00:27<01:13, 1.00s/it]\n 28%|██▊ | 28/100 [00:28<01:12, 1.01s/it]\n 29%|██▉ | 29/100 [00:29<01:11, 1.01s/it]\n 30%|███ | 30/100 [00:30<01:10, 1.01s/it]\n 31%|███ | 31/100 [00:31<01:09, 1.01s/it]\n 32%|███▏ | 32/100 [00:32<01:08, 1.01s/it]\n 33%|███▎ | 33/100 [00:33<01:07, 1.01s/it]\n 34%|███▍ | 34/100 [00:34<01:06, 1.01s/it]\n 35%|███▌ | 35/100 [00:35<01:05, 1.01s/it]\n 36%|███▌ | 36/100 [00:36<01:04, 1.01s/it]\n 37%|███▋ | 37/100 [00:37<01:03, 1.01s/it]\n 38%|███▊ | 38/100 [00:38<01:02, 1.01s/it]\n 39%|███▉ | 39/100 [00:39<01:01, 1.01s/it]\n 40%|████ | 40/100 [00:40<01:00, 1.01s/it]\n 41%|████ | 41/100 [00:41<00:59, 1.01s/it]\n 42%|████▏ | 42/100 [00:42<00:58, 1.01s/it]\n 43%|████▎ | 43/100 [00:43<00:57, 1.01s/it]\n 44%|████▍ | 44/100 [00:44<00:56, 1.01s/it]\n 45%|████▌ | 45/100 [00:45<00:55, 1.01s/it]\n 46%|████▌ | 46/100 [00:46<00:54, 1.01s/it]\n 47%|████▋ | 47/100 [00:47<00:53, 1.01s/it]\n 48%|████▊ | 48/100 [00:48<00:52, 1.01s/it]\n 49%|████▉ | 49/100 [00:49<00:51, 1.01s/it]\n 50%|█████ | 50/100 [00:50<00:50, 1.01s/it]\n 51%|█████ | 51/100 [00:51<00:49, 1.01s/it]\n 52%|█████▏ | 52/100 [00:52<00:48, 1.01s/it]\n 53%|█████▎ | 53/100 [00:53<00:47, 1.01s/it]\n 54%|█████▍ | 54/100 [00:54<00:46, 1.01s/it]\n 55%|█████▌ | 55/100 [00:55<00:45, 1.01s/it]\n 56%|█████▌ | 56/100 [00:56<00:44, 1.01s/it]\n 57%|█████▋ | 57/100 [00:57<00:43, 1.01s/it]\n 58%|█████▊ | 58/100 [00:58<00:42, 1.01s/it]\n 59%|█████▉ | 59/100 [00:59<00:41, 1.01s/it]\n 60%|██████ | 60/100 [01:00<00:40, 1.01s/it]\n 61%|██████ | 61/100 [01:01<00:39, 1.01s/it]\n 62%|██████▏ | 62/100 [01:02<00:38, 1.01s/it]\n 63%|██████▎ | 63/100 [01:03<00:37, 1.01s/it]\n 64%|██████▍ | 64/100 [01:04<00:36, 1.01s/it]\n 65%|██████▌ | 65/100 [01:05<00:35, 1.01s/it]\n 66%|██████▌ | 66/100 [01:06<00:34, 1.01s/it]\n 67%|██████▋ | 67/100 [01:07<00:33, 1.01s/it]\n 68%|██████▊ | 68/100 [01:08<00:32, 1.01s/it]\n 69%|██████▉ | 69/100 [01:09<00:31, 1.01s/it]\n 70%|███████ | 70/100 [01:10<00:30, 1.01s/it]\n 71%|███████ | 71/100 [01:11<00:29, 1.01s/it]\n 72%|███████▏ | 72/100 [01:12<00:28, 1.01s/it]\n 73%|███████▎ | 73/100 [01:13<00:27, 1.01s/it]\n 74%|███████▍ | 74/100 [01:14<00:26, 1.01s/it]\n 75%|███████▌ | 75/100 [01:15<00:25, 1.01s/it]\n 76%|███████▌ | 76/100 [01:16<00:24, 1.01s/it]\n 77%|███████▋ | 77/100 [01:17<00:23, 1.01s/it]\n 78%|███████▊ | 78/100 [01:19<00:22, 1.01s/it]\n 79%|███████▉ | 79/100 [01:20<00:21, 1.01s/it]\n 80%|████████ | 80/100 [01:21<00:20, 1.01s/it]\n 81%|████████ | 81/100 [01:22<00:19, 1.01s/it]\n 82%|████████▏ | 82/100 [01:23<00:18, 1.01s/it]\n 83%|████████▎ | 83/100 [01:24<00:17, 1.01s/it]\n 84%|████████▍ | 84/100 [01:25<00:16, 1.01s/it]\n 85%|████████▌ | 85/100 [01:26<00:15, 1.01s/it]\n 86%|████████▌ | 86/100 [01:27<00:14, 1.01s/it]\n 87%|████████▋ | 87/100 [01:28<00:13, 1.01s/it]\n 88%|████████▊ | 88/100 [01:29<00:12, 1.01s/it]\n 89%|████████▉ | 89/100 [01:30<00:11, 1.01s/it]\n 90%|█████████ | 90/100 [01:31<00:10, 1.01s/it]\n 91%|█████████ | 91/100 [01:32<00:09, 1.01s/it]\n 92%|█████████▏| 92/100 [01:33<00:08, 1.01s/it]\n 93%|█████████▎| 93/100 [01:34<00:07, 1.01s/it]\n 94%|█████████▍| 94/100 [01:35<00:06, 1.01s/it]\n 95%|█████████▌| 95/100 [01:36<00:05, 1.01s/it]\n 96%|█████████▌| 96/100 [01:37<00:04, 1.01s/it]\n 97%|█████████▋| 97/100 [01:38<00:03, 1.01s/it]\n 98%|█████████▊| 98/100 [01:39<00:02, 1.01s/it]\n 99%|█████████▉| 99/100 [01:40<00:01, 1.01s/it]\n100%|██████████| 100/100 [01:41<00:00, 1.01s/it]\n100%|██████████| 100/100 [01:41<00:00, 1.01s/it]\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:23, 1.22it/s]\n 7%|▋ | 2/30 [00:01<00:23, 1.22it/s]\n 10%|█ | 3/30 [00:02<00:22, 1.22it/s]\n 13%|█▎ | 4/30 [00:03<00:21, 1.22it/s]\n 17%|█▋ | 5/30 [00:04<00:20, 1.22it/s]\n 20%|██ | 6/30 [00:04<00:19, 1.22it/s]\n 23%|██▎ | 7/30 [00:05<00:18, 1.22it/s]\n 27%|██▋ | 8/30 [00:06<00:18, 1.22it/s]\n 30%|███ | 9/30 [00:07<00:17, 1.22it/s]\n 33%|███▎ | 10/30 [00:08<00:16, 1.22it/s]\n 37%|███▋ | 11/30 [00:09<00:15, 1.22it/s]\n 40%|████ | 12/30 [00:09<00:14, 1.22it/s]\n 43%|████▎ | 13/30 [00:10<00:13, 1.22it/s]\n 47%|████▋ | 14/30 [00:11<00:13, 1.22it/s]\n 50%|█████ | 15/30 [00:12<00:12, 1.22it/s]\n 53%|█████▎ | 16/30 [00:13<00:11, 1.22it/s]\n 57%|█████▋ | 17/30 [00:13<00:10, 1.22it/s]\n 60%|██████ | 18/30 [00:14<00:09, 1.22it/s]\n 63%|██████▎ | 19/30 [00:15<00:09, 1.22it/s]\n 67%|██████▋ | 20/30 [00:16<00:08, 1.22it/s]\n 70%|███████ | 21/30 [00:17<00:07, 1.22it/s]\n 73%|███████▎ | 22/30 [00:18<00:06, 1.22it/s]\n 77%|███████▋ | 23/30 [00:18<00:05, 1.22it/s]\n 80%|████████ | 24/30 [00:19<00:04, 1.22it/s]\n 83%|████████▎ | 25/30 [00:20<00:04, 1.22it/s]\n 87%|████████▋ | 26/30 [00:21<00:03, 1.22it/s]\n 90%|█████████ | 27/30 [00:22<00:02, 1.22it/s]\n 93%|█████████▎| 28/30 [00:22<00:01, 1.22it/s]\n 97%|█████████▋| 29/30 [00:23<00:00, 1.22it/s]\n100%|██████████| 30/30 [00:24<00:00, 1.22it/s]\n100%|██████████| 30/30 [00:24<00:00, 1.22it/s]", "metrics": { "predict_time": 132.218824, "total_time": 187.530098 }, "output": [ "https://pbxt.replicate.delivery/NrWVNUpDf63wLarMmKMj7dS5aWeJq1YiEJDTCGcOhVzhnTpRA/out-0.png", "https://pbxt.replicate.delivery/eSe9cvfBNelCrQxApJzQ21lnpFhWJ0lovsBXNOmSpkxIecKNC/out-1.png", "https://pbxt.replicate.delivery/rOmd9rY1oNYRNFIPOF8uGfrBnZOUGk1rW3D5Gef4ljzGPnSjA/out-2.png", "https://pbxt.replicate.delivery/On1ZNvw0fp08TijNmvbE6RLL6E0oLed6e0jtYhHkNzTHPnSjA/out-3.png" ], "started_at": "2023-09-30T02:26:39.894597Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/576hkkdbnwanrqm4ty6mouezxq", "cancel": "https://api.replicate.com/v1/predictions/576hkkdbnwanrqm4ty6mouezxq/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 751 Prompt: punk twin girls in dive bar bathroom, I-d dazed editorial, photorealistic txt2img mode 0%| | 0/100 [00:00<?, ?it/s] 1%| | 1/100 [00:01<02:31, 1.53s/it] 2%|▏ | 2/100 [00:02<01:59, 1.22s/it] 3%|▎ | 3/100 [00:03<01:48, 1.12s/it] 4%|▍ | 4/100 [00:04<01:43, 1.07s/it] 5%|▌ | 5/100 [00:05<01:39, 1.05s/it] 6%|▌ | 6/100 [00:06<01:36, 1.03s/it] 7%|▋ | 7/100 [00:07<01:34, 1.02s/it] 8%|▊ | 8/100 [00:08<01:33, 1.01s/it] 9%|▉ | 9/100 [00:09<01:31, 1.01s/it] 10%|█ | 10/100 [00:10<01:30, 1.01s/it] 11%|█ | 11/100 [00:11<01:29, 1.00s/it] 12%|█▏ | 12/100 [00:12<01:28, 1.00s/it] 13%|█▎ | 13/100 [00:13<01:27, 1.00s/it] 14%|█▍ | 14/100 [00:14<01:26, 1.00s/it] 15%|█▌ | 15/100 [00:15<01:25, 1.00s/it] 16%|█▌ | 16/100 [00:16<01:24, 1.00s/it] 17%|█▋ | 17/100 [00:17<01:23, 1.00s/it] 18%|█▊ | 18/100 [00:18<01:22, 1.00s/it] 19%|█▉ | 19/100 [00:19<01:21, 1.00s/it] 20%|██ | 20/100 [00:20<01:20, 1.00s/it] 21%|██ | 21/100 [00:21<01:19, 1.00s/it] 22%|██▏ | 22/100 [00:22<01:18, 1.00s/it] 23%|██▎ | 23/100 [00:23<01:17, 1.00s/it] 24%|██▍ | 24/100 [00:24<01:16, 1.00s/it] 25%|██▌ | 25/100 [00:25<01:15, 1.00s/it] 26%|██▌ | 26/100 [00:26<01:14, 1.00s/it] 27%|██▋ | 27/100 [00:27<01:13, 1.00s/it] 28%|██▊ | 28/100 [00:28<01:12, 1.01s/it] 29%|██▉ | 29/100 [00:29<01:11, 1.01s/it] 30%|███ | 30/100 [00:30<01:10, 1.01s/it] 31%|███ | 31/100 [00:31<01:09, 1.01s/it] 32%|███▏ | 32/100 [00:32<01:08, 1.01s/it] 33%|███▎ | 33/100 [00:33<01:07, 1.01s/it] 34%|███▍ | 34/100 [00:34<01:06, 1.01s/it] 35%|███▌ | 35/100 [00:35<01:05, 1.01s/it] 36%|███▌ | 36/100 [00:36<01:04, 1.01s/it] 37%|███▋ | 37/100 [00:37<01:03, 1.01s/it] 38%|███▊ | 38/100 [00:38<01:02, 1.01s/it] 39%|███▉ | 39/100 [00:39<01:01, 1.01s/it] 40%|████ | 40/100 [00:40<01:00, 1.01s/it] 41%|████ | 41/100 [00:41<00:59, 1.01s/it] 42%|████▏ | 42/100 [00:42<00:58, 1.01s/it] 43%|████▎ | 43/100 [00:43<00:57, 1.01s/it] 44%|████▍ | 44/100 [00:44<00:56, 1.01s/it] 45%|████▌ | 45/100 [00:45<00:55, 1.01s/it] 46%|████▌ | 46/100 [00:46<00:54, 1.01s/it] 47%|████▋ | 47/100 [00:47<00:53, 1.01s/it] 48%|████▊ | 48/100 [00:48<00:52, 1.01s/it] 49%|████▉ | 49/100 [00:49<00:51, 1.01s/it] 50%|█████ | 50/100 [00:50<00:50, 1.01s/it] 51%|█████ | 51/100 [00:51<00:49, 1.01s/it] 52%|█████▏ | 52/100 [00:52<00:48, 1.01s/it] 53%|█████▎ | 53/100 [00:53<00:47, 1.01s/it] 54%|█████▍ | 54/100 [00:54<00:46, 1.01s/it] 55%|█████▌ | 55/100 [00:55<00:45, 1.01s/it] 56%|█████▌ | 56/100 [00:56<00:44, 1.01s/it] 57%|█████▋ | 57/100 [00:57<00:43, 1.01s/it] 58%|█████▊ | 58/100 [00:58<00:42, 1.01s/it] 59%|█████▉ | 59/100 [00:59<00:41, 1.01s/it] 60%|██████ | 60/100 [01:00<00:40, 1.01s/it] 61%|██████ | 61/100 [01:01<00:39, 1.01s/it] 62%|██████▏ | 62/100 [01:02<00:38, 1.01s/it] 63%|██████▎ | 63/100 [01:03<00:37, 1.01s/it] 64%|██████▍ | 64/100 [01:04<00:36, 1.01s/it] 65%|██████▌ | 65/100 [01:05<00:35, 1.01s/it] 66%|██████▌ | 66/100 [01:06<00:34, 1.01s/it] 67%|██████▋ | 67/100 [01:07<00:33, 1.01s/it] 68%|██████▊ | 68/100 [01:08<00:32, 1.01s/it] 69%|██████▉ | 69/100 [01:09<00:31, 1.01s/it] 70%|███████ | 70/100 [01:10<00:30, 1.01s/it] 71%|███████ | 71/100 [01:11<00:29, 1.01s/it] 72%|███████▏ | 72/100 [01:12<00:28, 1.01s/it] 73%|███████▎ | 73/100 [01:13<00:27, 1.01s/it] 74%|███████▍ | 74/100 [01:14<00:26, 1.01s/it] 75%|███████▌ | 75/100 [01:15<00:25, 1.01s/it] 76%|███████▌ | 76/100 [01:16<00:24, 1.01s/it] 77%|███████▋ | 77/100 [01:17<00:23, 1.01s/it] 78%|███████▊ | 78/100 [01:19<00:22, 1.01s/it] 79%|███████▉ | 79/100 [01:20<00:21, 1.01s/it] 80%|████████ | 80/100 [01:21<00:20, 1.01s/it] 81%|████████ | 81/100 [01:22<00:19, 1.01s/it] 82%|████████▏ | 82/100 [01:23<00:18, 1.01s/it] 83%|████████▎ | 83/100 [01:24<00:17, 1.01s/it] 84%|████████▍ | 84/100 [01:25<00:16, 1.01s/it] 85%|████████▌ | 85/100 [01:26<00:15, 1.01s/it] 86%|████████▌ | 86/100 [01:27<00:14, 1.01s/it] 87%|████████▋ | 87/100 [01:28<00:13, 1.01s/it] 88%|████████▊ | 88/100 [01:29<00:12, 1.01s/it] 89%|████████▉ | 89/100 [01:30<00:11, 1.01s/it] 90%|█████████ | 90/100 [01:31<00:10, 1.01s/it] 91%|█████████ | 91/100 [01:32<00:09, 1.01s/it] 92%|█████████▏| 92/100 [01:33<00:08, 1.01s/it] 93%|█████████▎| 93/100 [01:34<00:07, 1.01s/it] 94%|█████████▍| 94/100 [01:35<00:06, 1.01s/it] 95%|█████████▌| 95/100 [01:36<00:05, 1.01s/it] 96%|█████████▌| 96/100 [01:37<00:04, 1.01s/it] 97%|█████████▋| 97/100 [01:38<00:03, 1.01s/it] 98%|█████████▊| 98/100 [01:39<00:02, 1.01s/it] 99%|█████████▉| 99/100 [01:40<00:01, 1.01s/it] 100%|██████████| 100/100 [01:41<00:00, 1.01s/it] 100%|██████████| 100/100 [01:41<00:00, 1.01s/it] 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:23, 1.22it/s] 7%|▋ | 2/30 [00:01<00:23, 1.22it/s] 10%|█ | 3/30 [00:02<00:22, 1.22it/s] 13%|█▎ | 4/30 [00:03<00:21, 1.22it/s] 17%|█▋ | 5/30 [00:04<00:20, 1.22it/s] 20%|██ | 6/30 [00:04<00:19, 1.22it/s] 23%|██▎ | 7/30 [00:05<00:18, 1.22it/s] 27%|██▋ | 8/30 [00:06<00:18, 1.22it/s] 30%|███ | 9/30 [00:07<00:17, 1.22it/s] 33%|███▎ | 10/30 [00:08<00:16, 1.22it/s] 37%|███▋ | 11/30 [00:09<00:15, 1.22it/s] 40%|████ | 12/30 [00:09<00:14, 1.22it/s] 43%|████▎ | 13/30 [00:10<00:13, 1.22it/s] 47%|████▋ | 14/30 [00:11<00:13, 1.22it/s] 50%|█████ | 15/30 [00:12<00:12, 1.22it/s] 53%|█████▎ | 16/30 [00:13<00:11, 1.22it/s] 57%|█████▋ | 17/30 [00:13<00:10, 1.22it/s] 60%|██████ | 18/30 [00:14<00:09, 1.22it/s] 63%|██████▎ | 19/30 [00:15<00:09, 1.22it/s] 67%|██████▋ | 20/30 [00:16<00:08, 1.22it/s] 70%|███████ | 21/30 [00:17<00:07, 1.22it/s] 73%|███████▎ | 22/30 [00:18<00:06, 1.22it/s] 77%|███████▋ | 23/30 [00:18<00:05, 1.22it/s] 80%|████████ | 24/30 [00:19<00:04, 1.22it/s] 83%|████████▎ | 25/30 [00:20<00:04, 1.22it/s] 87%|████████▋ | 26/30 [00:21<00:03, 1.22it/s] 90%|█████████ | 27/30 [00:22<00:02, 1.22it/s] 93%|█████████▎| 28/30 [00:22<00:01, 1.22it/s] 97%|█████████▋| 29/30 [00:23<00:00, 1.22it/s] 100%|██████████| 30/30 [00:24<00:00, 1.22it/s] 100%|██████████| 30/30 [00:24<00:00, 1.22it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID37zd37lbrdnepdyfuuk3w7mu4eStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 2048
- prompt
- punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 12
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 1
- num_inference_steps
- 100
{ "width": 1024, "height": 2048, "prompt": "punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { width: 1024, height: 2048, prompt: "punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 12, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 1, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "width": 1024, "height": 2048, "prompt": "punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "width": 1024, "height": 2048, "prompt": "punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'width=1024' \ -i 'height=2048' \ -i 'prompt="punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic "' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=12' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=1' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 2048, "prompt": "punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T02:39:07.762397Z", "created_at": "2023-09-30T02:35:29.910983Z", "data_removed": false, "error": null, "id": "37zd37lbrdnepdyfuuk3w7mu4e", "input": { "width": 1024, "height": 2048, "prompt": "punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 }, "logs": "Using seed: 7557\nPrompt: punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic\ntxt2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:02<02:47, 2.12s/it]\n 2%|▎ | 2/80 [00:04<02:44, 2.11s/it]\n 4%|▍ | 3/80 [00:06<02:42, 2.12s/it]\n 5%|▌ | 4/80 [00:08<02:40, 2.12s/it]\n 6%|▋ | 5/80 [00:10<02:38, 2.12s/it]\n 8%|▊ | 6/80 [00:12<02:36, 2.12s/it]\n 9%|▉ | 7/80 [00:14<02:34, 2.12s/it]\n 10%|█ | 8/80 [00:16<02:32, 2.12s/it]\n 11%|█▏ | 9/80 [00:19<02:30, 2.12s/it]\n 12%|█▎ | 10/80 [00:21<02:28, 2.12s/it]\n 14%|█▍ | 11/80 [00:23<02:26, 2.12s/it]\n 15%|█▌ | 12/80 [00:25<02:24, 2.13s/it]\n 16%|█▋ | 13/80 [00:27<02:22, 2.13s/it]\n 18%|█▊ | 14/80 [00:29<02:20, 2.13s/it]\n 19%|█▉ | 15/80 [00:31<02:18, 2.13s/it]\n 20%|██ | 16/80 [00:33<02:16, 2.13s/it]\n 21%|██▏ | 17/80 [00:36<02:14, 2.13s/it]\n 22%|██▎ | 18/80 [00:38<02:11, 2.13s/it]\n 24%|██▍ | 19/80 [00:40<02:09, 2.13s/it]\n 25%|██▌ | 20/80 [00:42<02:07, 2.13s/it]\n 26%|██▋ | 21/80 [00:44<02:05, 2.13s/it]\n 28%|██▊ | 22/80 [00:46<02:03, 2.13s/it]\n 29%|██▉ | 23/80 [00:48<02:01, 2.13s/it]\n 30%|███ | 24/80 [00:51<01:59, 2.13s/it]\n 31%|███▏ | 25/80 [00:53<01:57, 2.13s/it]\n 32%|███▎ | 26/80 [00:55<01:55, 2.13s/it]\n 34%|███▍ | 27/80 [00:57<01:53, 2.13s/it]\n 35%|███▌ | 28/80 [00:59<01:50, 2.13s/it]\n 36%|███▋ | 29/80 [01:01<01:48, 2.13s/it]\n 38%|███▊ | 30/80 [01:03<01:46, 2.13s/it]\n 39%|███▉ | 31/80 [01:05<01:44, 2.14s/it]\n 40%|████ | 32/80 [01:08<01:42, 2.14s/it]\n 41%|████▏ | 33/80 [01:10<01:40, 2.14s/it]\n 42%|████▎ | 34/80 [01:12<01:38, 2.14s/it]\n 44%|████▍ | 35/80 [01:14<01:36, 2.14s/it]\n 45%|████▌ | 36/80 [01:16<01:34, 2.14s/it]\n 46%|████▋ | 37/80 [01:18<01:31, 2.14s/it]\n 48%|████▊ | 38/80 [01:20<01:29, 2.14s/it]\n 49%|████▉ | 39/80 [01:23<01:27, 2.14s/it]\n 50%|█████ | 40/80 [01:25<01:25, 2.14s/it]\n 51%|█████▏ | 41/80 [01:27<01:23, 2.14s/it]\n 52%|█████▎ | 42/80 [01:29<01:21, 2.14s/it]\n 54%|█████▍ | 43/80 [01:31<01:19, 2.14s/it]\n 55%|█████▌ | 44/80 [01:33<01:17, 2.14s/it]\n 56%|█████▋ | 45/80 [01:35<01:14, 2.14s/it]\n 57%|█████▊ | 46/80 [01:38<01:12, 2.14s/it]\n 59%|█████▉ | 47/80 [01:40<01:10, 2.14s/it]\n 60%|██████ | 48/80 [01:42<01:08, 2.14s/it]\n 61%|██████▏ | 49/80 [01:44<01:06, 2.14s/it]\n 62%|██████▎ | 50/80 [01:46<01:04, 2.14s/it]\n 64%|██████▍ | 51/80 [01:48<01:02, 2.14s/it]\n 65%|██████▌ | 52/80 [01:50<00:59, 2.14s/it]\n 66%|██████▋ | 53/80 [01:53<00:57, 2.14s/it]\n 68%|██████▊ | 54/80 [01:55<00:55, 2.14s/it]\n 69%|██████▉ | 55/80 [01:57<00:53, 2.14s/it]\n 70%|███████ | 56/80 [01:59<00:51, 2.14s/it]\n 71%|███████▏ | 57/80 [02:01<00:49, 2.14s/it]\n 72%|███████▎ | 58/80 [02:03<00:47, 2.14s/it]\n 74%|███████▍ | 59/80 [02:05<00:44, 2.14s/it]\n 75%|███████▌ | 60/80 [02:08<00:42, 2.14s/it]\n 76%|███████▋ | 61/80 [02:10<00:40, 2.14s/it]\n 78%|███████▊ | 62/80 [02:12<00:38, 2.14s/it]\n 79%|███████▉ | 63/80 [02:14<00:36, 2.14s/it]\n 80%|████████ | 64/80 [02:16<00:34, 2.14s/it]\n 81%|████████▏ | 65/80 [02:18<00:32, 2.14s/it]\n 82%|████████▎ | 66/80 [02:20<00:30, 2.14s/it]\n 84%|████████▍ | 67/80 [02:23<00:27, 2.14s/it]\n 85%|████████▌ | 68/80 [02:25<00:25, 2.14s/it]\n 86%|████████▋ | 69/80 [02:27<00:23, 2.14s/it]\n 88%|████████▊ | 70/80 [02:29<00:21, 2.14s/it]\n 89%|████████▉ | 71/80 [02:31<00:19, 2.14s/it]\n 90%|█████████ | 72/80 [02:33<00:17, 2.14s/it]\n 91%|█████████▏| 73/80 [02:35<00:15, 2.14s/it]\n 92%|█████████▎| 74/80 [02:38<00:12, 2.14s/it]\n 94%|█████████▍| 75/80 [02:40<00:10, 2.14s/it]\n 95%|█████████▌| 76/80 [02:42<00:08, 2.14s/it]\n 96%|█████████▋| 77/80 [02:44<00:06, 2.14s/it]\n 98%|█████████▊| 78/80 [02:46<00:04, 2.15s/it]\n 99%|█████████▉| 79/80 [02:48<00:02, 2.15s/it]\n100%|██████████| 80/80 [02:50<00:00, 2.14s/it]\n100%|██████████| 80/80 [02:50<00:00, 2.14s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:01<00:36, 1.92s/it]\n 10%|█ | 2/20 [00:03<00:34, 1.92s/it]\n 15%|█▌ | 3/20 [00:05<00:32, 1.92s/it]\n 20%|██ | 4/20 [00:07<00:30, 1.92s/it]\n 25%|██▌ | 5/20 [00:09<00:28, 1.92s/it]\n 30%|███ | 6/20 [00:11<00:26, 1.92s/it]\n 35%|███▌ | 7/20 [00:13<00:24, 1.92s/it]\n 40%|████ | 8/20 [00:15<00:23, 1.92s/it]\n 45%|████▌ | 9/20 [00:17<00:21, 1.92s/it]\n 50%|█████ | 10/20 [00:19<00:19, 1.92s/it]\n 55%|█████▌ | 11/20 [00:21<00:17, 1.92s/it]\n 60%|██████ | 12/20 [00:23<00:15, 1.92s/it]\n 65%|██████▌ | 13/20 [00:24<00:13, 1.92s/it]\n 70%|███████ | 14/20 [00:26<00:11, 1.92s/it]\n 75%|███████▌ | 15/20 [00:28<00:09, 1.92s/it]\n 80%|████████ | 16/20 [00:30<00:07, 1.92s/it]\n 85%|████████▌ | 17/20 [00:32<00:05, 1.92s/it]\n 90%|█████████ | 18/20 [00:34<00:03, 1.92s/it]\n 95%|█████████▌| 19/20 [00:36<00:01, 1.92s/it]\n100%|██████████| 20/20 [00:38<00:00, 1.92s/it]\n100%|██████████| 20/20 [00:38<00:00, 1.92s/it]", "metrics": { "predict_time": 217.894918, "total_time": 217.851414 }, "output": [ "https://pbxt.replicate.delivery/bntlvUMxs9qjKFXG5fdM0c4Gicy6SQU9DJGzrspMyLHk4p0IA/out-0.png", "https://pbxt.replicate.delivery/pAHnrfrS1SXdQ6sdF8CDbqWL6xc3dfuXzVXhapP16D9KxTpRA/out-1.png", "https://pbxt.replicate.delivery/u2X60Vd3UELhOxNJgzpHOOsFny50uKCNU4dFVM3kCXhS8UaE/out-2.png", "https://pbxt.replicate.delivery/YBy0tGfdDB0pFyQU2toyAuZredzQGmFp33redNbezZKsEPlGB/out-3.png" ], "started_at": "2023-09-30T02:35:29.867479Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/37zd37lbrdnepdyfuuk3w7mu4e", "cancel": "https://api.replicate.com/v1/predictions/37zd37lbrdnepdyfuuk3w7mu4e/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 7557 Prompt: punk twin girls in dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic txt2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:02<02:47, 2.12s/it] 2%|▎ | 2/80 [00:04<02:44, 2.11s/it] 4%|▍ | 3/80 [00:06<02:42, 2.12s/it] 5%|▌ | 4/80 [00:08<02:40, 2.12s/it] 6%|▋ | 5/80 [00:10<02:38, 2.12s/it] 8%|▊ | 6/80 [00:12<02:36, 2.12s/it] 9%|▉ | 7/80 [00:14<02:34, 2.12s/it] 10%|█ | 8/80 [00:16<02:32, 2.12s/it] 11%|█▏ | 9/80 [00:19<02:30, 2.12s/it] 12%|█▎ | 10/80 [00:21<02:28, 2.12s/it] 14%|█▍ | 11/80 [00:23<02:26, 2.12s/it] 15%|█▌ | 12/80 [00:25<02:24, 2.13s/it] 16%|█▋ | 13/80 [00:27<02:22, 2.13s/it] 18%|█▊ | 14/80 [00:29<02:20, 2.13s/it] 19%|█▉ | 15/80 [00:31<02:18, 2.13s/it] 20%|██ | 16/80 [00:33<02:16, 2.13s/it] 21%|██▏ | 17/80 [00:36<02:14, 2.13s/it] 22%|██▎ | 18/80 [00:38<02:11, 2.13s/it] 24%|██▍ | 19/80 [00:40<02:09, 2.13s/it] 25%|██▌ | 20/80 [00:42<02:07, 2.13s/it] 26%|██▋ | 21/80 [00:44<02:05, 2.13s/it] 28%|██▊ | 22/80 [00:46<02:03, 2.13s/it] 29%|██▉ | 23/80 [00:48<02:01, 2.13s/it] 30%|███ | 24/80 [00:51<01:59, 2.13s/it] 31%|███▏ | 25/80 [00:53<01:57, 2.13s/it] 32%|███▎ | 26/80 [00:55<01:55, 2.13s/it] 34%|███▍ | 27/80 [00:57<01:53, 2.13s/it] 35%|███▌ | 28/80 [00:59<01:50, 2.13s/it] 36%|███▋ | 29/80 [01:01<01:48, 2.13s/it] 38%|███▊ | 30/80 [01:03<01:46, 2.13s/it] 39%|███▉ | 31/80 [01:05<01:44, 2.14s/it] 40%|████ | 32/80 [01:08<01:42, 2.14s/it] 41%|████▏ | 33/80 [01:10<01:40, 2.14s/it] 42%|████▎ | 34/80 [01:12<01:38, 2.14s/it] 44%|████▍ | 35/80 [01:14<01:36, 2.14s/it] 45%|████▌ | 36/80 [01:16<01:34, 2.14s/it] 46%|████▋ | 37/80 [01:18<01:31, 2.14s/it] 48%|████▊ | 38/80 [01:20<01:29, 2.14s/it] 49%|████▉ | 39/80 [01:23<01:27, 2.14s/it] 50%|█████ | 40/80 [01:25<01:25, 2.14s/it] 51%|█████▏ | 41/80 [01:27<01:23, 2.14s/it] 52%|█████▎ | 42/80 [01:29<01:21, 2.14s/it] 54%|█████▍ | 43/80 [01:31<01:19, 2.14s/it] 55%|█████▌ | 44/80 [01:33<01:17, 2.14s/it] 56%|█████▋ | 45/80 [01:35<01:14, 2.14s/it] 57%|█████▊ | 46/80 [01:38<01:12, 2.14s/it] 59%|█████▉ | 47/80 [01:40<01:10, 2.14s/it] 60%|██████ | 48/80 [01:42<01:08, 2.14s/it] 61%|██████▏ | 49/80 [01:44<01:06, 2.14s/it] 62%|██████▎ | 50/80 [01:46<01:04, 2.14s/it] 64%|██████▍ | 51/80 [01:48<01:02, 2.14s/it] 65%|██████▌ | 52/80 [01:50<00:59, 2.14s/it] 66%|██████▋ | 53/80 [01:53<00:57, 2.14s/it] 68%|██████▊ | 54/80 [01:55<00:55, 2.14s/it] 69%|██████▉ | 55/80 [01:57<00:53, 2.14s/it] 70%|███████ | 56/80 [01:59<00:51, 2.14s/it] 71%|███████▏ | 57/80 [02:01<00:49, 2.14s/it] 72%|███████▎ | 58/80 [02:03<00:47, 2.14s/it] 74%|███████▍ | 59/80 [02:05<00:44, 2.14s/it] 75%|███████▌ | 60/80 [02:08<00:42, 2.14s/it] 76%|███████▋ | 61/80 [02:10<00:40, 2.14s/it] 78%|███████▊ | 62/80 [02:12<00:38, 2.14s/it] 79%|███████▉ | 63/80 [02:14<00:36, 2.14s/it] 80%|████████ | 64/80 [02:16<00:34, 2.14s/it] 81%|████████▏ | 65/80 [02:18<00:32, 2.14s/it] 82%|████████▎ | 66/80 [02:20<00:30, 2.14s/it] 84%|████████▍ | 67/80 [02:23<00:27, 2.14s/it] 85%|████████▌ | 68/80 [02:25<00:25, 2.14s/it] 86%|████████▋ | 69/80 [02:27<00:23, 2.14s/it] 88%|████████▊ | 70/80 [02:29<00:21, 2.14s/it] 89%|████████▉ | 71/80 [02:31<00:19, 2.14s/it] 90%|█████████ | 72/80 [02:33<00:17, 2.14s/it] 91%|█████████▏| 73/80 [02:35<00:15, 2.14s/it] 92%|█████████▎| 74/80 [02:38<00:12, 2.14s/it] 94%|█████████▍| 75/80 [02:40<00:10, 2.14s/it] 95%|█████████▌| 76/80 [02:42<00:08, 2.14s/it] 96%|█████████▋| 77/80 [02:44<00:06, 2.14s/it] 98%|█████████▊| 78/80 [02:46<00:04, 2.15s/it] 99%|█████████▉| 79/80 [02:48<00:02, 2.15s/it] 100%|██████████| 80/80 [02:50<00:00, 2.14s/it] 100%|██████████| 80/80 [02:50<00:00, 2.14s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:01<00:36, 1.92s/it] 10%|█ | 2/20 [00:03<00:34, 1.92s/it] 15%|█▌ | 3/20 [00:05<00:32, 1.92s/it] 20%|██ | 4/20 [00:07<00:30, 1.92s/it] 25%|██▌ | 5/20 [00:09<00:28, 1.92s/it] 30%|███ | 6/20 [00:11<00:26, 1.92s/it] 35%|███▌ | 7/20 [00:13<00:24, 1.92s/it] 40%|████ | 8/20 [00:15<00:23, 1.92s/it] 45%|████▌ | 9/20 [00:17<00:21, 1.92s/it] 50%|█████ | 10/20 [00:19<00:19, 1.92s/it] 55%|█████▌ | 11/20 [00:21<00:17, 1.92s/it] 60%|██████ | 12/20 [00:23<00:15, 1.92s/it] 65%|██████▌ | 13/20 [00:24<00:13, 1.92s/it] 70%|███████ | 14/20 [00:26<00:11, 1.92s/it] 75%|███████▌ | 15/20 [00:28<00:09, 1.92s/it] 80%|████████ | 16/20 [00:30<00:07, 1.92s/it] 85%|████████▌ | 17/20 [00:32<00:05, 1.92s/it] 90%|█████████ | 18/20 [00:34<00:03, 1.92s/it] 95%|█████████▌| 19/20 [00:36<00:01, 1.92s/it] 100%|██████████| 20/20 [00:38<00:00, 1.92s/it] 100%|██████████| 20/20 [00:38<00:00, 1.92s/it]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDuw3xhilbbq325ky7dqszg43bdiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", width: 928, height: 1232, prompt: " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt=" cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-01T22:11:18.020123Z", "created_at": "2023-10-01T21:45:17.456092Z", "data_removed": false, "error": null, "id": "uw3xhilbbq325ky7dqszg43bdi", "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 4265\nPrompt: cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:20<19:42, 20.05s/it]\n 3%|▎ | 2/60 [00:39<19:16, 19.93s/it]\n 5%|▌ | 3/60 [00:59<18:55, 19.92s/it]\n 7%|▋ | 4/60 [01:19<18:33, 19.89s/it]\n 8%|▊ | 5/60 [01:39<18:13, 19.88s/it]\n 10%|█ | 6/60 [01:59<17:57, 19.95s/it]\n 12%|█▏ | 7/60 [02:19<17:36, 19.92s/it]\n 13%|█▎ | 8/60 [02:39<17:15, 19.92s/it]\n 15%|█▌ | 9/60 [02:59<16:54, 19.89s/it]\n 17%|█▋ | 10/60 [03:19<16:34, 19.89s/it]\n 18%|█▊ | 11/60 [03:39<16:17, 19.94s/it]\n 20%|██ | 12/60 [03:58<15:55, 19.91s/it]\n 22%|██▏ | 13/60 [04:18<15:36, 19.92s/it]\n 23%|██▎ | 14/60 [04:38<15:15, 19.91s/it]\n 25%|██▌ | 15/60 [04:58<14:56, 19.92s/it]\n 27%|██▋ | 16/60 [05:18<14:39, 19.99s/it]\n 28%|██▊ | 17/60 [05:38<14:18, 19.97s/it]\n 30%|███ | 18/60 [05:58<13:57, 19.95s/it]\n 32%|███▏ | 19/60 [06:18<13:36, 19.91s/it]\n 33%|███▎ | 20/60 [06:38<13:16, 19.91s/it]\n 35%|███▌ | 21/60 [06:58<12:59, 19.98s/it]\n 37%|███▋ | 22/60 [07:18<12:38, 19.97s/it]\n 38%|███▊ | 23/60 [07:38<12:17, 19.94s/it]\n 40%|████ | 24/60 [07:58<11:57, 19.93s/it]\n 42%|████▏ | 25/60 [08:18<11:37, 19.93s/it]\n 43%|████▎ | 26/60 [08:38<11:19, 19.98s/it]\n 45%|████▌ | 27/60 [08:58<10:58, 19.94s/it]\n 47%|████▋ | 28/60 [09:18<10:36, 19.90s/it]\n 48%|████▊ | 29/60 [09:37<10:17, 19.91s/it]\n 50%|█████ | 30/60 [09:57<09:57, 19.91s/it]\n 52%|█████▏ | 31/60 [10:17<09:38, 19.96s/it]\n 53%|█████▎ | 32/60 [10:37<09:18, 19.94s/it]\n 55%|█████▌ | 33/60 [10:57<08:58, 19.94s/it]\n 57%|█████▋ | 34/60 [11:17<08:37, 19.91s/it]\n 58%|█████▊ | 35/60 [11:37<08:18, 19.94s/it]\n 60%|██████ | 36/60 [11:57<07:59, 19.97s/it]\n 62%|██████▏ | 37/60 [12:17<07:39, 19.97s/it]\n 63%|██████▎ | 38/60 [12:37<07:18, 19.95s/it]\n 65%|██████▌ | 39/60 [12:57<06:58, 19.94s/it]\n 67%|██████▋ | 40/60 [13:17<06:38, 19.90s/it]\n 68%|██████▊ | 41/60 [13:37<06:18, 19.93s/it]\n 70%|███████ | 42/60 [13:57<05:58, 19.93s/it]\n 72%|███████▏ | 43/60 [14:17<05:38, 19.92s/it]\n 73%|███████▎ | 44/60 [14:36<05:18, 19.92s/it]\n 75%|███████▌ | 45/60 [14:56<04:58, 19.90s/it]\n 77%|███████▋ | 46/60 [15:16<04:39, 19.97s/it]\n 78%|███████▊ | 47/60 [15:36<04:19, 19.96s/it]\n 80%|████████ | 48/60 [15:56<03:59, 19.92s/it]\n 82%|████████▏ | 49/60 [16:16<03:39, 19.92s/it]\n 83%|████████▎ | 50/60 [16:36<03:19, 19.91s/it]\n 85%|████████▌ | 51/60 [16:56<02:59, 19.98s/it]\n 87%|████████▋ | 52/60 [17:16<02:39, 19.95s/it]\n 88%|████████▊ | 53/60 [17:36<02:19, 19.91s/it]\n 90%|█████████ | 54/60 [17:56<01:59, 19.91s/it]\n 92%|█████████▏| 55/60 [18:16<01:39, 19.91s/it]\n 93%|█████████▎| 56/60 [18:36<01:19, 19.93s/it]\n 95%|█████████▌| 57/60 [18:56<00:59, 19.93s/it]\n 97%|█████████▋| 58/60 [19:16<00:39, 19.92s/it]\n 98%|█████████▊| 59/60 [19:35<00:19, 19.93s/it]\n100%|██████████| 60/60 [19:55<00:00, 19.93s/it]\n100%|██████████| 60/60 [19:55<00:00, 19.93s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:13<04:23, 13.87s/it]\n 10%|█ | 2/20 [00:28<04:13, 14.11s/it]\n 15%|█▌ | 3/20 [00:42<03:58, 14.03s/it]\n 20%|██ | 4/20 [00:56<03:45, 14.12s/it]\n 25%|██▌ | 5/20 [01:10<03:30, 14.05s/it]\n 30%|███ | 6/20 [01:24<03:16, 14.02s/it]\n 35%|███▌ | 7/20 [01:38<03:01, 14.00s/it]\n 40%|████ | 8/20 [01:52<02:48, 14.07s/it]\n 45%|████▌ | 9/20 [02:06<02:35, 14.16s/it]\n 50%|█████ | 10/20 [02:20<02:20, 14.09s/it]\n 55%|█████▌ | 11/20 [02:34<02:06, 14.07s/it]\n 60%|██████ | 12/20 [02:48<01:52, 14.06s/it]\n 65%|██████▌ | 13/20 [03:02<01:38, 14.01s/it]\n 70%|███████ | 14/20 [03:16<01:24, 14.05s/it]\n 75%|███████▌ | 15/20 [03:30<01:10, 14.04s/it]\n 80%|████████ | 16/20 [03:45<00:56, 14.13s/it]\n 85%|████████▌ | 17/20 [03:59<00:42, 14.12s/it]\n 90%|█████████ | 18/20 [04:13<00:28, 14.15s/it]\n 95%|█████████▌| 19/20 [04:27<00:14, 14.12s/it]\n100%|██████████| 20/20 [04:41<00:00, 14.17s/it]\n100%|██████████| 20/20 [04:41<00:00, 14.09s/it]", "metrics": { "predict_time": 1505.411878, "total_time": 1560.564031 }, "output": [ "https://pbxt.replicate.delivery/qnBCCWXY4KL6GlbDoZnJVwCdxBd5eNu3BnRC6SEzJj4BB90IA/out-0.png", "https://pbxt.replicate.delivery/0LDkaZfijS2ZPaiKYyXPCC1w1G9q137yoLAtxmUoGDSCB90IA/out-1.png", "https://pbxt.replicate.delivery/OdnuXv0HnhY5PNP5WJ7e83JEDs1UML4l987WVT9ZPxvCB90IA/out-2.png", "https://pbxt.replicate.delivery/eJnb0oa2XmUMVSVuPcegid65ayELxvmtEjNV6pa0aDyFC6pRA/out-3.png" ], "started_at": "2023-10-01T21:46:12.608245Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/uw3xhilbbq325ky7dqszg43bdi", "cancel": "https://api.replicate.com/v1/predictions/uw3xhilbbq325ky7dqszg43bdi/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 4265 Prompt: cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:20<19:42, 20.05s/it] 3%|▎ | 2/60 [00:39<19:16, 19.93s/it] 5%|▌ | 3/60 [00:59<18:55, 19.92s/it] 7%|▋ | 4/60 [01:19<18:33, 19.89s/it] 8%|▊ | 5/60 [01:39<18:13, 19.88s/it] 10%|█ | 6/60 [01:59<17:57, 19.95s/it] 12%|█▏ | 7/60 [02:19<17:36, 19.92s/it] 13%|█▎ | 8/60 [02:39<17:15, 19.92s/it] 15%|█▌ | 9/60 [02:59<16:54, 19.89s/it] 17%|█▋ | 10/60 [03:19<16:34, 19.89s/it] 18%|█▊ | 11/60 [03:39<16:17, 19.94s/it] 20%|██ | 12/60 [03:58<15:55, 19.91s/it] 22%|██▏ | 13/60 [04:18<15:36, 19.92s/it] 23%|██▎ | 14/60 [04:38<15:15, 19.91s/it] 25%|██▌ | 15/60 [04:58<14:56, 19.92s/it] 27%|██▋ | 16/60 [05:18<14:39, 19.99s/it] 28%|██▊ | 17/60 [05:38<14:18, 19.97s/it] 30%|███ | 18/60 [05:58<13:57, 19.95s/it] 32%|███▏ | 19/60 [06:18<13:36, 19.91s/it] 33%|███▎ | 20/60 [06:38<13:16, 19.91s/it] 35%|███▌ | 21/60 [06:58<12:59, 19.98s/it] 37%|███▋ | 22/60 [07:18<12:38, 19.97s/it] 38%|███▊ | 23/60 [07:38<12:17, 19.94s/it] 40%|████ | 24/60 [07:58<11:57, 19.93s/it] 42%|████▏ | 25/60 [08:18<11:37, 19.93s/it] 43%|████▎ | 26/60 [08:38<11:19, 19.98s/it] 45%|████▌ | 27/60 [08:58<10:58, 19.94s/it] 47%|████▋ | 28/60 [09:18<10:36, 19.90s/it] 48%|████▊ | 29/60 [09:37<10:17, 19.91s/it] 50%|█████ | 30/60 [09:57<09:57, 19.91s/it] 52%|█████▏ | 31/60 [10:17<09:38, 19.96s/it] 53%|█████▎ | 32/60 [10:37<09:18, 19.94s/it] 55%|█████▌ | 33/60 [10:57<08:58, 19.94s/it] 57%|█████▋ | 34/60 [11:17<08:37, 19.91s/it] 58%|█████▊ | 35/60 [11:37<08:18, 19.94s/it] 60%|██████ | 36/60 [11:57<07:59, 19.97s/it] 62%|██████▏ | 37/60 [12:17<07:39, 19.97s/it] 63%|██████▎ | 38/60 [12:37<07:18, 19.95s/it] 65%|██████▌ | 39/60 [12:57<06:58, 19.94s/it] 67%|██████▋ | 40/60 [13:17<06:38, 19.90s/it] 68%|██████▊ | 41/60 [13:37<06:18, 19.93s/it] 70%|███████ | 42/60 [13:57<05:58, 19.93s/it] 72%|███████▏ | 43/60 [14:17<05:38, 19.92s/it] 73%|███████▎ | 44/60 [14:36<05:18, 19.92s/it] 75%|███████▌ | 45/60 [14:56<04:58, 19.90s/it] 77%|███████▋ | 46/60 [15:16<04:39, 19.97s/it] 78%|███████▊ | 47/60 [15:36<04:19, 19.96s/it] 80%|████████ | 48/60 [15:56<03:59, 19.92s/it] 82%|████████▏ | 49/60 [16:16<03:39, 19.92s/it] 83%|████████▎ | 50/60 [16:36<03:19, 19.91s/it] 85%|████████▌ | 51/60 [16:56<02:59, 19.98s/it] 87%|████████▋ | 52/60 [17:16<02:39, 19.95s/it] 88%|████████▊ | 53/60 [17:36<02:19, 19.91s/it] 90%|█████████ | 54/60 [17:56<01:59, 19.91s/it] 92%|█████████▏| 55/60 [18:16<01:39, 19.91s/it] 93%|█████████▎| 56/60 [18:36<01:19, 19.93s/it] 95%|█████████▌| 57/60 [18:56<00:59, 19.93s/it] 97%|█████████▋| 58/60 [19:16<00:39, 19.92s/it] 98%|█████████▊| 59/60 [19:35<00:19, 19.93s/it] 100%|██████████| 60/60 [19:55<00:00, 19.93s/it] 100%|██████████| 60/60 [19:55<00:00, 19.93s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:13<04:23, 13.87s/it] 10%|█ | 2/20 [00:28<04:13, 14.11s/it] 15%|█▌ | 3/20 [00:42<03:58, 14.03s/it] 20%|██ | 4/20 [00:56<03:45, 14.12s/it] 25%|██▌ | 5/20 [01:10<03:30, 14.05s/it] 30%|███ | 6/20 [01:24<03:16, 14.02s/it] 35%|███▌ | 7/20 [01:38<03:01, 14.00s/it] 40%|████ | 8/20 [01:52<02:48, 14.07s/it] 45%|████▌ | 9/20 [02:06<02:35, 14.16s/it] 50%|█████ | 10/20 [02:20<02:20, 14.09s/it] 55%|█████▌ | 11/20 [02:34<02:06, 14.07s/it] 60%|██████ | 12/20 [02:48<01:52, 14.06s/it] 65%|██████▌ | 13/20 [03:02<01:38, 14.01s/it] 70%|███████ | 14/20 [03:16<01:24, 14.05s/it] 75%|███████▌ | 15/20 [03:30<01:10, 14.04s/it] 80%|████████ | 16/20 [03:45<00:56, 14.13s/it] 85%|████████▌ | 17/20 [03:59<00:42, 14.12s/it] 90%|█████████ | 18/20 [04:13<00:28, 14.15s/it] 95%|█████████▌| 19/20 [04:27<00:14, 14.12s/it] 100%|██████████| 20/20 [04:41<00:00, 14.17s/it] 100%|██████████| 20/20 [04:41<00:00, 14.09s/it]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDnyvzgatbtye2qmzalfrpxrnpkuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- mask
- null
- width
- 896
- height
- 1344
- prompt
- Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": null, "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", width: 896, height: 1344, prompt: "Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph"' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T22:04:32.920750Z", "created_at": "2023-09-30T22:03:28.252856Z", "data_removed": false, "error": null, "id": "nyvzgatbtye2qmzalfrpxrnpku", "input": { "mask": null, "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": "Using seed: 24809\nPrompt: Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph\nimg2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:00<00:58, 1.35it/s]\n 2%|▎ | 2/80 [00:01<00:58, 1.34it/s]\n 4%|▍ | 3/80 [00:02<00:57, 1.34it/s]\n 5%|▌ | 4/80 [00:02<00:56, 1.34it/s]\n 6%|▋ | 5/80 [00:03<00:56, 1.34it/s]\n 8%|▊ | 6/80 [00:04<00:55, 1.33it/s]\n 9%|▉ | 7/80 [00:05<00:54, 1.33it/s]\n 10%|█ | 8/80 [00:05<00:54, 1.33it/s]\n 11%|█▏ | 9/80 [00:06<00:53, 1.33it/s]\n 12%|█▎ | 10/80 [00:07<00:52, 1.33it/s]\n 14%|█▍ | 11/80 [00:08<00:51, 1.33it/s]\n 15%|█▌ | 12/80 [00:09<00:51, 1.33it/s]\n 16%|█▋ | 13/80 [00:09<00:50, 1.33it/s]\n 18%|█▊ | 14/80 [00:10<00:49, 1.33it/s]\n 19%|█▉ | 15/80 [00:11<00:48, 1.33it/s]\n 20%|██ | 16/80 [00:12<00:47, 1.33it/s]\n 21%|██▏ | 17/80 [00:12<00:47, 1.33it/s]\n 22%|██▎ | 18/80 [00:13<00:46, 1.34it/s]\n 24%|██▍ | 19/80 [00:14<00:45, 1.34it/s]\n 25%|██▌ | 20/80 [00:14<00:44, 1.34it/s]\n 26%|██▋ | 21/80 [00:15<00:44, 1.34it/s]\n 28%|██▊ | 22/80 [00:16<00:43, 1.34it/s]\n 29%|██▉ | 23/80 [00:17<00:42, 1.34it/s]\n 30%|███ | 24/80 [00:17<00:41, 1.34it/s]\n 31%|███▏ | 25/80 [00:18<00:41, 1.34it/s]\n 32%|███▎ | 26/80 [00:19<00:40, 1.33it/s]\n 34%|███▍ | 27/80 [00:20<00:39, 1.33it/s]\n 35%|███▌ | 28/80 [00:20<00:38, 1.33it/s]\n 36%|███▋ | 29/80 [00:21<00:38, 1.33it/s]\n 38%|███▊ | 30/80 [00:22<00:37, 1.33it/s]\n 39%|███▉ | 31/80 [00:23<00:36, 1.33it/s]\n 40%|████ | 32/80 [00:23<00:35, 1.33it/s]\n 41%|████▏ | 33/80 [00:24<00:35, 1.33it/s]\n 42%|████▎ | 34/80 [00:25<00:34, 1.33it/s]\n 44%|████▍ | 35/80 [00:26<00:33, 1.33it/s]\n 45%|████▌ | 36/80 [00:26<00:33, 1.33it/s]\n 46%|████▋ | 37/80 [00:27<00:32, 1.33it/s]\n 48%|████▊ | 38/80 [00:28<00:31, 1.33it/s]\n 49%|████▉ | 39/80 [00:29<00:30, 1.33it/s]\n 50%|█████ | 40/80 [00:30<00:30, 1.33it/s]\n 51%|█████▏ | 41/80 [00:30<00:29, 1.33it/s]\n 52%|█████▎ | 42/80 [00:31<00:28, 1.33it/s]\n 54%|█████▍ | 43/80 [00:32<00:27, 1.33it/s]\n 55%|█████▌ | 44/80 [00:33<00:27, 1.33it/s]\n 56%|█████▋ | 45/80 [00:33<00:26, 1.33it/s]\n 57%|█████▊ | 46/80 [00:34<00:25, 1.33it/s]\n 59%|█████▉ | 47/80 [00:35<00:24, 1.33it/s]\n 60%|██████ | 48/80 [00:36<00:24, 1.33it/s]\n 61%|██████▏ | 49/80 [00:36<00:23, 1.33it/s]\n 62%|██████▎ | 50/80 [00:37<00:22, 1.33it/s]\n 64%|██████▍ | 51/80 [00:38<00:21, 1.33it/s]\n 65%|██████▌ | 52/80 [00:39<00:21, 1.33it/s]\n 66%|██████▋ | 53/80 [00:39<00:20, 1.33it/s]\n 68%|██████▊ | 54/80 [00:40<00:19, 1.33it/s]\n 69%|██████▉ | 55/80 [00:41<00:18, 1.33it/s]\n 70%|███████ | 56/80 [00:42<00:18, 1.33it/s]\n 71%|███████▏ | 57/80 [00:42<00:17, 1.33it/s]\n 72%|███████▎ | 58/80 [00:43<00:16, 1.33it/s]\n 74%|███████▍ | 59/80 [00:44<00:15, 1.33it/s]\n 75%|███████▌ | 60/80 [00:45<00:15, 1.33it/s]\n 76%|███████▋ | 61/80 [00:45<00:14, 1.33it/s]\n 78%|███████▊ | 62/80 [00:46<00:13, 1.33it/s]\n 79%|███████▉ | 63/80 [00:47<00:12, 1.33it/s]\n 80%|████████ | 64/80 [00:48<00:12, 1.33it/s]\n 81%|████████▏ | 65/80 [00:48<00:11, 1.33it/s]\n 82%|████████▎ | 66/80 [00:49<00:10, 1.33it/s]\n 84%|████████▍ | 67/80 [00:50<00:09, 1.33it/s]\n 85%|████████▌ | 68/80 [00:51<00:09, 1.33it/s]\n 86%|████████▋ | 69/80 [00:51<00:08, 1.33it/s]\n 88%|████████▊ | 70/80 [00:52<00:07, 1.33it/s]\n 89%|████████▉ | 71/80 [00:53<00:06, 1.33it/s]\n 90%|█████████ | 72/80 [00:54<00:06, 1.33it/s]\n 91%|█████████▏| 73/80 [00:54<00:05, 1.33it/s]\n 92%|█████████▎| 74/80 [00:55<00:04, 1.33it/s]\n 94%|█████████▍| 75/80 [00:56<00:03, 1.33it/s]\n 95%|█████████▌| 76/80 [00:57<00:03, 1.33it/s]\n 96%|█████████▋| 77/80 [00:57<00:02, 1.33it/s]\n 98%|█████████▊| 78/80 [00:58<00:01, 1.33it/s]\n 99%|█████████▉| 79/80 [00:59<00:00, 1.33it/s]\n100%|██████████| 80/80 [01:00<00:00, 1.33it/s]\n100%|██████████| 80/80 [01:00<00:00, 1.33it/s]", "metrics": { "predict_time": 64.713376, "total_time": 64.667894 }, "output": [ "https://pbxt.replicate.delivery/kByLkSZxOOqWN1Pffk6PQAUGkObd8nSZ9Zdzuvb93H9v1kpRA/out-0.png", "https://pbxt.replicate.delivery/petB9JBDJ5yfNU0HseUauceX8Z3gJ1jvlpYMuY9cZj5CXTmGB/out-1.png", "https://pbxt.replicate.delivery/FZvRNYp1YWIXLtz2WshUDRrzyNIOk8H5rzC6vrCPfZL4ay0IA/out-2.png", "https://pbxt.replicate.delivery/Jf7YvVD36d2yaSqNBhOneoIvb1DpQwXqgJSD0xQMYFxw1kpRA/out-3.png" ], "started_at": "2023-09-30T22:03:28.207374Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nyvzgatbtye2qmzalfrpxrnpku", "cancel": "https://api.replicate.com/v1/predictions/nyvzgatbtye2qmzalfrpxrnpku/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 24809 Prompt: Punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead with pink and green hair in total darkness her phone is the only source of illumination in a dive bar bathroom covered with graffiti photographed by Diane Arbus and Sylvia Plachy, dimly lit, color photograph img2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:00<00:58, 1.35it/s] 2%|▎ | 2/80 [00:01<00:58, 1.34it/s] 4%|▍ | 3/80 [00:02<00:57, 1.34it/s] 5%|▌ | 4/80 [00:02<00:56, 1.34it/s] 6%|▋ | 5/80 [00:03<00:56, 1.34it/s] 8%|▊ | 6/80 [00:04<00:55, 1.33it/s] 9%|▉ | 7/80 [00:05<00:54, 1.33it/s] 10%|█ | 8/80 [00:05<00:54, 1.33it/s] 11%|█▏ | 9/80 [00:06<00:53, 1.33it/s] 12%|█▎ | 10/80 [00:07<00:52, 1.33it/s] 14%|█▍ | 11/80 [00:08<00:51, 1.33it/s] 15%|█▌ | 12/80 [00:09<00:51, 1.33it/s] 16%|█▋ | 13/80 [00:09<00:50, 1.33it/s] 18%|█▊ | 14/80 [00:10<00:49, 1.33it/s] 19%|█▉ | 15/80 [00:11<00:48, 1.33it/s] 20%|██ | 16/80 [00:12<00:47, 1.33it/s] 21%|██▏ | 17/80 [00:12<00:47, 1.33it/s] 22%|██▎ | 18/80 [00:13<00:46, 1.34it/s] 24%|██▍ | 19/80 [00:14<00:45, 1.34it/s] 25%|██▌ | 20/80 [00:14<00:44, 1.34it/s] 26%|██▋ | 21/80 [00:15<00:44, 1.34it/s] 28%|██▊ | 22/80 [00:16<00:43, 1.34it/s] 29%|██▉ | 23/80 [00:17<00:42, 1.34it/s] 30%|███ | 24/80 [00:17<00:41, 1.34it/s] 31%|███▏ | 25/80 [00:18<00:41, 1.34it/s] 32%|███▎ | 26/80 [00:19<00:40, 1.33it/s] 34%|███▍ | 27/80 [00:20<00:39, 1.33it/s] 35%|███▌ | 28/80 [00:20<00:38, 1.33it/s] 36%|███▋ | 29/80 [00:21<00:38, 1.33it/s] 38%|███▊ | 30/80 [00:22<00:37, 1.33it/s] 39%|███▉ | 31/80 [00:23<00:36, 1.33it/s] 40%|████ | 32/80 [00:23<00:35, 1.33it/s] 41%|████▏ | 33/80 [00:24<00:35, 1.33it/s] 42%|████▎ | 34/80 [00:25<00:34, 1.33it/s] 44%|████▍ | 35/80 [00:26<00:33, 1.33it/s] 45%|████▌ | 36/80 [00:26<00:33, 1.33it/s] 46%|████▋ | 37/80 [00:27<00:32, 1.33it/s] 48%|████▊ | 38/80 [00:28<00:31, 1.33it/s] 49%|████▉ | 39/80 [00:29<00:30, 1.33it/s] 50%|█████ | 40/80 [00:30<00:30, 1.33it/s] 51%|█████▏ | 41/80 [00:30<00:29, 1.33it/s] 52%|█████▎ | 42/80 [00:31<00:28, 1.33it/s] 54%|█████▍ | 43/80 [00:32<00:27, 1.33it/s] 55%|█████▌ | 44/80 [00:33<00:27, 1.33it/s] 56%|█████▋ | 45/80 [00:33<00:26, 1.33it/s] 57%|█████▊ | 46/80 [00:34<00:25, 1.33it/s] 59%|█████▉ | 47/80 [00:35<00:24, 1.33it/s] 60%|██████ | 48/80 [00:36<00:24, 1.33it/s] 61%|██████▏ | 49/80 [00:36<00:23, 1.33it/s] 62%|██████▎ | 50/80 [00:37<00:22, 1.33it/s] 64%|██████▍ | 51/80 [00:38<00:21, 1.33it/s] 65%|██████▌ | 52/80 [00:39<00:21, 1.33it/s] 66%|██████▋ | 53/80 [00:39<00:20, 1.33it/s] 68%|██████▊ | 54/80 [00:40<00:19, 1.33it/s] 69%|██████▉ | 55/80 [00:41<00:18, 1.33it/s] 70%|███████ | 56/80 [00:42<00:18, 1.33it/s] 71%|███████▏ | 57/80 [00:42<00:17, 1.33it/s] 72%|███████▎ | 58/80 [00:43<00:16, 1.33it/s] 74%|███████▍ | 59/80 [00:44<00:15, 1.33it/s] 75%|███████▌ | 60/80 [00:45<00:15, 1.33it/s] 76%|███████▋ | 61/80 [00:45<00:14, 1.33it/s] 78%|███████▊ | 62/80 [00:46<00:13, 1.33it/s] 79%|███████▉ | 63/80 [00:47<00:12, 1.33it/s] 80%|████████ | 64/80 [00:48<00:12, 1.33it/s] 81%|████████▏ | 65/80 [00:48<00:11, 1.33it/s] 82%|████████▎ | 66/80 [00:49<00:10, 1.33it/s] 84%|████████▍ | 67/80 [00:50<00:09, 1.33it/s] 85%|████████▌ | 68/80 [00:51<00:09, 1.33it/s] 86%|████████▋ | 69/80 [00:51<00:08, 1.33it/s] 88%|████████▊ | 70/80 [00:52<00:07, 1.33it/s] 89%|████████▉ | 71/80 [00:53<00:06, 1.33it/s] 90%|█████████ | 72/80 [00:54<00:06, 1.33it/s] 91%|█████████▏| 73/80 [00:54<00:05, 1.33it/s] 92%|█████████▎| 74/80 [00:55<00:04, 1.33it/s] 94%|█████████▍| 75/80 [00:56<00:03, 1.33it/s] 95%|█████████▌| 76/80 [00:57<00:03, 1.33it/s] 96%|█████████▋| 77/80 [00:57<00:02, 1.33it/s] 98%|█████████▊| 78/80 [00:58<00:01, 1.33it/s] 99%|█████████▉| 79/80 [00:59<00:00, 1.33it/s] 100%|██████████| 80/80 [01:00<00:00, 1.33it/s] 100%|██████████| 80/80 [01:00<00:00, 1.33it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDuonhexlbbh3hvm4xvfzhvvwlcmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- mask
- null
- width
- 1024
- height
- 1024
- prompt
- night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic,
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": null, "image": "https://replicate.delivery/pbxt/JcVTpAAZWd0AXTsYUogLrzLv6olnYe516Zjn1OhE5uSw0dIC/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 1024, "height": 1024, "prompt": "night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcVTpAAZWd0AXTsYUogLrzLv6olnYe516Zjn1OhE5uSw0dIC/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", width: 1024, height: 1024, prompt: "night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic, ", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcVTpAAZWd0AXTsYUogLrzLv6olnYe516Zjn1OhE5uSw0dIC/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 1024, "height": 1024, "prompt": "night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcVTpAAZWd0AXTsYUogLrzLv6olnYe516Zjn1OhE5uSw0dIC/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 1024, "height": 1024, "prompt": "night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcVTpAAZWd0AXTsYUogLrzLv6olnYe516Zjn1OhE5uSw0dIC/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg"' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic, "' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcVTpAAZWd0AXTsYUogLrzLv6olnYe516Zjn1OhE5uSw0dIC/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 1024, "height": 1024, "prompt": "night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T21:48:19.296488Z", "created_at": "2023-09-30T21:47:14.199959Z", "data_removed": false, "error": null, "id": "uonhexlbbh3hvm4xvfzhvvwlcm", "input": { "mask": null, "image": "https://replicate.delivery/pbxt/JcVTpAAZWd0AXTsYUogLrzLv6olnYe516Zjn1OhE5uSw0dIC/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 1024, "height": 1024, "prompt": "night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": "Using seed: 60180\nPrompt: night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic,\nimg2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:00<00:59, 1.33it/s]\n 2%|▎ | 2/80 [00:01<00:58, 1.33it/s]\n 4%|▍ | 3/80 [00:02<00:57, 1.33it/s]\n 5%|▌ | 4/80 [00:03<00:57, 1.33it/s]\n 6%|▋ | 5/80 [00:03<00:56, 1.33it/s]\n 8%|▊ | 6/80 [00:04<00:55, 1.33it/s]\n 9%|▉ | 7/80 [00:05<00:54, 1.33it/s]\n 10%|█ | 8/80 [00:06<00:54, 1.33it/s]\n 11%|█▏ | 9/80 [00:06<00:53, 1.33it/s]\n 12%|█▎ | 10/80 [00:07<00:52, 1.33it/s]\n 14%|█▍ | 11/80 [00:08<00:51, 1.33it/s]\n 15%|█▌ | 12/80 [00:09<00:51, 1.33it/s]\n 16%|█▋ | 13/80 [00:09<00:50, 1.33it/s]\n 18%|█▊ | 14/80 [00:10<00:49, 1.33it/s]\n 19%|█▉ | 15/80 [00:11<00:48, 1.33it/s]\n 20%|██ | 16/80 [00:12<00:48, 1.33it/s]\n 21%|██▏ | 17/80 [00:12<00:47, 1.33it/s]\n 22%|██▎ | 18/80 [00:13<00:46, 1.33it/s]\n 24%|██▍ | 19/80 [00:14<00:45, 1.33it/s]\n 25%|██▌ | 20/80 [00:15<00:45, 1.33it/s]\n 26%|██▋ | 21/80 [00:15<00:44, 1.33it/s]\n 28%|██▊ | 22/80 [00:16<00:43, 1.33it/s]\n 29%|██▉ | 23/80 [00:17<00:42, 1.33it/s]\n 30%|███ | 24/80 [00:18<00:42, 1.33it/s]\n 31%|███▏ | 25/80 [00:18<00:41, 1.33it/s]\n 32%|███▎ | 26/80 [00:19<00:40, 1.33it/s]\n 34%|███▍ | 27/80 [00:20<00:39, 1.33it/s]\n 35%|███▌ | 28/80 [00:21<00:39, 1.33it/s]\n 36%|███▋ | 29/80 [00:21<00:38, 1.33it/s]\n 38%|███▊ | 30/80 [00:22<00:37, 1.33it/s]\n 39%|███▉ | 31/80 [00:23<00:36, 1.33it/s]\n 40%|████ | 32/80 [00:24<00:36, 1.33it/s]\n 41%|████▏ | 33/80 [00:24<00:35, 1.33it/s]\n 42%|████▎ | 34/80 [00:25<00:34, 1.32it/s]\n 44%|████▍ | 35/80 [00:26<00:33, 1.32it/s]\n 45%|████▌ | 36/80 [00:27<00:33, 1.33it/s]\n 46%|████▋ | 37/80 [00:27<00:32, 1.33it/s]\n 48%|████▊ | 38/80 [00:28<00:31, 1.33it/s]\n 49%|████▉ | 39/80 [00:29<00:30, 1.32it/s]\n 50%|█████ | 40/80 [00:30<00:30, 1.32it/s]\n 51%|█████▏ | 41/80 [00:30<00:29, 1.32it/s]\n 52%|█████▎ | 42/80 [00:31<00:28, 1.32it/s]\n 54%|█████▍ | 43/80 [00:32<00:27, 1.32it/s]\n 55%|█████▌ | 44/80 [00:33<00:27, 1.32it/s]\n 56%|█████▋ | 45/80 [00:33<00:26, 1.32it/s]\n 57%|█████▊ | 46/80 [00:34<00:25, 1.32it/s]\n 59%|█████▉ | 47/80 [00:35<00:24, 1.32it/s]\n 60%|██████ | 48/80 [00:36<00:24, 1.32it/s]\n 61%|██████▏ | 49/80 [00:36<00:23, 1.32it/s]\n 62%|██████▎ | 50/80 [00:37<00:22, 1.32it/s]\n 64%|██████▍ | 51/80 [00:38<00:21, 1.32it/s]\n 65%|██████▌ | 52/80 [00:39<00:21, 1.32it/s]\n 66%|██████▋ | 53/80 [00:39<00:20, 1.32it/s]\n 68%|██████▊ | 54/80 [00:40<00:19, 1.32it/s]\n 69%|██████▉ | 55/80 [00:41<00:18, 1.32it/s]\n 70%|███████ | 56/80 [00:42<00:18, 1.32it/s]\n 71%|███████▏ | 57/80 [00:42<00:17, 1.32it/s]\n 72%|███████▎ | 58/80 [00:43<00:16, 1.32it/s]\n 74%|███████▍ | 59/80 [00:44<00:15, 1.32it/s]\n 75%|███████▌ | 60/80 [00:45<00:15, 1.32it/s]\n 76%|███████▋ | 61/80 [00:46<00:14, 1.32it/s]\n 78%|███████▊ | 62/80 [00:46<00:13, 1.32it/s]\n 79%|███████▉ | 63/80 [00:47<00:12, 1.32it/s]\n 80%|████████ | 64/80 [00:48<00:12, 1.32it/s]\n 81%|████████▏ | 65/80 [00:49<00:11, 1.32it/s]\n 82%|████████▎ | 66/80 [00:49<00:10, 1.32it/s]\n 84%|████████▍ | 67/80 [00:50<00:09, 1.32it/s]\n 85%|████████▌ | 68/80 [00:51<00:09, 1.32it/s]\n 86%|████████▋ | 69/80 [00:52<00:08, 1.32it/s]\n 88%|████████▊ | 70/80 [00:52<00:07, 1.32it/s]\n 89%|████████▉ | 71/80 [00:53<00:06, 1.32it/s]\n 90%|█████████ | 72/80 [00:54<00:06, 1.32it/s]\n 91%|█████████▏| 73/80 [00:55<00:05, 1.32it/s]\n 92%|█████████▎| 74/80 [00:55<00:04, 1.32it/s]\n 94%|█████████▍| 75/80 [00:56<00:03, 1.32it/s]\n 95%|█████████▌| 76/80 [00:57<00:03, 1.32it/s]\n 96%|█████████▋| 77/80 [00:58<00:02, 1.32it/s]\n 98%|█████████▊| 78/80 [00:58<00:01, 1.32it/s]\n 99%|█████████▉| 79/80 [00:59<00:00, 1.32it/s]\n100%|██████████| 80/80 [01:00<00:00, 1.32it/s]\n100%|██████████| 80/80 [01:00<00:00, 1.32it/s]", "metrics": { "predict_time": 65.132882, "total_time": 65.096529 }, "output": [ "https://pbxt.replicate.delivery/mBNePVLJEn2CYyNZaJ2Vk7E7NGeU4xbV7surXLygZg8hmkpRA/out-0.png", "https://pbxt.replicate.delivery/4hQhEYeTNETf6U6Efgxrtk3amqwnOn5BxMeGhn6gKqRLaSmGB/out-1.png", "https://pbxt.replicate.delivery/ffmTEH4bxdoQzkFQk9cjD9HVwFo40Pz61uNbuenAeAPLaSmGB/out-2.png", "https://pbxt.replicate.delivery/3c4hBFcaR7qCGNVY3phzjyaA0d64Ij31fe2oQiEensJGNJTjA/out-3.png" ], "started_at": "2023-09-30T21:47:14.163606Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/uonhexlbbh3hvm4xvfzhvvwlcm", "cancel": "https://api.replicate.com/v1/predictions/uonhexlbbh3hvm4xvfzhvvwlcm/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 60180 Prompt: night flash photography of cyberpunk twin girls reflected in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, the phone is the only source of illumination, photographed by Diane Arbus and Sylvia Plachy, color photograph, distressed, photorealistic, img2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:00<00:59, 1.33it/s] 2%|▎ | 2/80 [00:01<00:58, 1.33it/s] 4%|▍ | 3/80 [00:02<00:57, 1.33it/s] 5%|▌ | 4/80 [00:03<00:57, 1.33it/s] 6%|▋ | 5/80 [00:03<00:56, 1.33it/s] 8%|▊ | 6/80 [00:04<00:55, 1.33it/s] 9%|▉ | 7/80 [00:05<00:54, 1.33it/s] 10%|█ | 8/80 [00:06<00:54, 1.33it/s] 11%|█▏ | 9/80 [00:06<00:53, 1.33it/s] 12%|█▎ | 10/80 [00:07<00:52, 1.33it/s] 14%|█▍ | 11/80 [00:08<00:51, 1.33it/s] 15%|█▌ | 12/80 [00:09<00:51, 1.33it/s] 16%|█▋ | 13/80 [00:09<00:50, 1.33it/s] 18%|█▊ | 14/80 [00:10<00:49, 1.33it/s] 19%|█▉ | 15/80 [00:11<00:48, 1.33it/s] 20%|██ | 16/80 [00:12<00:48, 1.33it/s] 21%|██▏ | 17/80 [00:12<00:47, 1.33it/s] 22%|██▎ | 18/80 [00:13<00:46, 1.33it/s] 24%|██▍ | 19/80 [00:14<00:45, 1.33it/s] 25%|██▌ | 20/80 [00:15<00:45, 1.33it/s] 26%|██▋ | 21/80 [00:15<00:44, 1.33it/s] 28%|██▊ | 22/80 [00:16<00:43, 1.33it/s] 29%|██▉ | 23/80 [00:17<00:42, 1.33it/s] 30%|███ | 24/80 [00:18<00:42, 1.33it/s] 31%|███▏ | 25/80 [00:18<00:41, 1.33it/s] 32%|███▎ | 26/80 [00:19<00:40, 1.33it/s] 34%|███▍ | 27/80 [00:20<00:39, 1.33it/s] 35%|███▌ | 28/80 [00:21<00:39, 1.33it/s] 36%|███▋ | 29/80 [00:21<00:38, 1.33it/s] 38%|███▊ | 30/80 [00:22<00:37, 1.33it/s] 39%|███▉ | 31/80 [00:23<00:36, 1.33it/s] 40%|████ | 32/80 [00:24<00:36, 1.33it/s] 41%|████▏ | 33/80 [00:24<00:35, 1.33it/s] 42%|████▎ | 34/80 [00:25<00:34, 1.32it/s] 44%|████▍ | 35/80 [00:26<00:33, 1.32it/s] 45%|████▌ | 36/80 [00:27<00:33, 1.33it/s] 46%|████▋ | 37/80 [00:27<00:32, 1.33it/s] 48%|████▊ | 38/80 [00:28<00:31, 1.33it/s] 49%|████▉ | 39/80 [00:29<00:30, 1.32it/s] 50%|█████ | 40/80 [00:30<00:30, 1.32it/s] 51%|█████▏ | 41/80 [00:30<00:29, 1.32it/s] 52%|█████▎ | 42/80 [00:31<00:28, 1.32it/s] 54%|█████▍ | 43/80 [00:32<00:27, 1.32it/s] 55%|█████▌ | 44/80 [00:33<00:27, 1.32it/s] 56%|█████▋ | 45/80 [00:33<00:26, 1.32it/s] 57%|█████▊ | 46/80 [00:34<00:25, 1.32it/s] 59%|█████▉ | 47/80 [00:35<00:24, 1.32it/s] 60%|██████ | 48/80 [00:36<00:24, 1.32it/s] 61%|██████▏ | 49/80 [00:36<00:23, 1.32it/s] 62%|██████▎ | 50/80 [00:37<00:22, 1.32it/s] 64%|██████▍ | 51/80 [00:38<00:21, 1.32it/s] 65%|██████▌ | 52/80 [00:39<00:21, 1.32it/s] 66%|██████▋ | 53/80 [00:39<00:20, 1.32it/s] 68%|██████▊ | 54/80 [00:40<00:19, 1.32it/s] 69%|██████▉ | 55/80 [00:41<00:18, 1.32it/s] 70%|███████ | 56/80 [00:42<00:18, 1.32it/s] 71%|███████▏ | 57/80 [00:42<00:17, 1.32it/s] 72%|███████▎ | 58/80 [00:43<00:16, 1.32it/s] 74%|███████▍ | 59/80 [00:44<00:15, 1.32it/s] 75%|███████▌ | 60/80 [00:45<00:15, 1.32it/s] 76%|███████▋ | 61/80 [00:46<00:14, 1.32it/s] 78%|███████▊ | 62/80 [00:46<00:13, 1.32it/s] 79%|███████▉ | 63/80 [00:47<00:12, 1.32it/s] 80%|████████ | 64/80 [00:48<00:12, 1.32it/s] 81%|████████▏ | 65/80 [00:49<00:11, 1.32it/s] 82%|████████▎ | 66/80 [00:49<00:10, 1.32it/s] 84%|████████▍ | 67/80 [00:50<00:09, 1.32it/s] 85%|████████▌ | 68/80 [00:51<00:09, 1.32it/s] 86%|████████▋ | 69/80 [00:52<00:08, 1.32it/s] 88%|████████▊ | 70/80 [00:52<00:07, 1.32it/s] 89%|████████▉ | 71/80 [00:53<00:06, 1.32it/s] 90%|█████████ | 72/80 [00:54<00:06, 1.32it/s] 91%|█████████▏| 73/80 [00:55<00:05, 1.32it/s] 92%|█████████▎| 74/80 [00:55<00:04, 1.32it/s] 94%|█████████▍| 75/80 [00:56<00:03, 1.32it/s] 95%|█████████▌| 76/80 [00:57<00:03, 1.32it/s] 96%|█████████▋| 77/80 [00:58<00:02, 1.32it/s] 98%|█████████▊| 78/80 [00:58<00:01, 1.32it/s] 99%|█████████▉| 79/80 [00:59<00:00, 1.32it/s] 100%|██████████| 80/80 [01:00<00:00, 1.32it/s] 100%|██████████| 80/80 [01:00<00:00, 1.32it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDkwp5o33bksrfps7qsfhp2pkz6iStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1312
- prompt
- a cyberpunk taking a selfie in a divebar bathroom in the style of TOK
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar bathroom in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { width: 928, height: 1312, prompt: "a cyberpunk taking a selfie in a divebar bathroom in the style of TOK", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar bathroom in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar bathroom in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="a cyberpunk taking a selfie in a divebar bathroom in the style of TOK"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar bathroom in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-01T20:44:42.460592Z", "created_at": "2023-10-01T20:41:47.575168Z", "data_removed": false, "error": null, "id": "kwp5o33bksrfps7qsfhp2pkz6i", "input": { "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar bathroom in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 29670\nPrompt: a cyberpunk taking a selfie in a divebar bathroom in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:01<02:16, 1.72s/it]\n 2%|▎ | 2/80 [00:02<01:50, 1.41s/it]\n 4%|▍ | 3/80 [00:04<01:40, 1.31s/it]\n 5%|▌ | 4/80 [00:05<01:36, 1.26s/it]\n 6%|▋ | 5/80 [00:06<01:32, 1.24s/it]\n 8%|▊ | 6/80 [00:07<01:30, 1.23s/it]\n 9%|▉ | 7/80 [00:08<01:28, 1.22s/it]\n 10%|█ | 8/80 [00:10<01:27, 1.21s/it]\n 11%|█▏ | 9/80 [00:11<01:25, 1.21s/it]\n 12%|█▎ | 10/80 [00:12<01:24, 1.20s/it]\n 14%|█▍ | 11/80 [00:13<01:22, 1.20s/it]\n 15%|█▌ | 12/80 [00:14<01:21, 1.20s/it]\n 16%|█▋ | 13/80 [00:16<01:20, 1.20s/it]\n 18%|█▊ | 14/80 [00:17<01:19, 1.20s/it]\n 19%|█▉ | 15/80 [00:18<01:17, 1.20s/it]\n 20%|██ | 16/80 [00:19<01:16, 1.20s/it]\n 21%|██▏ | 17/80 [00:20<01:15, 1.20s/it]\n 22%|██▎ | 18/80 [00:22<01:14, 1.20s/it]\n 24%|██▍ | 19/80 [00:23<01:12, 1.20s/it]\n 25%|██▌ | 20/80 [00:24<01:11, 1.20s/it]\n 26%|██▋ | 21/80 [00:25<01:10, 1.20s/it]\n 28%|██▊ | 22/80 [00:26<01:09, 1.20s/it]\n 29%|██▉ | 23/80 [00:28<01:08, 1.20s/it]\n 30%|███ | 24/80 [00:29<01:07, 1.20s/it]\n 31%|███▏ | 25/80 [00:30<01:05, 1.20s/it]\n 32%|███▎ | 26/80 [00:31<01:04, 1.20s/it]\n 34%|███▍ | 27/80 [00:32<01:03, 1.20s/it]\n 35%|███▌ | 28/80 [00:34<01:02, 1.20s/it]\n 36%|███▋ | 29/80 [00:35<01:01, 1.20s/it]\n 38%|███▊ | 30/80 [00:36<00:59, 1.20s/it]\n 39%|███▉ | 31/80 [00:37<00:58, 1.20s/it]\n 40%|████ | 32/80 [00:38<00:57, 1.20s/it]\n 41%|████▏ | 33/80 [00:40<00:56, 1.20s/it]\n 42%|████▎ | 34/80 [00:41<00:55, 1.20s/it]\n 44%|████▍ | 35/80 [00:42<00:54, 1.20s/it]\n 45%|████▌ | 36/80 [00:43<00:52, 1.20s/it]\n 46%|████▋ | 37/80 [00:44<00:51, 1.20s/it]\n 48%|████▊ | 38/80 [00:46<00:50, 1.20s/it]\n 49%|████▉ | 39/80 [00:47<00:49, 1.20s/it]\n 50%|█████ | 40/80 [00:48<00:48, 1.20s/it]\n 51%|█████▏ | 41/80 [00:49<00:46, 1.20s/it]\n 52%|█████▎ | 42/80 [00:50<00:45, 1.20s/it]\n 54%|█████▍ | 43/80 [00:52<00:44, 1.21s/it]\n 55%|█████▌ | 44/80 [00:53<00:43, 1.21s/it]\n 56%|█████▋ | 45/80 [00:54<00:42, 1.20s/it]\n 57%|█████▊ | 46/80 [00:55<00:41, 1.21s/it]\n 59%|█████▉ | 47/80 [00:56<00:39, 1.21s/it]\n 60%|██████ | 48/80 [00:58<00:38, 1.21s/it]\n 61%|██████▏ | 49/80 [00:59<00:37, 1.21s/it]\n 62%|██████▎ | 50/80 [01:00<00:36, 1.21s/it]\n 64%|██████▍ | 51/80 [01:01<00:35, 1.21s/it]\n 65%|██████▌ | 52/80 [01:02<00:33, 1.21s/it]\n 66%|██████▋ | 53/80 [01:04<00:32, 1.21s/it]\n 68%|██████▊ | 54/80 [01:05<00:31, 1.21s/it]\n 69%|██████▉ | 55/80 [01:06<00:30, 1.21s/it]\n 70%|███████ | 56/80 [01:07<00:29, 1.21s/it]\n 71%|███████▏ | 57/80 [01:09<00:27, 1.21s/it]\n 72%|███████▎ | 58/80 [01:10<00:26, 1.21s/it]\n 74%|███████▍ | 59/80 [01:11<00:25, 1.21s/it]\n 75%|███████▌ | 60/80 [01:12<00:24, 1.21s/it]\n 76%|███████▋ | 61/80 [01:13<00:23, 1.21s/it]\n 78%|███████▊ | 62/80 [01:15<00:21, 1.21s/it]\n 79%|███████▉ | 63/80 [01:16<00:20, 1.21s/it]\n 80%|████████ | 64/80 [01:17<00:19, 1.21s/it]\n 81%|████████▏ | 65/80 [01:18<00:18, 1.21s/it]\n 82%|████████▎ | 66/80 [01:19<00:16, 1.21s/it]\n 84%|████████▍ | 67/80 [01:21<00:15, 1.21s/it]\n 85%|████████▌ | 68/80 [01:22<00:14, 1.21s/it]\n 86%|████████▋ | 69/80 [01:23<00:13, 1.21s/it]\n 88%|████████▊ | 70/80 [01:24<00:12, 1.21s/it]\n 89%|████████▉ | 71/80 [01:25<00:10, 1.21s/it]\n 90%|█████████ | 72/80 [01:27<00:09, 1.21s/it]\n 91%|█████████▏| 73/80 [01:28<00:08, 1.21s/it]\n 92%|█████████▎| 74/80 [01:29<00:07, 1.21s/it]\n 94%|█████████▍| 75/80 [01:30<00:06, 1.21s/it]\n 95%|█████████▌| 76/80 [01:32<00:04, 1.21s/it]\n 96%|█████████▋| 77/80 [01:33<00:03, 1.21s/it]\n 98%|█████████▊| 78/80 [01:34<00:02, 1.21s/it]\n 99%|█████████▉| 79/80 [01:35<00:01, 1.21s/it]\n100%|██████████| 80/80 [01:36<00:00, 1.21s/it]\n100%|██████████| 80/80 [01:36<00:00, 1.21s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:01<00:19, 1.02s/it]\n 10%|█ | 2/20 [00:02<00:18, 1.02s/it]\n 15%|█▌ | 3/20 [00:03<00:17, 1.01s/it]\n 20%|██ | 4/20 [00:04<00:16, 1.02s/it]\n 25%|██▌ | 5/20 [00:05<00:15, 1.01s/it]\n 30%|███ | 6/20 [00:06<00:14, 1.01s/it]\n 35%|███▌ | 7/20 [00:07<00:13, 1.01s/it]\n 40%|████ | 8/20 [00:08<00:12, 1.01s/it]\n 45%|████▌ | 9/20 [00:09<00:11, 1.02s/it]\n 50%|█████ | 10/20 [00:10<00:10, 1.01s/it]\n 55%|█████▌ | 11/20 [00:11<00:09, 1.01s/it]\n 60%|██████ | 12/20 [00:12<00:08, 1.01s/it]\n 65%|██████▌ | 13/20 [00:13<00:07, 1.02s/it]\n 70%|███████ | 14/20 [00:14<00:06, 1.01s/it]\n 75%|███████▌ | 15/20 [00:15<00:05, 1.01s/it]\n 80%|████████ | 16/20 [00:16<00:04, 1.01s/it]\n 85%|████████▌ | 17/20 [00:17<00:03, 1.01s/it]\n 90%|█████████ | 18/20 [00:18<00:02, 1.01s/it]\n 95%|█████████▌| 19/20 [00:19<00:01, 1.01s/it]\n100%|██████████| 20/20 [00:20<00:00, 1.02s/it]\n100%|██████████| 20/20 [00:20<00:00, 1.01s/it]\nPotential NSFW content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed.\nNSFW content detected in image 1", "metrics": { "predict_time": 123.114187, "total_time": 174.885424 }, "output": [ "https://pbxt.replicate.delivery/n7DMwJlXe6QXMynuVHH0UklyirpyTtb4jUeZyxXVMvm4w4pRA/out-0.png", "https://pbxt.replicate.delivery/w7QYd50BynqaBZVAVvqjCdmJLwjTHgbcsEJNrteKzg5cY80IA/out-2.png", "https://pbxt.replicate.delivery/cNJwNcpudirLKJ3ePdMQuOWDQm6xfC7uvcdY3G9KUhA6w4pRA/out-3.png" ], "started_at": "2023-10-01T20:42:39.346405Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kwp5o33bksrfps7qsfhp2pkz6i", "cancel": "https://api.replicate.com/v1/predictions/kwp5o33bksrfps7qsfhp2pkz6i/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 29670 Prompt: a cyberpunk taking a selfie in a divebar bathroom in the style of <s0><s1> txt2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:01<02:16, 1.72s/it] 2%|▎ | 2/80 [00:02<01:50, 1.41s/it] 4%|▍ | 3/80 [00:04<01:40, 1.31s/it] 5%|▌ | 4/80 [00:05<01:36, 1.26s/it] 6%|▋ | 5/80 [00:06<01:32, 1.24s/it] 8%|▊ | 6/80 [00:07<01:30, 1.23s/it] 9%|▉ | 7/80 [00:08<01:28, 1.22s/it] 10%|█ | 8/80 [00:10<01:27, 1.21s/it] 11%|█▏ | 9/80 [00:11<01:25, 1.21s/it] 12%|█▎ | 10/80 [00:12<01:24, 1.20s/it] 14%|█▍ | 11/80 [00:13<01:22, 1.20s/it] 15%|█▌ | 12/80 [00:14<01:21, 1.20s/it] 16%|█▋ | 13/80 [00:16<01:20, 1.20s/it] 18%|█▊ | 14/80 [00:17<01:19, 1.20s/it] 19%|█▉ | 15/80 [00:18<01:17, 1.20s/it] 20%|██ | 16/80 [00:19<01:16, 1.20s/it] 21%|██▏ | 17/80 [00:20<01:15, 1.20s/it] 22%|██▎ | 18/80 [00:22<01:14, 1.20s/it] 24%|██▍ | 19/80 [00:23<01:12, 1.20s/it] 25%|██▌ | 20/80 [00:24<01:11, 1.20s/it] 26%|██▋ | 21/80 [00:25<01:10, 1.20s/it] 28%|██▊ | 22/80 [00:26<01:09, 1.20s/it] 29%|██▉ | 23/80 [00:28<01:08, 1.20s/it] 30%|███ | 24/80 [00:29<01:07, 1.20s/it] 31%|███▏ | 25/80 [00:30<01:05, 1.20s/it] 32%|███▎ | 26/80 [00:31<01:04, 1.20s/it] 34%|███▍ | 27/80 [00:32<01:03, 1.20s/it] 35%|███▌ | 28/80 [00:34<01:02, 1.20s/it] 36%|███▋ | 29/80 [00:35<01:01, 1.20s/it] 38%|███▊ | 30/80 [00:36<00:59, 1.20s/it] 39%|███▉ | 31/80 [00:37<00:58, 1.20s/it] 40%|████ | 32/80 [00:38<00:57, 1.20s/it] 41%|████▏ | 33/80 [00:40<00:56, 1.20s/it] 42%|████▎ | 34/80 [00:41<00:55, 1.20s/it] 44%|████▍ | 35/80 [00:42<00:54, 1.20s/it] 45%|████▌ | 36/80 [00:43<00:52, 1.20s/it] 46%|████▋ | 37/80 [00:44<00:51, 1.20s/it] 48%|████▊ | 38/80 [00:46<00:50, 1.20s/it] 49%|████▉ | 39/80 [00:47<00:49, 1.20s/it] 50%|█████ | 40/80 [00:48<00:48, 1.20s/it] 51%|█████▏ | 41/80 [00:49<00:46, 1.20s/it] 52%|█████▎ | 42/80 [00:50<00:45, 1.20s/it] 54%|█████▍ | 43/80 [00:52<00:44, 1.21s/it] 55%|█████▌ | 44/80 [00:53<00:43, 1.21s/it] 56%|█████▋ | 45/80 [00:54<00:42, 1.20s/it] 57%|█████▊ | 46/80 [00:55<00:41, 1.21s/it] 59%|█████▉ | 47/80 [00:56<00:39, 1.21s/it] 60%|██████ | 48/80 [00:58<00:38, 1.21s/it] 61%|██████▏ | 49/80 [00:59<00:37, 1.21s/it] 62%|██████▎ | 50/80 [01:00<00:36, 1.21s/it] 64%|██████▍ | 51/80 [01:01<00:35, 1.21s/it] 65%|██████▌ | 52/80 [01:02<00:33, 1.21s/it] 66%|██████▋ | 53/80 [01:04<00:32, 1.21s/it] 68%|██████▊ | 54/80 [01:05<00:31, 1.21s/it] 69%|██████▉ | 55/80 [01:06<00:30, 1.21s/it] 70%|███████ | 56/80 [01:07<00:29, 1.21s/it] 71%|███████▏ | 57/80 [01:09<00:27, 1.21s/it] 72%|███████▎ | 58/80 [01:10<00:26, 1.21s/it] 74%|███████▍ | 59/80 [01:11<00:25, 1.21s/it] 75%|███████▌ | 60/80 [01:12<00:24, 1.21s/it] 76%|███████▋ | 61/80 [01:13<00:23, 1.21s/it] 78%|███████▊ | 62/80 [01:15<00:21, 1.21s/it] 79%|███████▉ | 63/80 [01:16<00:20, 1.21s/it] 80%|████████ | 64/80 [01:17<00:19, 1.21s/it] 81%|████████▏ | 65/80 [01:18<00:18, 1.21s/it] 82%|████████▎ | 66/80 [01:19<00:16, 1.21s/it] 84%|████████▍ | 67/80 [01:21<00:15, 1.21s/it] 85%|████████▌ | 68/80 [01:22<00:14, 1.21s/it] 86%|████████▋ | 69/80 [01:23<00:13, 1.21s/it] 88%|████████▊ | 70/80 [01:24<00:12, 1.21s/it] 89%|████████▉ | 71/80 [01:25<00:10, 1.21s/it] 90%|█████████ | 72/80 [01:27<00:09, 1.21s/it] 91%|█████████▏| 73/80 [01:28<00:08, 1.21s/it] 92%|█████████▎| 74/80 [01:29<00:07, 1.21s/it] 94%|█████████▍| 75/80 [01:30<00:06, 1.21s/it] 95%|█████████▌| 76/80 [01:32<00:04, 1.21s/it] 96%|█████████▋| 77/80 [01:33<00:03, 1.21s/it] 98%|█████████▊| 78/80 [01:34<00:02, 1.21s/it] 99%|█████████▉| 79/80 [01:35<00:01, 1.21s/it] 100%|██████████| 80/80 [01:36<00:00, 1.21s/it] 100%|██████████| 80/80 [01:36<00:00, 1.21s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:01<00:19, 1.02s/it] 10%|█ | 2/20 [00:02<00:18, 1.02s/it] 15%|█▌ | 3/20 [00:03<00:17, 1.01s/it] 20%|██ | 4/20 [00:04<00:16, 1.02s/it] 25%|██▌ | 5/20 [00:05<00:15, 1.01s/it] 30%|███ | 6/20 [00:06<00:14, 1.01s/it] 35%|███▌ | 7/20 [00:07<00:13, 1.01s/it] 40%|████ | 8/20 [00:08<00:12, 1.01s/it] 45%|████▌ | 9/20 [00:09<00:11, 1.02s/it] 50%|█████ | 10/20 [00:10<00:10, 1.01s/it] 55%|█████▌ | 11/20 [00:11<00:09, 1.01s/it] 60%|██████ | 12/20 [00:12<00:08, 1.01s/it] 65%|██████▌ | 13/20 [00:13<00:07, 1.02s/it] 70%|███████ | 14/20 [00:14<00:06, 1.01s/it] 75%|███████▌ | 15/20 [00:15<00:05, 1.01s/it] 80%|████████ | 16/20 [00:16<00:04, 1.01s/it] 85%|████████▌ | 17/20 [00:17<00:03, 1.01s/it] 90%|█████████ | 18/20 [00:18<00:02, 1.01s/it] 95%|█████████▌| 19/20 [00:19<00:01, 1.01s/it] 100%|██████████| 20/20 [00:20<00:00, 1.02s/it] 100%|██████████| 20/20 [00:20<00:00, 1.01s/it] Potential NSFW content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed. NSFW content detected in image 1
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDjlrougtbnchklmunptbddfkmryStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1312
- prompt
- cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of TOK
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 928, "height": 1312, "prompt": "cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { width: 928, height: 1312, prompt: "cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of TOK", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "width": 928, "height": 1312, "prompt": "cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "width": 928, "height": 1312, "prompt": "cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of TOK"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 928, "height": 1312, "prompt": "cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-01T20:56:08.314847Z", "created_at": "2023-10-01T20:53:07.813434Z", "data_removed": false, "error": null, "id": "jlrougtbnchklmunptbddfkmry", "input": { "width": 928, "height": 1312, "prompt": "cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 50436\nPrompt: cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:01<02:17, 1.74s/it]\n 2%|▎ | 2/80 [00:02<01:50, 1.41s/it]\n 4%|▍ | 3/80 [00:04<01:40, 1.31s/it]\n 5%|▌ | 4/80 [00:05<01:36, 1.26s/it]\n 6%|▋ | 5/80 [00:06<01:32, 1.24s/it]\n 8%|▊ | 6/80 [00:07<01:30, 1.22s/it]\n 9%|▉ | 7/80 [00:08<01:28, 1.21s/it]\n 10%|█ | 8/80 [00:10<01:26, 1.21s/it]\n 11%|█▏ | 9/80 [00:11<01:25, 1.20s/it]\n 12%|█▎ | 10/80 [00:12<01:24, 1.20s/it]\n 14%|█▍ | 11/80 [00:13<01:22, 1.20s/it]\n 15%|█▌ | 12/80 [00:14<01:21, 1.20s/it]\n 16%|█▋ | 13/80 [00:16<01:20, 1.20s/it]\n 18%|█▊ | 14/80 [00:17<01:18, 1.20s/it]\n 19%|█▉ | 15/80 [00:18<01:17, 1.20s/it]\n 20%|██ | 16/80 [00:19<01:16, 1.20s/it]\n 21%|██▏ | 17/80 [00:20<01:15, 1.20s/it]\n 22%|██▎ | 18/80 [00:22<01:14, 1.20s/it]\n 24%|██▍ | 19/80 [00:23<01:13, 1.20s/it]\n 25%|██▌ | 20/80 [00:24<01:11, 1.20s/it]\n 26%|██▋ | 21/80 [00:25<01:10, 1.20s/it]\n 28%|██▊ | 22/80 [00:26<01:09, 1.20s/it]\n 29%|██▉ | 23/80 [00:28<01:08, 1.20s/it]\n 30%|███ | 24/80 [00:29<01:07, 1.20s/it]\n 31%|███▏ | 25/80 [00:30<01:05, 1.20s/it]\n 32%|███▎ | 26/80 [00:31<01:04, 1.20s/it]\n 34%|███▍ | 27/80 [00:32<01:03, 1.20s/it]\n 35%|███▌ | 28/80 [00:34<01:02, 1.20s/it]\n 36%|███▋ | 29/80 [00:35<01:01, 1.20s/it]\n 38%|███▊ | 30/80 [00:36<01:00, 1.20s/it]\n 39%|███▉ | 31/80 [00:37<00:58, 1.20s/it]\n 40%|████ | 32/80 [00:38<00:57, 1.20s/it]\n 41%|████▏ | 33/80 [00:40<00:56, 1.20s/it]\n 42%|████▎ | 34/80 [00:41<00:55, 1.20s/it]\n 44%|████▍ | 35/80 [00:42<00:54, 1.20s/it]\n 45%|████▌ | 36/80 [00:43<00:52, 1.20s/it]\n 46%|████▋ | 37/80 [00:44<00:51, 1.21s/it]\n 48%|████▊ | 38/80 [00:46<00:50, 1.20s/it]\n 49%|████▉ | 39/80 [00:47<00:49, 1.20s/it]\n 50%|█████ | 40/80 [00:48<00:48, 1.20s/it]\n 51%|█████▏ | 41/80 [00:49<00:47, 1.21s/it]\n 52%|█████▎ | 42/80 [00:50<00:45, 1.21s/it]\n 54%|█████▍ | 43/80 [00:52<00:44, 1.21s/it]\n 55%|█████▌ | 44/80 [00:53<00:43, 1.21s/it]\n 56%|█████▋ | 45/80 [00:54<00:42, 1.21s/it]\n 57%|█████▊ | 46/80 [00:55<00:41, 1.21s/it]\n 59%|█████▉ | 47/80 [00:56<00:39, 1.21s/it]\n 60%|██████ | 48/80 [00:58<00:38, 1.21s/it]\n 61%|██████▏ | 49/80 [00:59<00:37, 1.21s/it]\n 62%|██████▎ | 50/80 [01:00<00:36, 1.21s/it]\n 64%|██████▍ | 51/80 [01:01<00:35, 1.21s/it]\n 65%|██████▌ | 52/80 [01:02<00:33, 1.21s/it]\n 66%|██████▋ | 53/80 [01:04<00:32, 1.21s/it]\n 68%|██████▊ | 54/80 [01:05<00:31, 1.21s/it]\n 69%|██████▉ | 55/80 [01:06<00:30, 1.21s/it]\n 70%|███████ | 56/80 [01:07<00:29, 1.21s/it]\n 71%|███████▏ | 57/80 [01:09<00:27, 1.21s/it]\n 72%|███████▎ | 58/80 [01:10<00:26, 1.21s/it]\n 74%|███████▍ | 59/80 [01:11<00:25, 1.21s/it]\n 75%|███████▌ | 60/80 [01:12<00:24, 1.21s/it]\n 76%|███████▋ | 61/80 [01:13<00:22, 1.21s/it]\n 78%|███████▊ | 62/80 [01:15<00:21, 1.21s/it]\n 79%|███████▉ | 63/80 [01:16<00:20, 1.21s/it]\n 80%|████████ | 64/80 [01:17<00:19, 1.21s/it]\n 81%|████████▏ | 65/80 [01:18<00:18, 1.21s/it]\n 82%|████████▎ | 66/80 [01:19<00:16, 1.21s/it]\n 84%|████████▍ | 67/80 [01:21<00:15, 1.21s/it]\n 85%|████████▌ | 68/80 [01:22<00:14, 1.21s/it]\n 86%|████████▋ | 69/80 [01:23<00:13, 1.21s/it]\n 88%|████████▊ | 70/80 [01:24<00:12, 1.21s/it]\n 89%|████████▉ | 71/80 [01:25<00:10, 1.21s/it]\n 90%|█████████ | 72/80 [01:27<00:09, 1.21s/it]\n 91%|█████████▏| 73/80 [01:28<00:08, 1.21s/it]\n 92%|█████████▎| 74/80 [01:29<00:07, 1.21s/it]\n 94%|█████████▍| 75/80 [01:30<00:06, 1.21s/it]\n 95%|█████████▌| 76/80 [01:31<00:04, 1.21s/it]\n 96%|█████████▋| 77/80 [01:33<00:03, 1.21s/it]\n 98%|█████████▊| 78/80 [01:34<00:02, 1.21s/it]\n 99%|█████████▉| 79/80 [01:35<00:01, 1.21s/it]\n100%|██████████| 80/80 [01:36<00:00, 1.21s/it]\n100%|██████████| 80/80 [01:36<00:00, 1.21s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:01<00:19, 1.02s/it]\n 10%|█ | 2/20 [00:02<00:18, 1.01s/it]\n 15%|█▌ | 3/20 [00:03<00:17, 1.02s/it]\n 20%|██ | 4/20 [00:04<00:16, 1.02s/it]\n 25%|██▌ | 5/20 [00:05<00:15, 1.02s/it]\n 30%|███ | 6/20 [00:06<00:14, 1.02s/it]\n 35%|███▌ | 7/20 [00:07<00:13, 1.02s/it]\n 40%|████ | 8/20 [00:08<00:12, 1.01s/it]\n 45%|████▌ | 9/20 [00:09<00:11, 1.01s/it]\n 50%|█████ | 10/20 [00:10<00:10, 1.01s/it]\n 55%|█████▌ | 11/20 [00:11<00:09, 1.01s/it]\n 60%|██████ | 12/20 [00:12<00:08, 1.01s/it]\n 65%|██████▌ | 13/20 [00:13<00:07, 1.01s/it]\n 70%|███████ | 14/20 [00:14<00:06, 1.02s/it]\n 75%|███████▌ | 15/20 [00:15<00:05, 1.01s/it]\n 80%|████████ | 16/20 [00:16<00:04, 1.01s/it]\n 85%|████████▌ | 17/20 [00:17<00:03, 1.01s/it]\n 90%|█████████ | 18/20 [00:18<00:02, 1.01s/it]\n 95%|█████████▌| 19/20 [00:19<00:01, 1.01s/it]\n100%|██████████| 20/20 [00:20<00:00, 1.01s/it]\n100%|██████████| 20/20 [00:20<00:00, 1.01s/it]", "metrics": { "predict_time": 124.675522, "total_time": 180.501413 }, "output": [ "https://pbxt.replicate.delivery/Od7ZfhRUcYQ7IS3CO3x6vI1RmF31YYsaNW6UZBV2KiZyd80IA/out-0.png", "https://pbxt.replicate.delivery/hdqbpdLdhIJDKxJGdsnNyhsYSVFuNiRgocXwOA5O53l5Oe0IA/out-1.png", "https://pbxt.replicate.delivery/yYg7l4bbi5bRERGeyvebQ0ER5WftEJx1YUDvxAUU8NyP3xTjA/out-2.png", "https://pbxt.replicate.delivery/TnEk6pl9lt7EBNAjTuJelLVtL30rdA4yAtV2Pp0ldfBn74pRA/out-3.png" ], "started_at": "2023-10-01T20:54:03.639325Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jlrougtbnchklmunptbddfkmry", "cancel": "https://api.replicate.com/v1/predictions/jlrougtbnchklmunptbddfkmry/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 50436 Prompt: cyberpunks taking selfies in a divebar bathroom that’s covered with graffiti in the style of <s0><s1> txt2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:01<02:17, 1.74s/it] 2%|▎ | 2/80 [00:02<01:50, 1.41s/it] 4%|▍ | 3/80 [00:04<01:40, 1.31s/it] 5%|▌ | 4/80 [00:05<01:36, 1.26s/it] 6%|▋ | 5/80 [00:06<01:32, 1.24s/it] 8%|▊ | 6/80 [00:07<01:30, 1.22s/it] 9%|▉ | 7/80 [00:08<01:28, 1.21s/it] 10%|█ | 8/80 [00:10<01:26, 1.21s/it] 11%|█▏ | 9/80 [00:11<01:25, 1.20s/it] 12%|█▎ | 10/80 [00:12<01:24, 1.20s/it] 14%|█▍ | 11/80 [00:13<01:22, 1.20s/it] 15%|█▌ | 12/80 [00:14<01:21, 1.20s/it] 16%|█▋ | 13/80 [00:16<01:20, 1.20s/it] 18%|█▊ | 14/80 [00:17<01:18, 1.20s/it] 19%|█▉ | 15/80 [00:18<01:17, 1.20s/it] 20%|██ | 16/80 [00:19<01:16, 1.20s/it] 21%|██▏ | 17/80 [00:20<01:15, 1.20s/it] 22%|██▎ | 18/80 [00:22<01:14, 1.20s/it] 24%|██▍ | 19/80 [00:23<01:13, 1.20s/it] 25%|██▌ | 20/80 [00:24<01:11, 1.20s/it] 26%|██▋ | 21/80 [00:25<01:10, 1.20s/it] 28%|██▊ | 22/80 [00:26<01:09, 1.20s/it] 29%|██▉ | 23/80 [00:28<01:08, 1.20s/it] 30%|███ | 24/80 [00:29<01:07, 1.20s/it] 31%|███▏ | 25/80 [00:30<01:05, 1.20s/it] 32%|███▎ | 26/80 [00:31<01:04, 1.20s/it] 34%|███▍ | 27/80 [00:32<01:03, 1.20s/it] 35%|███▌ | 28/80 [00:34<01:02, 1.20s/it] 36%|███▋ | 29/80 [00:35<01:01, 1.20s/it] 38%|███▊ | 30/80 [00:36<01:00, 1.20s/it] 39%|███▉ | 31/80 [00:37<00:58, 1.20s/it] 40%|████ | 32/80 [00:38<00:57, 1.20s/it] 41%|████▏ | 33/80 [00:40<00:56, 1.20s/it] 42%|████▎ | 34/80 [00:41<00:55, 1.20s/it] 44%|████▍ | 35/80 [00:42<00:54, 1.20s/it] 45%|████▌ | 36/80 [00:43<00:52, 1.20s/it] 46%|████▋ | 37/80 [00:44<00:51, 1.21s/it] 48%|████▊ | 38/80 [00:46<00:50, 1.20s/it] 49%|████▉ | 39/80 [00:47<00:49, 1.20s/it] 50%|█████ | 40/80 [00:48<00:48, 1.20s/it] 51%|█████▏ | 41/80 [00:49<00:47, 1.21s/it] 52%|█████▎ | 42/80 [00:50<00:45, 1.21s/it] 54%|█████▍ | 43/80 [00:52<00:44, 1.21s/it] 55%|█████▌ | 44/80 [00:53<00:43, 1.21s/it] 56%|█████▋ | 45/80 [00:54<00:42, 1.21s/it] 57%|█████▊ | 46/80 [00:55<00:41, 1.21s/it] 59%|█████▉ | 47/80 [00:56<00:39, 1.21s/it] 60%|██████ | 48/80 [00:58<00:38, 1.21s/it] 61%|██████▏ | 49/80 [00:59<00:37, 1.21s/it] 62%|██████▎ | 50/80 [01:00<00:36, 1.21s/it] 64%|██████▍ | 51/80 [01:01<00:35, 1.21s/it] 65%|██████▌ | 52/80 [01:02<00:33, 1.21s/it] 66%|██████▋ | 53/80 [01:04<00:32, 1.21s/it] 68%|██████▊ | 54/80 [01:05<00:31, 1.21s/it] 69%|██████▉ | 55/80 [01:06<00:30, 1.21s/it] 70%|███████ | 56/80 [01:07<00:29, 1.21s/it] 71%|███████▏ | 57/80 [01:09<00:27, 1.21s/it] 72%|███████▎ | 58/80 [01:10<00:26, 1.21s/it] 74%|███████▍ | 59/80 [01:11<00:25, 1.21s/it] 75%|███████▌ | 60/80 [01:12<00:24, 1.21s/it] 76%|███████▋ | 61/80 [01:13<00:22, 1.21s/it] 78%|███████▊ | 62/80 [01:15<00:21, 1.21s/it] 79%|███████▉ | 63/80 [01:16<00:20, 1.21s/it] 80%|████████ | 64/80 [01:17<00:19, 1.21s/it] 81%|████████▏ | 65/80 [01:18<00:18, 1.21s/it] 82%|████████▎ | 66/80 [01:19<00:16, 1.21s/it] 84%|████████▍ | 67/80 [01:21<00:15, 1.21s/it] 85%|████████▌ | 68/80 [01:22<00:14, 1.21s/it] 86%|████████▋ | 69/80 [01:23<00:13, 1.21s/it] 88%|████████▊ | 70/80 [01:24<00:12, 1.21s/it] 89%|████████▉ | 71/80 [01:25<00:10, 1.21s/it] 90%|█████████ | 72/80 [01:27<00:09, 1.21s/it] 91%|█████████▏| 73/80 [01:28<00:08, 1.21s/it] 92%|█████████▎| 74/80 [01:29<00:07, 1.21s/it] 94%|█████████▍| 75/80 [01:30<00:06, 1.21s/it] 95%|█████████▌| 76/80 [01:31<00:04, 1.21s/it] 96%|█████████▋| 77/80 [01:33<00:03, 1.21s/it] 98%|█████████▊| 78/80 [01:34<00:02, 1.21s/it] 99%|█████████▉| 79/80 [01:35<00:01, 1.21s/it] 100%|██████████| 80/80 [01:36<00:00, 1.21s/it] 100%|██████████| 80/80 [01:36<00:00, 1.21s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:01<00:19, 1.02s/it] 10%|█ | 2/20 [00:02<00:18, 1.01s/it] 15%|█▌ | 3/20 [00:03<00:17, 1.02s/it] 20%|██ | 4/20 [00:04<00:16, 1.02s/it] 25%|██▌ | 5/20 [00:05<00:15, 1.02s/it] 30%|███ | 6/20 [00:06<00:14, 1.02s/it] 35%|███▌ | 7/20 [00:07<00:13, 1.02s/it] 40%|████ | 8/20 [00:08<00:12, 1.01s/it] 45%|████▌ | 9/20 [00:09<00:11, 1.01s/it] 50%|█████ | 10/20 [00:10<00:10, 1.01s/it] 55%|█████▌ | 11/20 [00:11<00:09, 1.01s/it] 60%|██████ | 12/20 [00:12<00:08, 1.01s/it] 65%|██████▌ | 13/20 [00:13<00:07, 1.01s/it] 70%|███████ | 14/20 [00:14<00:06, 1.02s/it] 75%|███████▌ | 15/20 [00:15<00:05, 1.01s/it] 80%|████████ | 16/20 [00:16<00:04, 1.01s/it] 85%|████████▌ | 17/20 [00:17<00:03, 1.01s/it] 90%|█████████ | 18/20 [00:18<00:02, 1.01s/it] 95%|█████████▌| 19/20 [00:19<00:01, 1.01s/it] 100%|██████████| 20/20 [00:20<00:00, 1.01s/it] 100%|██████████| 20/20 [00:20<00:00, 1.01s/it]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDj65opmlbyl4zijb55i3iffcc4iStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", width: 928, height: 1232, prompt: "Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-02T17:56:43.973335Z", "created_at": "2023-10-02T17:54:14.204284Z", "data_removed": false, "error": null, "id": "j65opmlbyl4zijb55i3iffcc4i", "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 7410\nPrompt: Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:58, 1.01it/s]\n 3%|▎ | 2/60 [00:01<00:57, 1.01it/s]\n 5%|▌ | 3/60 [00:02<00:56, 1.01it/s]\n 7%|▋ | 4/60 [00:03<00:55, 1.01it/s]\n 8%|▊ | 5/60 [00:04<00:54, 1.01it/s]\n 10%|█ | 6/60 [00:05<00:53, 1.01it/s]\n 12%|█▏ | 7/60 [00:06<00:52, 1.01it/s]\n 13%|█▎ | 8/60 [00:07<00:51, 1.00it/s]\n 15%|█▌ | 9/60 [00:08<00:50, 1.00it/s]\n 17%|█▋ | 10/60 [00:09<00:49, 1.01it/s]\n 18%|█▊ | 11/60 [00:10<00:48, 1.01it/s]\n 20%|██ | 12/60 [00:11<00:47, 1.01it/s]\n 22%|██▏ | 13/60 [00:12<00:46, 1.01it/s]\n 23%|██▎ | 14/60 [00:13<00:45, 1.01it/s]\n 25%|██▌ | 15/60 [00:14<00:44, 1.01it/s]\n 27%|██▋ | 16/60 [00:15<00:43, 1.01it/s]\n 28%|██▊ | 17/60 [00:16<00:42, 1.01it/s]\n 30%|███ | 18/60 [00:17<00:41, 1.01it/s]\n 32%|███▏ | 19/60 [00:18<00:40, 1.01it/s]\n 33%|███▎ | 20/60 [00:19<00:39, 1.01it/s]\n 35%|███▌ | 21/60 [00:20<00:38, 1.01it/s]\n 37%|███▋ | 22/60 [00:21<00:37, 1.01it/s]\n 38%|███▊ | 23/60 [00:22<00:36, 1.01it/s]\n 40%|████ | 24/60 [00:23<00:35, 1.00it/s]\n 42%|████▏ | 25/60 [00:24<00:34, 1.00it/s]\n 43%|████▎ | 26/60 [00:25<00:33, 1.00it/s]\n 45%|████▌ | 27/60 [00:26<00:32, 1.00it/s]\n 47%|████▋ | 28/60 [00:27<00:31, 1.00it/s]\n 48%|████▊ | 29/60 [00:28<00:30, 1.00it/s]\n 50%|█████ | 30/60 [00:29<00:29, 1.00it/s]\n 52%|█████▏ | 31/60 [00:30<00:28, 1.00it/s]\n 53%|█████▎ | 32/60 [00:31<00:27, 1.00it/s]\n 55%|█████▌ | 33/60 [00:32<00:26, 1.00it/s]\n 57%|█████▋ | 34/60 [00:33<00:25, 1.00it/s]\n 58%|█████▊ | 35/60 [00:34<00:24, 1.00it/s]\n 60%|██████ | 36/60 [00:35<00:23, 1.00it/s]\n 62%|██████▏ | 37/60 [00:36<00:22, 1.00it/s]\n 63%|██████▎ | 38/60 [00:37<00:21, 1.00it/s]\n 65%|██████▌ | 39/60 [00:38<00:20, 1.00it/s]\n 67%|██████▋ | 40/60 [00:39<00:19, 1.00it/s]\n 68%|██████▊ | 41/60 [00:40<00:18, 1.00it/s]\n 70%|███████ | 42/60 [00:41<00:18, 1.00s/it]\n 72%|███████▏ | 43/60 [00:42<00:17, 1.00s/it]\n 73%|███████▎ | 44/60 [00:43<00:16, 1.00s/it]\n 75%|███████▌ | 45/60 [00:44<00:15, 1.00s/it]\n 77%|███████▋ | 46/60 [00:45<00:14, 1.00s/it]\n 78%|███████▊ | 47/60 [00:46<00:13, 1.00s/it]\n 80%|████████ | 48/60 [00:47<00:12, 1.00s/it]\n 82%|████████▏ | 49/60 [00:48<00:11, 1.00s/it]\n 83%|████████▎ | 50/60 [00:49<00:10, 1.00s/it]\n 85%|████████▌ | 51/60 [00:50<00:09, 1.00s/it]\n 87%|████████▋ | 52/60 [00:51<00:08, 1.00s/it]\n 88%|████████▊ | 53/60 [00:52<00:07, 1.00s/it]\n 90%|█████████ | 54/60 [00:53<00:06, 1.00s/it]\n 92%|█████████▏| 55/60 [00:54<00:05, 1.00s/it]\n 93%|█████████▎| 56/60 [00:55<00:04, 1.00s/it]\n 95%|█████████▌| 57/60 [00:56<00:03, 1.00s/it]\n 97%|█████████▋| 58/60 [00:57<00:02, 1.00s/it]\n 98%|█████████▊| 59/60 [00:58<00:01, 1.00s/it]\n100%|██████████| 60/60 [00:59<00:00, 1.00s/it]\n100%|██████████| 60/60 [00:59<00:00, 1.00it/s]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.23it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.23it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.23it/s]\n 20%|██ | 4/20 [00:03<00:12, 1.23it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.23it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.23it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.23it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.23it/s]\n 45%|████▌ | 9/20 [00:07<00:08, 1.23it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.23it/s]\n 55%|█████▌ | 11/20 [00:08<00:07, 1.23it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.23it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.23it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.23it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.23it/s]\n 80%|████████ | 16/20 [00:12<00:03, 1.23it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.23it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.23it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.23it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.23it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.23it/s]", "metrics": { "predict_time": 83.797337, "total_time": 149.769051 }, "output": [ "https://pbxt.replicate.delivery/q4Nq6O7wnuaKN1BCFhFtvJQ8X8kvxUV9XiXeTIB6PyeZZLqRA/out-0.png", "https://pbxt.replicate.delivery/gdZ6YKouveV2B6Qp9iXsfTS4HBVOVQR1JtTShLj4ePq1yWUjA/out-1.png", "https://pbxt.replicate.delivery/u34vkr9KHKoJKJjEv2pBpWO5Qo3iOWqZhztqCJorcj3W2iaE/out-2.png", "https://pbxt.replicate.delivery/Gv8NevPXffGjzJoK1oc2KceVLdz3jD3mVCWyavF5Ld2sltoGB/out-3.png" ], "started_at": "2023-10-02T17:55:20.175998Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/j65opmlbyl4zijb55i3iffcc4i", "cancel": "https://api.replicate.com/v1/predictions/j65opmlbyl4zijb55i3iffcc4i/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 7410 Prompt: Cyborg camouflaged in graffiti in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:58, 1.01it/s] 3%|▎ | 2/60 [00:01<00:57, 1.01it/s] 5%|▌ | 3/60 [00:02<00:56, 1.01it/s] 7%|▋ | 4/60 [00:03<00:55, 1.01it/s] 8%|▊ | 5/60 [00:04<00:54, 1.01it/s] 10%|█ | 6/60 [00:05<00:53, 1.01it/s] 12%|█▏ | 7/60 [00:06<00:52, 1.01it/s] 13%|█▎ | 8/60 [00:07<00:51, 1.00it/s] 15%|█▌ | 9/60 [00:08<00:50, 1.00it/s] 17%|█▋ | 10/60 [00:09<00:49, 1.01it/s] 18%|█▊ | 11/60 [00:10<00:48, 1.01it/s] 20%|██ | 12/60 [00:11<00:47, 1.01it/s] 22%|██▏ | 13/60 [00:12<00:46, 1.01it/s] 23%|██▎ | 14/60 [00:13<00:45, 1.01it/s] 25%|██▌ | 15/60 [00:14<00:44, 1.01it/s] 27%|██▋ | 16/60 [00:15<00:43, 1.01it/s] 28%|██▊ | 17/60 [00:16<00:42, 1.01it/s] 30%|███ | 18/60 [00:17<00:41, 1.01it/s] 32%|███▏ | 19/60 [00:18<00:40, 1.01it/s] 33%|███▎ | 20/60 [00:19<00:39, 1.01it/s] 35%|███▌ | 21/60 [00:20<00:38, 1.01it/s] 37%|███▋ | 22/60 [00:21<00:37, 1.01it/s] 38%|███▊ | 23/60 [00:22<00:36, 1.01it/s] 40%|████ | 24/60 [00:23<00:35, 1.00it/s] 42%|████▏ | 25/60 [00:24<00:34, 1.00it/s] 43%|████▎ | 26/60 [00:25<00:33, 1.00it/s] 45%|████▌ | 27/60 [00:26<00:32, 1.00it/s] 47%|████▋ | 28/60 [00:27<00:31, 1.00it/s] 48%|████▊ | 29/60 [00:28<00:30, 1.00it/s] 50%|█████ | 30/60 [00:29<00:29, 1.00it/s] 52%|█████▏ | 31/60 [00:30<00:28, 1.00it/s] 53%|█████▎ | 32/60 [00:31<00:27, 1.00it/s] 55%|█████▌ | 33/60 [00:32<00:26, 1.00it/s] 57%|█████▋ | 34/60 [00:33<00:25, 1.00it/s] 58%|█████▊ | 35/60 [00:34<00:24, 1.00it/s] 60%|██████ | 36/60 [00:35<00:23, 1.00it/s] 62%|██████▏ | 37/60 [00:36<00:22, 1.00it/s] 63%|██████▎ | 38/60 [00:37<00:21, 1.00it/s] 65%|██████▌ | 39/60 [00:38<00:20, 1.00it/s] 67%|██████▋ | 40/60 [00:39<00:19, 1.00it/s] 68%|██████▊ | 41/60 [00:40<00:18, 1.00it/s] 70%|███████ | 42/60 [00:41<00:18, 1.00s/it] 72%|███████▏ | 43/60 [00:42<00:17, 1.00s/it] 73%|███████▎ | 44/60 [00:43<00:16, 1.00s/it] 75%|███████▌ | 45/60 [00:44<00:15, 1.00s/it] 77%|███████▋ | 46/60 [00:45<00:14, 1.00s/it] 78%|███████▊ | 47/60 [00:46<00:13, 1.00s/it] 80%|████████ | 48/60 [00:47<00:12, 1.00s/it] 82%|████████▏ | 49/60 [00:48<00:11, 1.00s/it] 83%|████████▎ | 50/60 [00:49<00:10, 1.00s/it] 85%|████████▌ | 51/60 [00:50<00:09, 1.00s/it] 87%|████████▋ | 52/60 [00:51<00:08, 1.00s/it] 88%|████████▊ | 53/60 [00:52<00:07, 1.00s/it] 90%|█████████ | 54/60 [00:53<00:06, 1.00s/it] 92%|█████████▏| 55/60 [00:54<00:05, 1.00s/it] 93%|█████████▎| 56/60 [00:55<00:04, 1.00s/it] 95%|█████████▌| 57/60 [00:56<00:03, 1.00s/it] 97%|█████████▋| 58/60 [00:57<00:02, 1.00s/it] 98%|█████████▊| 59/60 [00:58<00:01, 1.00s/it] 100%|██████████| 60/60 [00:59<00:00, 1.00s/it] 100%|██████████| 60/60 [00:59<00:00, 1.00it/s] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.23it/s] 10%|█ | 2/20 [00:01<00:14, 1.23it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.23it/s] 20%|██ | 4/20 [00:03<00:12, 1.23it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.23it/s] 30%|███ | 6/20 [00:04<00:11, 1.23it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.23it/s] 40%|████ | 8/20 [00:06<00:09, 1.23it/s] 45%|████▌ | 9/20 [00:07<00:08, 1.23it/s] 50%|█████ | 10/20 [00:08<00:08, 1.23it/s] 55%|█████▌ | 11/20 [00:08<00:07, 1.23it/s] 60%|██████ | 12/20 [00:09<00:06, 1.23it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.23it/s] 70%|███████ | 14/20 [00:11<00:04, 1.23it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.23it/s] 80%|████████ | 16/20 [00:12<00:03, 1.23it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.23it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.23it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.23it/s] 100%|██████████| 20/20 [00:16<00:00, 1.23it/s] 100%|██████████| 20/20 [00:16<00:00, 1.23it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDeqjvvv3bv6hi3ohuc5o2nmwbriStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdIHA7yFvdJcoX3fpV2j995oMjicxEJa7a0bHLqpPNC8eXE1/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdIHA7yFvdJcoX3fpV2j995oMjicxEJa7a0bHLqpPNC8eXE1/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdIHA7yFvdJcoX3fpV2j995oMjicxEJa7a0bHLqpPNC8eXE1/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdIHA7yFvdJcoX3fpV2j995oMjicxEJa7a0bHLqpPNC8eXE1/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdIHA7yFvdJcoX3fpV2j995oMjicxEJa7a0bHLqpPNC8eXE1/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdIHA7yFvdJcoX3fpV2j995oMjicxEJa7a0bHLqpPNC8eXE1/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T03:03:29.847864Z", "created_at": "2023-10-03T03:00:06.338831Z", "data_removed": false, "error": null, "id": "eqjvvv3bv6hi3ohuc5o2nmwbri", "input": { "image": "https://replicate.delivery/pbxt/JdIHA7yFvdJcoX3fpV2j995oMjicxEJa7a0bHLqpPNC8eXE1/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 34133\nPrompt: cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:08, 1.17s/it]\n 3%|▎ | 2/60 [00:02<01:07, 1.16s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.16s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.17s/it]\n 8%|▊ | 5/60 [00:05<01:04, 1.17s/it]\n 10%|█ | 6/60 [00:07<01:03, 1.17s/it]\n 12%|█▏ | 7/60 [00:08<01:01, 1.17s/it]\n 13%|█▎ | 8/60 [00:09<01:00, 1.17s/it]\n 15%|█▌ | 9/60 [00:10<00:59, 1.17s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.17s/it]\n 20%|██ | 12/60 [00:14<00:56, 1.17s/it]\n 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it]\n 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it]\n 30%|███ | 18/60 [00:21<00:49, 1.17s/it]\n 32%|███▏ | 19/60 [00:22<00:47, 1.17s/it]\n 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it]\n 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.17s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it]\n 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it]\n 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.17s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it]\n 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.18s/it]\n 57%|█████▋ | 34/60 [00:39<00:30, 1.18s/it]\n 58%|█████▊ | 35/60 [00:40<00:29, 1.18s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.18s/it]\n 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it]\n 63%|██████▎ | 38/60 [00:44<00:25, 1.18s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it]\n 67%|██████▋ | 40/60 [00:46<00:23, 1.18s/it]\n 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.18s/it]\n 72%|███████▏ | 43/60 [00:50<00:20, 1.18s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it]\n 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.18s/it]\n 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it]\n 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it]\n 87%|████████▋ | 52/60 [01:01<00:09, 1.18s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it]\n 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it]\n 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.17s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.03it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.03it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.03it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.04it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 97.952849, "total_time": 203.509033 }, "output": [ "https://pbxt.replicate.delivery/MxHrTTRIYx5LOxVeDgh4fJTp5yzByQDU2bBbXZplxR3fzmUjA/out-0.png", "https://pbxt.replicate.delivery/YtcbRKS53tqfEqwUPVgnivuEePGjhGG2nAGI7LcsEpbAaTqRA/out-1.png", "https://pbxt.replicate.delivery/owNJvZKg7z44NNvzfRM2GA7Uf1f8bS3mhgaCE6ClfUfGQbSNC/out-2.png", "https://pbxt.replicate.delivery/Chll88GZXq48FxcyZHKX8VJgQ72ZgJVRYGT7BOlLeZpAtJ1IA/out-3.png" ], "started_at": "2023-10-03T03:01:51.895015Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/eqjvvv3bv6hi3ohuc5o2nmwbri", "cancel": "https://api.replicate.com/v1/predictions/eqjvvv3bv6hi3ohuc5o2nmwbri/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 34133 Prompt: cyberpunk girl in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:08, 1.17s/it] 3%|▎ | 2/60 [00:02<01:07, 1.16s/it] 5%|▌ | 3/60 [00:03<01:06, 1.16s/it] 7%|▋ | 4/60 [00:04<01:05, 1.17s/it] 8%|▊ | 5/60 [00:05<01:04, 1.17s/it] 10%|█ | 6/60 [00:07<01:03, 1.17s/it] 12%|█▏ | 7/60 [00:08<01:01, 1.17s/it] 13%|█▎ | 8/60 [00:09<01:00, 1.17s/it] 15%|█▌ | 9/60 [00:10<00:59, 1.17s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.17s/it] 20%|██ | 12/60 [00:14<00:56, 1.17s/it] 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it] 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it] 30%|███ | 18/60 [00:21<00:49, 1.17s/it] 32%|███▏ | 19/60 [00:22<00:47, 1.17s/it] 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it] 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it] 40%|████ | 24/60 [00:28<00:42, 1.17s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it] 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it] 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it] 50%|█████ | 30/60 [00:35<00:35, 1.17s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it] 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.18s/it] 57%|█████▋ | 34/60 [00:39<00:30, 1.18s/it] 58%|█████▊ | 35/60 [00:40<00:29, 1.18s/it] 60%|██████ | 36/60 [00:42<00:28, 1.18s/it] 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it] 63%|██████▎ | 38/60 [00:44<00:25, 1.18s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it] 67%|██████▋ | 40/60 [00:46<00:23, 1.18s/it] 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it] 70%|███████ | 42/60 [00:49<00:21, 1.18s/it] 72%|███████▏ | 43/60 [00:50<00:20, 1.18s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it] 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it] 80%|████████ | 48/60 [00:56<00:14, 1.18s/it] 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it] 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it] 87%|████████▋ | 52/60 [01:01<00:09, 1.18s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it] 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it] 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.17s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.03it/s] 60%|██████ | 12/20 [00:11<00:07, 1.03it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.03it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s] 80%|████████ | 16/20 [00:15<00:03, 1.04it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID66rfp2lbxrpnmven47xbf7xdamStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdIRZBmluWRk8RyfJsH8r2JOtgD5gDEID8laJA0eoKKTr9Cx/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdIRZBmluWRk8RyfJsH8r2JOtgD5gDEID8laJA0eoKKTr9Cx/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdIRZBmluWRk8RyfJsH8r2JOtgD5gDEID8laJA0eoKKTr9Cx/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdIRZBmluWRk8RyfJsH8r2JOtgD5gDEID8laJA0eoKKTr9Cx/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdIRZBmluWRk8RyfJsH8r2JOtgD5gDEID8laJA0eoKKTr9Cx/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdIRZBmluWRk8RyfJsH8r2JOtgD5gDEID8laJA0eoKKTr9Cx/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T03:12:41.531164Z", "created_at": "2023-10-03T03:11:04.604906Z", "data_removed": false, "error": null, "id": "66rfp2lbxrpnmven47xbf7xdam", "input": { "image": "https://replicate.delivery/pbxt/JdIRZBmluWRk8RyfJsH8r2JOtgD5gDEID8laJA0eoKKTr9Cx/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 1902\nPrompt: Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:08, 1.16s/it]\n 3%|▎ | 2/60 [00:02<01:07, 1.17s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.17s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.17s/it]\n 8%|▊ | 5/60 [00:05<01:04, 1.17s/it]\n 10%|█ | 6/60 [00:07<01:03, 1.17s/it]\n 12%|█▏ | 7/60 [00:08<01:01, 1.17s/it]\n 13%|█▎ | 8/60 [00:09<01:00, 1.17s/it]\n 15%|█▌ | 9/60 [00:10<00:59, 1.17s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.17s/it]\n 20%|██ | 12/60 [00:14<00:56, 1.17s/it]\n 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it]\n 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it]\n 30%|███ | 18/60 [00:21<00:49, 1.17s/it]\n 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it]\n 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it]\n 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.17s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it]\n 43%|████▎ | 26/60 [00:30<00:39, 1.18s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.18s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.18s/it]\n 48%|████▊ | 29/60 [00:33<00:36, 1.18s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.18s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.18s/it]\n 53%|█████▎ | 32/60 [00:37<00:32, 1.18s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.18s/it]\n 57%|█████▋ | 34/60 [00:39<00:30, 1.18s/it]\n 58%|█████▊ | 35/60 [00:41<00:29, 1.18s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.18s/it]\n 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it]\n 63%|██████▎ | 38/60 [00:44<00:25, 1.18s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it]\n 67%|██████▋ | 40/60 [00:46<00:23, 1.18s/it]\n 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.18s/it]\n 72%|███████▏ | 43/60 [00:50<00:20, 1.18s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it]\n 77%|███████▋ | 46/60 [00:54<00:16, 1.18s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.18s/it]\n 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it]\n 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it]\n 87%|████████▋ | 52/60 [01:01<00:09, 1.18s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it]\n 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it]\n 95%|█████████▌| 57/60 [01:07<00:03, 1.18s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.03it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.03it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 96.92722, "total_time": 96.926258 }, "output": [ "https://pbxt.replicate.delivery/BrwDLUGuR07aLB1GQ6lxsxGRIEVQK4SNfmmuXfGRKPMmiTqRA/out-0.png", "https://pbxt.replicate.delivery/QWJJ44VgLfxe80cSvNX44mLG2ZAUHfjDbvqpeKGstfSDVcSNC/out-1.png", "https://pbxt.replicate.delivery/veHcEY925G1kTCupFOtvImnDpbjlNqf4xzTv8VJHMXuoiTqRA/out-2.png", "https://pbxt.replicate.delivery/2HTnl9gdtPJPJlIjFNsKe2nQ8Dqs6G3HWi5ZJicO6wepiTqRA/out-3.png" ], "started_at": "2023-10-03T03:11:04.603944Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/66rfp2lbxrpnmven47xbf7xdam", "cancel": "https://api.replicate.com/v1/predictions/66rfp2lbxrpnmven47xbf7xdam/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 1902 Prompt: Cyberpunk with pink hair wearing a necklace that says Claire Silver in a dive bar bathroom covered with graffiti, in the style of Blade Runner and Trainspotting img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:08, 1.16s/it] 3%|▎ | 2/60 [00:02<01:07, 1.17s/it] 5%|▌ | 3/60 [00:03<01:06, 1.17s/it] 7%|▋ | 4/60 [00:04<01:05, 1.17s/it] 8%|▊ | 5/60 [00:05<01:04, 1.17s/it] 10%|█ | 6/60 [00:07<01:03, 1.17s/it] 12%|█▏ | 7/60 [00:08<01:01, 1.17s/it] 13%|█▎ | 8/60 [00:09<01:00, 1.17s/it] 15%|█▌ | 9/60 [00:10<00:59, 1.17s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.17s/it] 20%|██ | 12/60 [00:14<00:56, 1.17s/it] 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it] 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it] 30%|███ | 18/60 [00:21<00:49, 1.17s/it] 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it] 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it] 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it] 40%|████ | 24/60 [00:28<00:42, 1.17s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it] 43%|████▎ | 26/60 [00:30<00:39, 1.18s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.18s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.18s/it] 48%|████▊ | 29/60 [00:33<00:36, 1.18s/it] 50%|█████ | 30/60 [00:35<00:35, 1.18s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.18s/it] 53%|█████▎ | 32/60 [00:37<00:32, 1.18s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.18s/it] 57%|█████▋ | 34/60 [00:39<00:30, 1.18s/it] 58%|█████▊ | 35/60 [00:41<00:29, 1.18s/it] 60%|██████ | 36/60 [00:42<00:28, 1.18s/it] 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it] 63%|██████▎ | 38/60 [00:44<00:25, 1.18s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it] 67%|██████▋ | 40/60 [00:46<00:23, 1.18s/it] 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it] 70%|███████ | 42/60 [00:49<00:21, 1.18s/it] 72%|███████▏ | 43/60 [00:50<00:20, 1.18s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it] 77%|███████▋ | 46/60 [00:54<00:16, 1.18s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it] 80%|████████ | 48/60 [00:56<00:14, 1.18s/it] 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it] 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it] 87%|████████▋ | 52/60 [01:01<00:09, 1.18s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it] 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it] 95%|█████████▌| 57/60 [01:07<00:03, 1.18s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s] 80%|████████ | 16/20 [00:15<00:03, 1.03it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.03it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID5v7tldlbqn67z5hmr3h3drasjiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T03:29:08.406012Z", "created_at": "2023-10-03T03:27:31.820886Z", "data_removed": false, "error": null, "id": "5v7tldlbqn67z5hmr3h3drasji", "input": { "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 354\nPrompt: Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:08, 1.16s/it]\n 3%|▎ | 2/60 [00:02<01:07, 1.17s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.17s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.16s/it]\n 8%|▊ | 5/60 [00:05<01:04, 1.16s/it]\n 10%|█ | 6/60 [00:06<01:02, 1.16s/it]\n 12%|█▏ | 7/60 [00:08<01:01, 1.16s/it]\n 13%|█▎ | 8/60 [00:09<01:00, 1.16s/it]\n 15%|█▌ | 9/60 [00:10<00:59, 1.16s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.16s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.16s/it]\n 20%|██ | 12/60 [00:13<00:55, 1.17s/it]\n 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it]\n 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it]\n 30%|███ | 18/60 [00:20<00:49, 1.17s/it]\n 32%|███▏ | 19/60 [00:22<00:47, 1.17s/it]\n 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it]\n 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.17s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it]\n 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it]\n 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.17s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it]\n 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it]\n 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it]\n 58%|█████▊ | 35/60 [00:40<00:29, 1.17s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.17s/it]\n 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it]\n 63%|██████▎ | 38/60 [00:44<00:25, 1.18s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it]\n 67%|██████▋ | 40/60 [00:46<00:23, 1.18s/it]\n 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.17s/it]\n 72%|███████▏ | 43/60 [00:50<00:19, 1.18s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it]\n 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.18s/it]\n 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it]\n 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it]\n 87%|████████▋ | 52/60 [01:00<00:09, 1.18s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it]\n 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it]\n 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.17s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.04it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 96.573949, "total_time": 96.585126 }, "output": [ "https://pbxt.replicate.delivery/tW8VJypr6v6CPB02I387UazFuyIiOA4BR1wH5ezQEyfByTqRA/out-0.png", "https://pbxt.replicate.delivery/YEOMO8ZoNzJuFtdirMmdT18BFZfzQUprcBBvabVw2EDB5J1IA/out-1.png", "https://pbxt.replicate.delivery/96iTarR3XZ47P989nJeY8L6ejSZSet1YcHCbe1BSNMrMIPpGB/out-2.png", "https://pbxt.replicate.delivery/ihn4OehKQ5yACykidi91FI7F10J33zJ3PI9LHCMgp6LC5J1IA/out-3.png" ], "started_at": "2023-10-03T03:27:31.832063Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5v7tldlbqn67z5hmr3h3drasji", "cancel": "https://api.replicate.com/v1/predictions/5v7tldlbqn67z5hmr3h3drasji/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 354 Prompt: Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says happy birthday Claire Silver!, in the style of Blade Runner and Trainspotting img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:08, 1.16s/it] 3%|▎ | 2/60 [00:02<01:07, 1.17s/it] 5%|▌ | 3/60 [00:03<01:06, 1.17s/it] 7%|▋ | 4/60 [00:04<01:05, 1.16s/it] 8%|▊ | 5/60 [00:05<01:04, 1.16s/it] 10%|█ | 6/60 [00:06<01:02, 1.16s/it] 12%|█▏ | 7/60 [00:08<01:01, 1.16s/it] 13%|█▎ | 8/60 [00:09<01:00, 1.16s/it] 15%|█▌ | 9/60 [00:10<00:59, 1.16s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.16s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.16s/it] 20%|██ | 12/60 [00:13<00:55, 1.17s/it] 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it] 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it] 30%|███ | 18/60 [00:20<00:49, 1.17s/it] 32%|███▏ | 19/60 [00:22<00:47, 1.17s/it] 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it] 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it] 40%|████ | 24/60 [00:28<00:42, 1.17s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it] 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it] 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it] 50%|█████ | 30/60 [00:35<00:35, 1.17s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it] 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it] 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it] 58%|█████▊ | 35/60 [00:40<00:29, 1.17s/it] 60%|██████ | 36/60 [00:42<00:28, 1.17s/it] 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it] 63%|██████▎ | 38/60 [00:44<00:25, 1.18s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it] 67%|██████▋ | 40/60 [00:46<00:23, 1.18s/it] 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it] 70%|███████ | 42/60 [00:49<00:21, 1.17s/it] 72%|███████▏ | 43/60 [00:50<00:19, 1.18s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it] 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it] 80%|████████ | 48/60 [00:56<00:14, 1.18s/it] 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it] 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it] 87%|████████▋ | 52/60 [01:00<00:09, 1.18s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it] 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it] 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.17s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s] 80%|████████ | 16/20 [00:15<00:03, 1.04it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDczo4y4lbwpe4l3mb6rvsgknn3iStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Happy Birthday Claire Silver! In the style of TOK
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdIsebmCosR1T8jfT2P3tJ5M2KBOHff5m0iPMGVeLthOFgxY/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! In the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdIsebmCosR1T8jfT2P3tJ5M2KBOHff5m0iPMGVeLthOFgxY/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "Happy Birthday Claire Silver! In the style of TOK", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdIsebmCosR1T8jfT2P3tJ5M2KBOHff5m0iPMGVeLthOFgxY/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! In the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdIsebmCosR1T8jfT2P3tJ5M2KBOHff5m0iPMGVeLthOFgxY/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! In the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdIsebmCosR1T8jfT2P3tJ5M2KBOHff5m0iPMGVeLthOFgxY/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Happy Birthday Claire Silver! In the style of TOK"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdIsebmCosR1T8jfT2P3tJ5M2KBOHff5m0iPMGVeLthOFgxY/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! In the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T03:41:16.205075Z", "created_at": "2023-10-03T03:39:39.416076Z", "data_removed": false, "error": null, "id": "czo4y4lbwpe4l3mb6rvsgknn3i", "input": { "image": "https://replicate.delivery/pbxt/JdIsebmCosR1T8jfT2P3tJ5M2KBOHff5m0iPMGVeLthOFgxY/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! In the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 34728\nPrompt: Happy Birthday Claire Silver! In the style of <s0><s1>\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:08, 1.16s/it]\n 3%|▎ | 2/60 [00:02<01:07, 1.16s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.17s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.17s/it]\n 8%|▊ | 5/60 [00:05<01:03, 1.16s/it]\n 10%|█ | 6/60 [00:06<01:02, 1.16s/it]\n 12%|█▏ | 7/60 [00:08<01:01, 1.16s/it]\n 13%|█▎ | 8/60 [00:09<01:00, 1.16s/it]\n 15%|█▌ | 9/60 [00:10<00:59, 1.16s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.16s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.16s/it]\n 20%|██ | 12/60 [00:13<00:55, 1.17s/it]\n 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it]\n 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it]\n 30%|███ | 18/60 [00:21<00:49, 1.17s/it]\n 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it]\n 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it]\n 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.17s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it]\n 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it]\n 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.17s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it]\n 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it]\n 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it]\n 58%|█████▊ | 35/60 [00:40<00:29, 1.17s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.17s/it]\n 62%|██████▏ | 37/60 [00:43<00:26, 1.17s/it]\n 63%|██████▎ | 38/60 [00:44<00:25, 1.17s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.17s/it]\n 67%|██████▋ | 40/60 [00:46<00:23, 1.17s/it]\n 68%|██████▊ | 41/60 [00:47<00:22, 1.17s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.17s/it]\n 72%|███████▏ | 43/60 [00:50<00:19, 1.17s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:52<00:17, 1.17s/it]\n 77%|███████▋ | 46/60 [00:53<00:16, 1.17s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.18s/it]\n 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it]\n 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it]\n 87%|████████▋ | 52/60 [01:00<00:09, 1.18s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it]\n 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it]\n 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.17s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.04it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 96.812455, "total_time": 96.788999 }, "output": [ "https://pbxt.replicate.delivery/MQe7msjmw525Taemmo0C8mDfhvpawpZBKgTXadVU1Sek1PpGB/out-0.png", "https://pbxt.replicate.delivery/esbSeLnH84lhnUkJQHn8pitsOuJew3cNmL13QODvZGy16nUjA/out-1.png", "https://pbxt.replicate.delivery/8BiCs0gTDeQ9RKEQGgphnkW7ctte4Ps6jpgw2UKB483b9TqRA/out-2.png", "https://pbxt.replicate.delivery/rPzUp7CUIkJIGZN1CL8tmTWObU6uLKxNHNIvkgS5HU5WfJ1IA/out-3.png" ], "started_at": "2023-10-03T03:39:39.392620Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/czo4y4lbwpe4l3mb6rvsgknn3i", "cancel": "https://api.replicate.com/v1/predictions/czo4y4lbwpe4l3mb6rvsgknn3i/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 34728 Prompt: Happy Birthday Claire Silver! In the style of <s0><s1> img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:08, 1.16s/it] 3%|▎ | 2/60 [00:02<01:07, 1.16s/it] 5%|▌ | 3/60 [00:03<01:06, 1.17s/it] 7%|▋ | 4/60 [00:04<01:05, 1.17s/it] 8%|▊ | 5/60 [00:05<01:03, 1.16s/it] 10%|█ | 6/60 [00:06<01:02, 1.16s/it] 12%|█▏ | 7/60 [00:08<01:01, 1.16s/it] 13%|█▎ | 8/60 [00:09<01:00, 1.16s/it] 15%|█▌ | 9/60 [00:10<00:59, 1.16s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.16s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.16s/it] 20%|██ | 12/60 [00:13<00:55, 1.17s/it] 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it] 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it] 30%|███ | 18/60 [00:21<00:49, 1.17s/it] 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it] 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it] 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it] 40%|████ | 24/60 [00:28<00:42, 1.17s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it] 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it] 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it] 50%|█████ | 30/60 [00:35<00:35, 1.17s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it] 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it] 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it] 58%|█████▊ | 35/60 [00:40<00:29, 1.17s/it] 60%|██████ | 36/60 [00:42<00:28, 1.17s/it] 62%|██████▏ | 37/60 [00:43<00:26, 1.17s/it] 63%|██████▎ | 38/60 [00:44<00:25, 1.17s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.17s/it] 67%|██████▋ | 40/60 [00:46<00:23, 1.17s/it] 68%|██████▊ | 41/60 [00:47<00:22, 1.17s/it] 70%|███████ | 42/60 [00:49<00:21, 1.17s/it] 72%|███████▏ | 43/60 [00:50<00:19, 1.17s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:52<00:17, 1.17s/it] 77%|███████▋ | 46/60 [00:53<00:16, 1.17s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it] 80%|████████ | 48/60 [00:56<00:14, 1.18s/it] 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it] 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it] 87%|████████▋ | 52/60 [01:00<00:09, 1.18s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it] 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it] 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.17s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s] 80%|████████ | 16/20 [00:15<00:03, 1.04it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDg5cxzbtb3rqldmpvsrsrumged4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- mask
- null
- width
- 928
- height
- 1312
- prompt
- Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic,
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": null, "image": "https://replicate.delivery/pbxt/JcVKmOhFNF8xFryLXECoa7sAMO9j41R3rrNg9kIbq7J91ELr/E1321DBF-86F5-46E6-9CB3-BF2A776CD78B_1_102_o.jpeg", "width": 928, "height": 1312, "prompt": "Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcVKmOhFNF8xFryLXECoa7sAMO9j41R3rrNg9kIbq7J91ELr/E1321DBF-86F5-46E6-9CB3-BF2A776CD78B_1_102_o.jpeg", width: 928, height: 1312, prompt: "Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcVKmOhFNF8xFryLXECoa7sAMO9j41R3rrNg9kIbq7J91ELr/E1321DBF-86F5-46E6-9CB3-BF2A776CD78B_1_102_o.jpeg", "width": 928, "height": 1312, "prompt": "Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcVKmOhFNF8xFryLXECoa7sAMO9j41R3rrNg9kIbq7J91ELr/E1321DBF-86F5-46E6-9CB3-BF2A776CD78B_1_102_o.jpeg", "width": 928, "height": 1312, "prompt": "Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcVKmOhFNF8xFryLXECoa7sAMO9j41R3rrNg9kIbq7J91ELr/E1321DBF-86F5-46E6-9CB3-BF2A776CD78B_1_102_o.jpeg"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, "' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcVKmOhFNF8xFryLXECoa7sAMO9j41R3rrNg9kIbq7J91ELr/E1321DBF-86F5-46E6-9CB3-BF2A776CD78B_1_102_o.jpeg", "width": 928, "height": 1312, "prompt": "Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T21:40:07.908370Z", "created_at": "2023-09-30T21:37:41.545074Z", "data_removed": false, "error": null, "id": "g5cxzbtb3rqldmpvsrsrumged4", "input": { "mask": null, "image": "https://replicate.delivery/pbxt/JcVKmOhFNF8xFryLXECoa7sAMO9j41R3rrNg9kIbq7J91ELr/E1321DBF-86F5-46E6-9CB3-BF2A776CD78B_1_102_o.jpeg", "width": 928, "height": 1312, "prompt": "Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": "Using seed: 40504\nPrompt: Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic,\nimg2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:01<01:34, 1.19s/it]\n 2%|▎ | 2/80 [00:02<01:32, 1.19s/it]\n 4%|▍ | 3/80 [00:03<01:31, 1.19s/it]\n 5%|▌ | 4/80 [00:04<01:30, 1.19s/it]\n 6%|▋ | 5/80 [00:05<01:29, 1.19s/it]\n 8%|▊ | 6/80 [00:07<01:28, 1.19s/it]\n 9%|▉ | 7/80 [00:08<01:27, 1.20s/it]\n 10%|█ | 8/80 [00:09<01:26, 1.20s/it]\n 11%|█▏ | 9/80 [00:10<01:24, 1.20s/it]\n 12%|█▎ | 10/80 [00:11<01:23, 1.20s/it]\n 14%|█▍ | 11/80 [00:13<01:22, 1.20s/it]\n 15%|█▌ | 12/80 [00:14<01:21, 1.19s/it]\n 16%|█▋ | 13/80 [00:15<01:19, 1.19s/it]\n 18%|█▊ | 14/80 [00:16<01:18, 1.19s/it]\n 19%|█▉ | 15/80 [00:17<01:17, 1.19s/it]\n 20%|██ | 16/80 [00:19<01:16, 1.19s/it]\n 21%|██▏ | 17/80 [00:20<01:15, 1.19s/it]\n 22%|██▎ | 18/80 [00:21<01:13, 1.19s/it]\n 24%|██▍ | 19/80 [00:22<01:12, 1.19s/it]\n 25%|██▌ | 20/80 [00:23<01:11, 1.19s/it]\n 26%|██▋ | 21/80 [00:25<01:10, 1.19s/it]\n 28%|██▊ | 22/80 [00:26<01:09, 1.19s/it]\n 29%|██▉ | 23/80 [00:27<01:08, 1.19s/it]\n 30%|███ | 24/80 [00:28<01:06, 1.19s/it]\n 31%|███▏ | 25/80 [00:29<01:05, 1.19s/it]\n 32%|███▎ | 26/80 [00:31<01:04, 1.20s/it]\n 34%|███▍ | 27/80 [00:32<01:03, 1.19s/it]\n 35%|███▌ | 28/80 [00:33<01:02, 1.19s/it]\n 36%|███▋ | 29/80 [00:34<01:00, 1.19s/it]\n 38%|███▊ | 30/80 [00:35<00:59, 1.20s/it]\n 39%|███▉ | 31/80 [00:36<00:58, 1.20s/it]\n 40%|████ | 32/80 [00:38<00:57, 1.19s/it]\n 41%|████▏ | 33/80 [00:39<00:56, 1.20s/it]\n 42%|████▎ | 34/80 [00:40<00:54, 1.20s/it]\n 44%|████▍ | 35/80 [00:41<00:53, 1.20s/it]\n 45%|████▌ | 36/80 [00:42<00:52, 1.20s/it]\n 46%|████▋ | 37/80 [00:44<00:51, 1.20s/it]\n 48%|████▊ | 38/80 [00:45<00:50, 1.20s/it]\n 49%|████▉ | 39/80 [00:46<00:49, 1.20s/it]\n 50%|█████ | 40/80 [00:47<00:47, 1.20s/it]\n 51%|█████▏ | 41/80 [00:48<00:46, 1.20s/it]\n 52%|█████▎ | 42/80 [00:50<00:45, 1.20s/it]\n 54%|█████▍ | 43/80 [00:51<00:44, 1.20s/it]\n 55%|█████▌ | 44/80 [00:52<00:43, 1.20s/it]\n 56%|█████▋ | 45/80 [00:53<00:41, 1.20s/it]\n 57%|█████▊ | 46/80 [00:54<00:40, 1.20s/it]\n 59%|█████▉ | 47/80 [00:56<00:39, 1.20s/it]\n 60%|██████ | 48/80 [00:57<00:38, 1.20s/it]\n 61%|██████▏ | 49/80 [00:58<00:37, 1.20s/it]\n 62%|██████▎ | 50/80 [00:59<00:35, 1.20s/it]\n 64%|██████▍ | 51/80 [01:00<00:34, 1.20s/it]\n 65%|██████▌ | 52/80 [01:02<00:33, 1.20s/it]\n 66%|██████▋ | 53/80 [01:03<00:32, 1.20s/it]\n 68%|██████▊ | 54/80 [01:04<00:31, 1.20s/it]\n 69%|██████▉ | 55/80 [01:05<00:29, 1.20s/it]\n 70%|███████ | 56/80 [01:06<00:28, 1.20s/it]\n 71%|███████▏ | 57/80 [01:08<00:27, 1.20s/it]\n 72%|███████▎ | 58/80 [01:09<00:26, 1.20s/it]\n 74%|███████▍ | 59/80 [01:10<00:25, 1.20s/it]\n 75%|███████▌ | 60/80 [01:11<00:23, 1.20s/it]\n 76%|███████▋ | 61/80 [01:12<00:22, 1.20s/it]\n 78%|███████▊ | 62/80 [01:14<00:21, 1.20s/it]\n 79%|███████▉ | 63/80 [01:15<00:20, 1.20s/it]\n 80%|████████ | 64/80 [01:16<00:19, 1.20s/it]\n 81%|████████▏ | 65/80 [01:17<00:17, 1.20s/it]\n 82%|████████▎ | 66/80 [01:18<00:16, 1.20s/it]\n 84%|████████▍ | 67/80 [01:20<00:15, 1.20s/it]\n 85%|████████▌ | 68/80 [01:21<00:14, 1.20s/it]\n 86%|████████▋ | 69/80 [01:22<00:13, 1.20s/it]\n 88%|████████▊ | 70/80 [01:23<00:11, 1.20s/it]\n 89%|████████▉ | 71/80 [01:24<00:10, 1.20s/it]\n 90%|█████████ | 72/80 [01:26<00:09, 1.20s/it]\n 91%|█████████▏| 73/80 [01:27<00:08, 1.20s/it]\n 92%|█████████▎| 74/80 [01:28<00:07, 1.20s/it]\n 94%|█████████▍| 75/80 [01:29<00:05, 1.20s/it]\n 95%|█████████▌| 76/80 [01:30<00:04, 1.20s/it]\n 96%|█████████▋| 77/80 [01:32<00:03, 1.20s/it]\n 98%|█████████▊| 78/80 [01:33<00:02, 1.20s/it]\n 99%|█████████▉| 79/80 [01:34<00:01, 1.20s/it]\n100%|██████████| 80/80 [01:35<00:00, 1.20s/it]\n100%|██████████| 80/80 [01:35<00:00, 1.20s/it]", "metrics": { "predict_time": 103.25182, "total_time": 146.363296 }, "output": [ "https://pbxt.replicate.delivery/NqHeNHdgTNSuBipJ8Y46DXbsrJ7Ifm67ECRxR7Vv5SC2eITjA/out-0.png", "https://pbxt.replicate.delivery/hcIoJZi754qJNZVte8lozYIFWnWH7jCWTfNeiJUx0c7s9ITjA/out-1.png", "https://pbxt.replicate.delivery/O3eomEqBfxtgfILfhS6nbDZwIv8GCYz3AlSBGmGalz9e2jMNC/out-2.png", "https://pbxt.replicate.delivery/2VfefMbblxBhBIrInZ07IqxiQPOeyPyOXDMxDUpkOXWf2jMNC/out-3.png" ], "started_at": "2023-09-30T21:38:24.656550Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/g5cxzbtb3rqldmpvsrsrumged4", "cancel": "https://api.replicate.com/v1/predictions/g5cxzbtb3rqldmpvsrsrumged4/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 40504 Prompt: Neon light leaks from cracks in the porcelain skin of punk anime girls taking selfies in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, img2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:01<01:34, 1.19s/it] 2%|▎ | 2/80 [00:02<01:32, 1.19s/it] 4%|▍ | 3/80 [00:03<01:31, 1.19s/it] 5%|▌ | 4/80 [00:04<01:30, 1.19s/it] 6%|▋ | 5/80 [00:05<01:29, 1.19s/it] 8%|▊ | 6/80 [00:07<01:28, 1.19s/it] 9%|▉ | 7/80 [00:08<01:27, 1.20s/it] 10%|█ | 8/80 [00:09<01:26, 1.20s/it] 11%|█▏ | 9/80 [00:10<01:24, 1.20s/it] 12%|█▎ | 10/80 [00:11<01:23, 1.20s/it] 14%|█▍ | 11/80 [00:13<01:22, 1.20s/it] 15%|█▌ | 12/80 [00:14<01:21, 1.19s/it] 16%|█▋ | 13/80 [00:15<01:19, 1.19s/it] 18%|█▊ | 14/80 [00:16<01:18, 1.19s/it] 19%|█▉ | 15/80 [00:17<01:17, 1.19s/it] 20%|██ | 16/80 [00:19<01:16, 1.19s/it] 21%|██▏ | 17/80 [00:20<01:15, 1.19s/it] 22%|██▎ | 18/80 [00:21<01:13, 1.19s/it] 24%|██▍ | 19/80 [00:22<01:12, 1.19s/it] 25%|██▌ | 20/80 [00:23<01:11, 1.19s/it] 26%|██▋ | 21/80 [00:25<01:10, 1.19s/it] 28%|██▊ | 22/80 [00:26<01:09, 1.19s/it] 29%|██▉ | 23/80 [00:27<01:08, 1.19s/it] 30%|███ | 24/80 [00:28<01:06, 1.19s/it] 31%|███▏ | 25/80 [00:29<01:05, 1.19s/it] 32%|███▎ | 26/80 [00:31<01:04, 1.20s/it] 34%|███▍ | 27/80 [00:32<01:03, 1.19s/it] 35%|███▌ | 28/80 [00:33<01:02, 1.19s/it] 36%|███▋ | 29/80 [00:34<01:00, 1.19s/it] 38%|███▊ | 30/80 [00:35<00:59, 1.20s/it] 39%|███▉ | 31/80 [00:36<00:58, 1.20s/it] 40%|████ | 32/80 [00:38<00:57, 1.19s/it] 41%|████▏ | 33/80 [00:39<00:56, 1.20s/it] 42%|████▎ | 34/80 [00:40<00:54, 1.20s/it] 44%|████▍ | 35/80 [00:41<00:53, 1.20s/it] 45%|████▌ | 36/80 [00:42<00:52, 1.20s/it] 46%|████▋ | 37/80 [00:44<00:51, 1.20s/it] 48%|████▊ | 38/80 [00:45<00:50, 1.20s/it] 49%|████▉ | 39/80 [00:46<00:49, 1.20s/it] 50%|█████ | 40/80 [00:47<00:47, 1.20s/it] 51%|█████▏ | 41/80 [00:48<00:46, 1.20s/it] 52%|█████▎ | 42/80 [00:50<00:45, 1.20s/it] 54%|█████▍ | 43/80 [00:51<00:44, 1.20s/it] 55%|█████▌ | 44/80 [00:52<00:43, 1.20s/it] 56%|█████▋ | 45/80 [00:53<00:41, 1.20s/it] 57%|█████▊ | 46/80 [00:54<00:40, 1.20s/it] 59%|█████▉ | 47/80 [00:56<00:39, 1.20s/it] 60%|██████ | 48/80 [00:57<00:38, 1.20s/it] 61%|██████▏ | 49/80 [00:58<00:37, 1.20s/it] 62%|██████▎ | 50/80 [00:59<00:35, 1.20s/it] 64%|██████▍ | 51/80 [01:00<00:34, 1.20s/it] 65%|██████▌ | 52/80 [01:02<00:33, 1.20s/it] 66%|██████▋ | 53/80 [01:03<00:32, 1.20s/it] 68%|██████▊ | 54/80 [01:04<00:31, 1.20s/it] 69%|██████▉ | 55/80 [01:05<00:29, 1.20s/it] 70%|███████ | 56/80 [01:06<00:28, 1.20s/it] 71%|███████▏ | 57/80 [01:08<00:27, 1.20s/it] 72%|███████▎ | 58/80 [01:09<00:26, 1.20s/it] 74%|███████▍ | 59/80 [01:10<00:25, 1.20s/it] 75%|███████▌ | 60/80 [01:11<00:23, 1.20s/it] 76%|███████▋ | 61/80 [01:12<00:22, 1.20s/it] 78%|███████▊ | 62/80 [01:14<00:21, 1.20s/it] 79%|███████▉ | 63/80 [01:15<00:20, 1.20s/it] 80%|████████ | 64/80 [01:16<00:19, 1.20s/it] 81%|████████▏ | 65/80 [01:17<00:17, 1.20s/it] 82%|████████▎ | 66/80 [01:18<00:16, 1.20s/it] 84%|████████▍ | 67/80 [01:20<00:15, 1.20s/it] 85%|████████▌ | 68/80 [01:21<00:14, 1.20s/it] 86%|████████▋ | 69/80 [01:22<00:13, 1.20s/it] 88%|████████▊ | 70/80 [01:23<00:11, 1.20s/it] 89%|████████▉ | 71/80 [01:24<00:10, 1.20s/it] 90%|█████████ | 72/80 [01:26<00:09, 1.20s/it] 91%|█████████▏| 73/80 [01:27<00:08, 1.20s/it] 92%|█████████▎| 74/80 [01:28<00:07, 1.20s/it] 94%|█████████▍| 75/80 [01:29<00:05, 1.20s/it] 95%|█████████▌| 76/80 [01:30<00:04, 1.20s/it] 96%|█████████▋| 77/80 [01:32<00:03, 1.20s/it] 98%|█████████▊| 78/80 [01:33<00:02, 1.20s/it] 99%|█████████▉| 79/80 [01:34<00:01, 1.20s/it] 100%|██████████| 80/80 [01:35<00:00, 1.20s/it] 100%|██████████| 80/80 [01:35<00:00, 1.20s/it]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDayhpkjlbfjaycapdiak6wqncg4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of TOK
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "width": 1024, "height": 1024, "prompt": "punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { width: 1024, height: 1024, prompt: "punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of TOK", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "width": 1024, "height": 1024, "prompt": "punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "width": 1024, "height": 1024, "prompt": "punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of TOK"' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt=""' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T00:17:48.777501Z", "created_at": "2023-09-30T00:13:09.440386Z", "data_removed": false, "error": null, "id": "ayhpkjlbfjaycapdiak6wqncg4", "input": { "width": 1024, "height": 1024, "prompt": "punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": "Using seed: 17186\nPrompt: punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of <s0><s1>\ntxt2img mode\n 0%| | 0/101 [00:00<?, ?it/s]\n 1%| | 1/101 [00:01<02:29, 1.50s/it]\n 2%|▏ | 2/101 [00:02<01:59, 1.21s/it]\n 3%|▎ | 3/101 [00:03<01:49, 1.11s/it]\n 4%|▍ | 4/101 [00:04<01:43, 1.07s/it]\n 5%|▍ | 5/101 [00:05<01:40, 1.05s/it]\n 6%|▌ | 6/101 [00:06<01:38, 1.03s/it]\n 7%|▋ | 7/101 [00:07<01:36, 1.02s/it]\n 8%|▊ | 8/101 [00:08<01:34, 1.02s/it]\n 9%|▉ | 9/101 [00:09<01:33, 1.01s/it]\n 10%|▉ | 10/101 [00:10<01:32, 1.01s/it]\n 11%|█ | 11/101 [00:11<01:30, 1.01s/it]\n 12%|█▏ | 12/101 [00:12<01:29, 1.01s/it]\n 13%|█▎ | 13/101 [00:13<01:28, 1.01s/it]\n 14%|█▍ | 14/101 [00:14<01:27, 1.01s/it]\n 15%|█▍ | 15/101 [00:15<01:26, 1.01s/it]\n 16%|█▌ | 16/101 [00:16<01:25, 1.00s/it]\n 17%|█▋ | 17/101 [00:17<01:24, 1.00s/it]\n 18%|█▊ | 18/101 [00:18<01:23, 1.00s/it]\n 19%|█▉ | 19/101 [00:19<01:22, 1.00s/it]\n 20%|█▉ | 20/101 [00:20<01:21, 1.00s/it]\n 21%|██ | 21/101 [00:21<01:20, 1.00s/it]\n 22%|██▏ | 22/101 [00:22<01:19, 1.00s/it]\n 23%|██▎ | 23/101 [00:23<01:18, 1.00s/it]\n 24%|██▍ | 24/101 [00:24<01:17, 1.00s/it]\n 25%|██▍ | 25/101 [00:25<01:16, 1.00s/it]\n 26%|██▌ | 26/101 [00:26<01:15, 1.00s/it]\n 27%|██▋ | 27/101 [00:27<01:14, 1.00s/it]\n 28%|██▊ | 28/101 [00:28<01:13, 1.00s/it]\n 29%|██▊ | 29/101 [00:29<01:12, 1.00s/it]\n 30%|██▉ | 30/101 [00:30<01:11, 1.00s/it]\n 31%|███ | 31/101 [00:31<01:10, 1.00s/it]\n 32%|███▏ | 32/101 [00:32<01:09, 1.01s/it]\n 33%|███▎ | 33/101 [00:33<01:08, 1.01s/it]\n 34%|███▎ | 34/101 [00:34<01:07, 1.01s/it]\n 35%|███▍ | 35/101 [00:35<01:06, 1.01s/it]\n 36%|███▌ | 36/101 [00:36<01:05, 1.01s/it]\n 37%|███▋ | 37/101 [00:37<01:04, 1.01s/it]\n 38%|███▊ | 38/101 [00:38<01:03, 1.01s/it]\n 39%|███▊ | 39/101 [00:39<01:02, 1.01s/it]\n 40%|███▉ | 40/101 [00:40<01:01, 1.01s/it]\n 41%|████ | 41/101 [00:41<01:00, 1.01s/it]\n 42%|████▏ | 42/101 [00:42<00:59, 1.01s/it]\n 43%|████▎ | 43/101 [00:43<00:58, 1.01s/it]\n 44%|████▎ | 44/101 [00:44<00:57, 1.01s/it]\n 45%|████▍ | 45/101 [00:45<00:56, 1.01s/it]\n 46%|████▌ | 46/101 [00:46<00:55, 1.01s/it]\n 47%|████▋ | 47/101 [00:47<00:54, 1.01s/it]\n 48%|████▊ | 48/101 [00:48<00:53, 1.01s/it]\n 49%|████▊ | 49/101 [00:49<00:52, 1.01s/it]\n 50%|████▉ | 50/101 [00:50<00:51, 1.01s/it]\n 50%|█████ | 51/101 [00:51<00:50, 1.01s/it]\n 51%|█████▏ | 52/101 [00:52<00:49, 1.01s/it]\n 52%|█████▏ | 53/101 [00:53<00:48, 1.01s/it]\n 53%|█████▎ | 54/101 [00:54<00:47, 1.01s/it]\n 54%|█████▍ | 55/101 [00:55<00:46, 1.01s/it]\n 55%|█████▌ | 56/101 [00:56<00:45, 1.01s/it]\n 56%|█████▋ | 57/101 [00:57<00:44, 1.01s/it]\n 57%|█████▋ | 58/101 [00:58<00:43, 1.01s/it]\n 58%|█████▊ | 59/101 [00:59<00:42, 1.01s/it]\n 59%|█████▉ | 60/101 [01:00<00:41, 1.01s/it]\n 60%|██████ | 61/101 [01:01<00:40, 1.01s/it]\n 61%|██████▏ | 62/101 [01:02<00:39, 1.01s/it]\n 62%|██████▏ | 63/101 [01:03<00:38, 1.01s/it]\n 63%|██████▎ | 64/101 [01:04<00:37, 1.01s/it]\n 64%|██████▍ | 65/101 [01:05<00:36, 1.01s/it]\n 65%|██████▌ | 66/101 [01:06<00:35, 1.01s/it]\n 66%|██████▋ | 67/101 [01:08<00:34, 1.01s/it]\n 67%|██████▋ | 68/101 [01:09<00:33, 1.01s/it]\n 68%|██████▊ | 69/101 [01:10<00:32, 1.01s/it]\n 69%|██████▉ | 70/101 [01:11<00:31, 1.01s/it]\n 70%|███████ | 71/101 [01:12<00:30, 1.01s/it]\n 71%|███████▏ | 72/101 [01:13<00:29, 1.01s/it]\n 72%|███████▏ | 73/101 [01:14<00:28, 1.01s/it]\n 73%|███████▎ | 74/101 [01:15<00:27, 1.01s/it]\n 74%|███████▍ | 75/101 [01:16<00:26, 1.01s/it]\n 75%|███████▌ | 76/101 [01:17<00:25, 1.01s/it]\n 76%|███████▌ | 77/101 [01:18<00:24, 1.01s/it]\n 77%|███████▋ | 78/101 [01:19<00:23, 1.01s/it]\n 78%|███████▊ | 79/101 [01:20<00:22, 1.01s/it]\n 79%|███████▉ | 80/101 [01:21<00:21, 1.01s/it]\n 80%|████████ | 81/101 [01:22<00:20, 1.01s/it]\n 81%|████████ | 82/101 [01:23<00:19, 1.01s/it]\n 82%|████████▏ | 83/101 [01:24<00:18, 1.01s/it]\n 83%|████████▎ | 84/101 [01:25<00:17, 1.01s/it]\n 84%|████████▍ | 85/101 [01:26<00:16, 1.01s/it]\n 85%|████████▌ | 86/101 [01:27<00:15, 1.01s/it]\n 86%|████████▌ | 87/101 [01:28<00:14, 1.01s/it]\n 87%|████████▋ | 88/101 [01:29<00:13, 1.01s/it]\n 88%|████████▊ | 89/101 [01:30<00:12, 1.01s/it]\n 89%|████████▉ | 90/101 [01:31<00:11, 1.01s/it]\n 90%|█████████ | 91/101 [01:32<00:10, 1.01s/it]\n 91%|█████████ | 92/101 [01:33<00:09, 1.01s/it]\n 92%|█████████▏| 93/101 [01:34<00:08, 1.01s/it]\n 93%|█████████▎| 94/101 [01:35<00:07, 1.01s/it]\n 94%|█████████▍| 95/101 [01:36<00:06, 1.01s/it]\n 95%|█████████▌| 96/101 [01:37<00:05, 1.01s/it]\n 96%|█████████▌| 97/101 [01:38<00:04, 1.01s/it]\n 97%|█████████▋| 98/101 [01:39<00:03, 1.01s/it]\n 98%|█████████▊| 99/101 [01:40<00:02, 1.01s/it]\n 99%|█████████▉| 100/101 [01:41<00:01, 1.01s/it]\n100%|██████████| 101/101 [01:42<00:00, 1.01s/it]\n100%|██████████| 101/101 [01:42<00:00, 1.01s/it]", "metrics": { "predict_time": 109.495585, "total_time": 279.337115 }, "output": [ "https://pbxt.replicate.delivery/tkPM4fKe9eRVvIYaYSscE6ebXxXerEUfpEW03LBh0JdpKbUaE/out-0.png", "https://pbxt.replicate.delivery/RppKyJKLd5qdCBgXeGUXf0cbsbObU3unx9ftfNuzKypsyGlGB/out-1.png", "https://pbxt.replicate.delivery/UfuDnq8qln2UMiTqGB8uaeF0R3fJLcMcCBxXSfdnbtHtyGlGB/out-2.png", "https://pbxt.replicate.delivery/zxnEzmxw5vr3EVLJtFsJKYtbubKhAdmO4RmJgH6kJGLLbUaE/out-3.png" ], "started_at": "2023-09-30T00:15:59.281916Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ayhpkjlbfjaycapdiak6wqncg4", "cancel": "https://api.replicate.com/v1/predictions/ayhpkjlbfjaycapdiak6wqncg4/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 17186 Prompt: punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead emerging from inside a Cracked and crumbling porcelain statue finished with a blue translucent coating on black, both eyes looking forward, glowing green magenta neon light coming leaks from the cracks, pieces missing, On the style of <s0><s1> txt2img mode 0%| | 0/101 [00:00<?, ?it/s] 1%| | 1/101 [00:01<02:29, 1.50s/it] 2%|▏ | 2/101 [00:02<01:59, 1.21s/it] 3%|▎ | 3/101 [00:03<01:49, 1.11s/it] 4%|▍ | 4/101 [00:04<01:43, 1.07s/it] 5%|▍ | 5/101 [00:05<01:40, 1.05s/it] 6%|▌ | 6/101 [00:06<01:38, 1.03s/it] 7%|▋ | 7/101 [00:07<01:36, 1.02s/it] 8%|▊ | 8/101 [00:08<01:34, 1.02s/it] 9%|▉ | 9/101 [00:09<01:33, 1.01s/it] 10%|▉ | 10/101 [00:10<01:32, 1.01s/it] 11%|█ | 11/101 [00:11<01:30, 1.01s/it] 12%|█▏ | 12/101 [00:12<01:29, 1.01s/it] 13%|█▎ | 13/101 [00:13<01:28, 1.01s/it] 14%|█▍ | 14/101 [00:14<01:27, 1.01s/it] 15%|█▍ | 15/101 [00:15<01:26, 1.01s/it] 16%|█▌ | 16/101 [00:16<01:25, 1.00s/it] 17%|█▋ | 17/101 [00:17<01:24, 1.00s/it] 18%|█▊ | 18/101 [00:18<01:23, 1.00s/it] 19%|█▉ | 19/101 [00:19<01:22, 1.00s/it] 20%|█▉ | 20/101 [00:20<01:21, 1.00s/it] 21%|██ | 21/101 [00:21<01:20, 1.00s/it] 22%|██▏ | 22/101 [00:22<01:19, 1.00s/it] 23%|██▎ | 23/101 [00:23<01:18, 1.00s/it] 24%|██▍ | 24/101 [00:24<01:17, 1.00s/it] 25%|██▍ | 25/101 [00:25<01:16, 1.00s/it] 26%|██▌ | 26/101 [00:26<01:15, 1.00s/it] 27%|██▋ | 27/101 [00:27<01:14, 1.00s/it] 28%|██▊ | 28/101 [00:28<01:13, 1.00s/it] 29%|██▊ | 29/101 [00:29<01:12, 1.00s/it] 30%|██▉ | 30/101 [00:30<01:11, 1.00s/it] 31%|███ | 31/101 [00:31<01:10, 1.00s/it] 32%|███▏ | 32/101 [00:32<01:09, 1.01s/it] 33%|███▎ | 33/101 [00:33<01:08, 1.01s/it] 34%|███▎ | 34/101 [00:34<01:07, 1.01s/it] 35%|███▍ | 35/101 [00:35<01:06, 1.01s/it] 36%|███▌ | 36/101 [00:36<01:05, 1.01s/it] 37%|███▋ | 37/101 [00:37<01:04, 1.01s/it] 38%|███▊ | 38/101 [00:38<01:03, 1.01s/it] 39%|███▊ | 39/101 [00:39<01:02, 1.01s/it] 40%|███▉ | 40/101 [00:40<01:01, 1.01s/it] 41%|████ | 41/101 [00:41<01:00, 1.01s/it] 42%|████▏ | 42/101 [00:42<00:59, 1.01s/it] 43%|████▎ | 43/101 [00:43<00:58, 1.01s/it] 44%|████▎ | 44/101 [00:44<00:57, 1.01s/it] 45%|████▍ | 45/101 [00:45<00:56, 1.01s/it] 46%|████▌ | 46/101 [00:46<00:55, 1.01s/it] 47%|████▋ | 47/101 [00:47<00:54, 1.01s/it] 48%|████▊ | 48/101 [00:48<00:53, 1.01s/it] 49%|████▊ | 49/101 [00:49<00:52, 1.01s/it] 50%|████▉ | 50/101 [00:50<00:51, 1.01s/it] 50%|█████ | 51/101 [00:51<00:50, 1.01s/it] 51%|█████▏ | 52/101 [00:52<00:49, 1.01s/it] 52%|█████▏ | 53/101 [00:53<00:48, 1.01s/it] 53%|█████▎ | 54/101 [00:54<00:47, 1.01s/it] 54%|█████▍ | 55/101 [00:55<00:46, 1.01s/it] 55%|█████▌ | 56/101 [00:56<00:45, 1.01s/it] 56%|█████▋ | 57/101 [00:57<00:44, 1.01s/it] 57%|█████▋ | 58/101 [00:58<00:43, 1.01s/it] 58%|█████▊ | 59/101 [00:59<00:42, 1.01s/it] 59%|█████▉ | 60/101 [01:00<00:41, 1.01s/it] 60%|██████ | 61/101 [01:01<00:40, 1.01s/it] 61%|██████▏ | 62/101 [01:02<00:39, 1.01s/it] 62%|██████▏ | 63/101 [01:03<00:38, 1.01s/it] 63%|██████▎ | 64/101 [01:04<00:37, 1.01s/it] 64%|██████▍ | 65/101 [01:05<00:36, 1.01s/it] 65%|██████▌ | 66/101 [01:06<00:35, 1.01s/it] 66%|██████▋ | 67/101 [01:08<00:34, 1.01s/it] 67%|██████▋ | 68/101 [01:09<00:33, 1.01s/it] 68%|██████▊ | 69/101 [01:10<00:32, 1.01s/it] 69%|██████▉ | 70/101 [01:11<00:31, 1.01s/it] 70%|███████ | 71/101 [01:12<00:30, 1.01s/it] 71%|███████▏ | 72/101 [01:13<00:29, 1.01s/it] 72%|███████▏ | 73/101 [01:14<00:28, 1.01s/it] 73%|███████▎ | 74/101 [01:15<00:27, 1.01s/it] 74%|███████▍ | 75/101 [01:16<00:26, 1.01s/it] 75%|███████▌ | 76/101 [01:17<00:25, 1.01s/it] 76%|███████▌ | 77/101 [01:18<00:24, 1.01s/it] 77%|███████▋ | 78/101 [01:19<00:23, 1.01s/it] 78%|███████▊ | 79/101 [01:20<00:22, 1.01s/it] 79%|███████▉ | 80/101 [01:21<00:21, 1.01s/it] 80%|████████ | 81/101 [01:22<00:20, 1.01s/it] 81%|████████ | 82/101 [01:23<00:19, 1.01s/it] 82%|████████▏ | 83/101 [01:24<00:18, 1.01s/it] 83%|████████▎ | 84/101 [01:25<00:17, 1.01s/it] 84%|████████▍ | 85/101 [01:26<00:16, 1.01s/it] 85%|████████▌ | 86/101 [01:27<00:15, 1.01s/it] 86%|████████▌ | 87/101 [01:28<00:14, 1.01s/it] 87%|████████▋ | 88/101 [01:29<00:13, 1.01s/it] 88%|████████▊ | 89/101 [01:30<00:12, 1.01s/it] 89%|████████▉ | 90/101 [01:31<00:11, 1.01s/it] 90%|█████████ | 91/101 [01:32<00:10, 1.01s/it] 91%|█████████ | 92/101 [01:33<00:09, 1.01s/it] 92%|█████████▏| 93/101 [01:34<00:08, 1.01s/it] 93%|█████████▎| 94/101 [01:35<00:07, 1.01s/it] 94%|█████████▍| 95/101 [01:36<00:06, 1.01s/it] 95%|█████████▌| 96/101 [01:37<00:05, 1.01s/it] 96%|█████████▌| 97/101 [01:38<00:04, 1.01s/it] 97%|█████████▋| 98/101 [01:39<00:03, 1.01s/it] 98%|█████████▊| 99/101 [01:40<00:02, 1.01s/it] 99%|█████████▉| 100/101 [01:41<00:01, 1.01s/it] 100%|██████████| 101/101 [01:42<00:00, 1.01s/it] 100%|██████████| 101/101 [01:42<00:00, 1.01s/it]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDklzfvhtb7k23k6v3ohcezo3q7uStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- image
- null
- width
- 928
- height
- 1312
- prompt
- in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic,
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", width: 928, height: 1312, prompt: "in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, "' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T21:20:52.443633Z", "created_at": "2023-09-30T21:18:43.506557Z", "data_removed": false, "error": null, "id": "klzfvhtb7k23k6v3ohcezo3q7u", "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": "Using seed: 59281\nPrompt: in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic,\ntxt2img mode\n 0%| | 0/101 [00:00<?, ?it/s]\n 1%| | 1/101 [00:01<01:59, 1.19s/it]\n 2%|▏ | 2/101 [00:02<01:57, 1.19s/it]\n 3%|▎ | 3/101 [00:03<01:56, 1.19s/it]\n 4%|▍ | 4/101 [00:04<01:55, 1.19s/it]\n 5%|▍ | 5/101 [00:05<01:54, 1.19s/it]\n 6%|▌ | 6/101 [00:07<01:53, 1.19s/it]\n 7%|▋ | 7/101 [00:08<01:52, 1.19s/it]\n 8%|▊ | 8/101 [00:09<01:51, 1.19s/it]\n 9%|▉ | 9/101 [00:10<01:49, 1.19s/it]\n 10%|▉ | 10/101 [00:11<01:48, 1.19s/it]\n 11%|█ | 11/101 [00:13<01:47, 1.19s/it]\n 12%|█▏ | 12/101 [00:14<01:45, 1.19s/it]\n 13%|█▎ | 13/101 [00:15<01:44, 1.19s/it]\n 14%|█▍ | 14/101 [00:16<01:43, 1.19s/it]\n 15%|█▍ | 15/101 [00:17<01:42, 1.19s/it]\n 16%|█▌ | 16/101 [00:19<01:41, 1.19s/it]\n 17%|█▋ | 17/101 [00:20<01:40, 1.19s/it]\n 18%|█▊ | 18/101 [00:21<01:38, 1.19s/it]\n 19%|█▉ | 19/101 [00:22<01:37, 1.19s/it]\n 20%|█▉ | 20/101 [00:23<01:36, 1.19s/it]\n 21%|██ | 21/101 [00:25<01:35, 1.19s/it]\n 22%|██▏ | 22/101 [00:26<01:34, 1.19s/it]\n 23%|██▎ | 23/101 [00:27<01:33, 1.19s/it]\n 24%|██▍ | 24/101 [00:28<01:31, 1.19s/it]\n 25%|██▍ | 25/101 [00:29<01:30, 1.19s/it]\n 26%|██▌ | 26/101 [00:31<01:29, 1.19s/it]\n 27%|██▋ | 27/101 [00:32<01:28, 1.20s/it]\n 28%|██▊ | 28/101 [00:33<01:27, 1.20s/it]\n 29%|██▊ | 29/101 [00:34<01:26, 1.20s/it]\n 30%|██▉ | 30/101 [00:35<01:25, 1.20s/it]\n 31%|███ | 31/101 [00:36<01:23, 1.20s/it]\n 32%|███▏ | 32/101 [00:38<01:22, 1.20s/it]\n 33%|███▎ | 33/101 [00:39<01:21, 1.20s/it]\n 34%|███▎ | 34/101 [00:40<01:20, 1.20s/it]\n 35%|███▍ | 35/101 [00:41<01:19, 1.20s/it]\n 36%|███▌ | 36/101 [00:42<01:17, 1.20s/it]\n 37%|███▋ | 37/101 [00:44<01:16, 1.20s/it]\n 38%|███▊ | 38/101 [00:45<01:15, 1.20s/it]\n 39%|███▊ | 39/101 [00:46<01:14, 1.20s/it]\n 40%|███▉ | 40/101 [00:47<01:13, 1.20s/it]\n 41%|████ | 41/101 [00:48<01:11, 1.20s/it]\n 42%|████▏ | 42/101 [00:50<01:10, 1.20s/it]\n 43%|████▎ | 43/101 [00:51<01:09, 1.20s/it]\n 44%|████▎ | 44/101 [00:52<01:08, 1.20s/it]\n 45%|████▍ | 45/101 [00:53<01:07, 1.20s/it]\n 46%|████▌ | 46/101 [00:54<01:05, 1.20s/it]\n 47%|████▋ | 47/101 [00:56<01:04, 1.20s/it]\n 48%|████▊ | 48/101 [00:57<01:03, 1.20s/it]\n 49%|████▊ | 49/101 [00:58<01:02, 1.20s/it]\n 50%|████▉ | 50/101 [00:59<01:01, 1.20s/it]\n 50%|█████ | 51/101 [01:00<01:00, 1.20s/it]\n 51%|█████▏ | 52/101 [01:02<00:58, 1.20s/it]\n 52%|█████▏ | 53/101 [01:03<00:57, 1.20s/it]\n 53%|█████▎ | 54/101 [01:04<00:56, 1.20s/it]\n 54%|█████▍ | 55/101 [01:05<00:55, 1.20s/it]\n 55%|█████▌ | 56/101 [01:06<00:54, 1.20s/it]\n 56%|█████▋ | 57/101 [01:08<00:52, 1.20s/it]\n 57%|█████▋ | 58/101 [01:09<00:51, 1.20s/it]\n 58%|█████▊ | 59/101 [01:10<00:50, 1.20s/it]\n 59%|█████▉ | 60/101 [01:11<00:49, 1.20s/it]\n 60%|██████ | 61/101 [01:12<00:48, 1.20s/it]\n 61%|██████▏ | 62/101 [01:14<00:46, 1.20s/it]\n 62%|██████▏ | 63/101 [01:15<00:45, 1.20s/it]\n 63%|██████▎ | 64/101 [01:16<00:44, 1.20s/it]\n 64%|██████▍ | 65/101 [01:17<00:43, 1.20s/it]\n 65%|██████▌ | 66/101 [01:18<00:42, 1.20s/it]\n 66%|██████▋ | 67/101 [01:20<00:40, 1.20s/it]\n 67%|██████▋ | 68/101 [01:21<00:39, 1.20s/it]\n 68%|██████▊ | 69/101 [01:22<00:38, 1.20s/it]\n 69%|██████▉ | 70/101 [01:23<00:37, 1.20s/it]\n 70%|███████ | 71/101 [01:25<00:36, 1.20s/it]\n 71%|███████▏ | 72/101 [01:26<00:34, 1.20s/it]\n 72%|███████▏ | 73/101 [01:27<00:33, 1.20s/it]\n 73%|███████▎ | 74/101 [01:28<00:32, 1.20s/it]\n 74%|███████▍ | 75/101 [01:29<00:31, 1.20s/it]\n 75%|███████▌ | 76/101 [01:31<00:30, 1.20s/it]\n 76%|███████▌ | 77/101 [01:32<00:28, 1.20s/it]\n 77%|███████▋ | 78/101 [01:33<00:27, 1.20s/it]\n 78%|███████▊ | 79/101 [01:34<00:26, 1.20s/it]\n 79%|███████▉ | 80/101 [01:35<00:25, 1.20s/it]\n 80%|████████ | 81/101 [01:37<00:24, 1.20s/it]\n 81%|████████ | 82/101 [01:38<00:22, 1.21s/it]\n 82%|████████▏ | 83/101 [01:39<00:21, 1.21s/it]\n 83%|████████▎ | 84/101 [01:40<00:20, 1.20s/it]\n 84%|████████▍ | 85/101 [01:41<00:19, 1.20s/it]\n 85%|████████▌ | 86/101 [01:43<00:18, 1.20s/it]\n 86%|████████▌ | 87/101 [01:44<00:16, 1.20s/it]\n 87%|████████▋ | 88/101 [01:45<00:15, 1.20s/it]\n 88%|████████▊ | 89/101 [01:46<00:14, 1.20s/it]\n 89%|████████▉ | 90/101 [01:47<00:13, 1.20s/it]\n 90%|█████████ | 91/101 [01:49<00:12, 1.20s/it]\n 91%|█████████ | 92/101 [01:50<00:10, 1.20s/it]\n 92%|█████████▏| 93/101 [01:51<00:09, 1.20s/it]\n 93%|█████████▎| 94/101 [01:52<00:08, 1.20s/it]\n 94%|█████████▍| 95/101 [01:53<00:07, 1.20s/it]\n 95%|█████████▌| 96/101 [01:55<00:06, 1.20s/it]\n 96%|█████████▌| 97/101 [01:56<00:04, 1.20s/it]\n 97%|█████████▋| 98/101 [01:57<00:03, 1.20s/it]\n 98%|█████████▊| 99/101 [01:58<00:02, 1.20s/it]\n 99%|█████████▉| 100/101 [01:59<00:01, 1.20s/it]\n100%|██████████| 101/101 [02:01<00:00, 1.20s/it]\n100%|██████████| 101/101 [02:01<00:00, 1.20s/it]", "metrics": { "predict_time": 128.938692, "total_time": 128.937076 }, "output": [ "https://pbxt.replicate.delivery/Siy20X8f7pwEPCpez75cV9DfSnMJljH3iMVNM0xsYVeFzQmGB/out-0.png", "https://pbxt.replicate.delivery/JCfbLu5g0gSHC6Id8IMKU9wpQVaiCWn9oQh4VVOfZhyyMkpRA/out-1.png", "https://pbxt.replicate.delivery/OjnHx5JqwOLMIpsT2C7eAcDTHCEsemLlymf11jHjuFkmZITjA/out-2.png", "https://pbxt.replicate.delivery/StA4l5jQ5Y4QK9jMhfEwqL66uJdefyvo8KDytOAuFEVpZITjA/out-3.png" ], "started_at": "2023-09-30T21:18:43.504941Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/klzfvhtb7k23k6v3ohcezo3q7u", "cancel": "https://api.replicate.com/v1/predictions/klzfvhtb7k23k6v3ohcezo3q7u/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 59281 Prompt: in total darkness iPhone is the only source of illumination of cyberpunk girls in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, txt2img mode 0%| | 0/101 [00:00<?, ?it/s] 1%| | 1/101 [00:01<01:59, 1.19s/it] 2%|▏ | 2/101 [00:02<01:57, 1.19s/it] 3%|▎ | 3/101 [00:03<01:56, 1.19s/it] 4%|▍ | 4/101 [00:04<01:55, 1.19s/it] 5%|▍ | 5/101 [00:05<01:54, 1.19s/it] 6%|▌ | 6/101 [00:07<01:53, 1.19s/it] 7%|▋ | 7/101 [00:08<01:52, 1.19s/it] 8%|▊ | 8/101 [00:09<01:51, 1.19s/it] 9%|▉ | 9/101 [00:10<01:49, 1.19s/it] 10%|▉ | 10/101 [00:11<01:48, 1.19s/it] 11%|█ | 11/101 [00:13<01:47, 1.19s/it] 12%|█▏ | 12/101 [00:14<01:45, 1.19s/it] 13%|█▎ | 13/101 [00:15<01:44, 1.19s/it] 14%|█▍ | 14/101 [00:16<01:43, 1.19s/it] 15%|█▍ | 15/101 [00:17<01:42, 1.19s/it] 16%|█▌ | 16/101 [00:19<01:41, 1.19s/it] 17%|█▋ | 17/101 [00:20<01:40, 1.19s/it] 18%|█▊ | 18/101 [00:21<01:38, 1.19s/it] 19%|█▉ | 19/101 [00:22<01:37, 1.19s/it] 20%|█▉ | 20/101 [00:23<01:36, 1.19s/it] 21%|██ | 21/101 [00:25<01:35, 1.19s/it] 22%|██▏ | 22/101 [00:26<01:34, 1.19s/it] 23%|██▎ | 23/101 [00:27<01:33, 1.19s/it] 24%|██▍ | 24/101 [00:28<01:31, 1.19s/it] 25%|██▍ | 25/101 [00:29<01:30, 1.19s/it] 26%|██▌ | 26/101 [00:31<01:29, 1.19s/it] 27%|██▋ | 27/101 [00:32<01:28, 1.20s/it] 28%|██▊ | 28/101 [00:33<01:27, 1.20s/it] 29%|██▊ | 29/101 [00:34<01:26, 1.20s/it] 30%|██▉ | 30/101 [00:35<01:25, 1.20s/it] 31%|███ | 31/101 [00:36<01:23, 1.20s/it] 32%|███▏ | 32/101 [00:38<01:22, 1.20s/it] 33%|███▎ | 33/101 [00:39<01:21, 1.20s/it] 34%|███▎ | 34/101 [00:40<01:20, 1.20s/it] 35%|███▍ | 35/101 [00:41<01:19, 1.20s/it] 36%|███▌ | 36/101 [00:42<01:17, 1.20s/it] 37%|███▋ | 37/101 [00:44<01:16, 1.20s/it] 38%|███▊ | 38/101 [00:45<01:15, 1.20s/it] 39%|███▊ | 39/101 [00:46<01:14, 1.20s/it] 40%|███▉ | 40/101 [00:47<01:13, 1.20s/it] 41%|████ | 41/101 [00:48<01:11, 1.20s/it] 42%|████▏ | 42/101 [00:50<01:10, 1.20s/it] 43%|████▎ | 43/101 [00:51<01:09, 1.20s/it] 44%|████▎ | 44/101 [00:52<01:08, 1.20s/it] 45%|████▍ | 45/101 [00:53<01:07, 1.20s/it] 46%|████▌ | 46/101 [00:54<01:05, 1.20s/it] 47%|████▋ | 47/101 [00:56<01:04, 1.20s/it] 48%|████▊ | 48/101 [00:57<01:03, 1.20s/it] 49%|████▊ | 49/101 [00:58<01:02, 1.20s/it] 50%|████▉ | 50/101 [00:59<01:01, 1.20s/it] 50%|█████ | 51/101 [01:00<01:00, 1.20s/it] 51%|█████▏ | 52/101 [01:02<00:58, 1.20s/it] 52%|█████▏ | 53/101 [01:03<00:57, 1.20s/it] 53%|█████▎ | 54/101 [01:04<00:56, 1.20s/it] 54%|█████▍ | 55/101 [01:05<00:55, 1.20s/it] 55%|█████▌ | 56/101 [01:06<00:54, 1.20s/it] 56%|█████▋ | 57/101 [01:08<00:52, 1.20s/it] 57%|█████▋ | 58/101 [01:09<00:51, 1.20s/it] 58%|█████▊ | 59/101 [01:10<00:50, 1.20s/it] 59%|█████▉ | 60/101 [01:11<00:49, 1.20s/it] 60%|██████ | 61/101 [01:12<00:48, 1.20s/it] 61%|██████▏ | 62/101 [01:14<00:46, 1.20s/it] 62%|██████▏ | 63/101 [01:15<00:45, 1.20s/it] 63%|██████▎ | 64/101 [01:16<00:44, 1.20s/it] 64%|██████▍ | 65/101 [01:17<00:43, 1.20s/it] 65%|██████▌ | 66/101 [01:18<00:42, 1.20s/it] 66%|██████▋ | 67/101 [01:20<00:40, 1.20s/it] 67%|██████▋ | 68/101 [01:21<00:39, 1.20s/it] 68%|██████▊ | 69/101 [01:22<00:38, 1.20s/it] 69%|██████▉ | 70/101 [01:23<00:37, 1.20s/it] 70%|███████ | 71/101 [01:25<00:36, 1.20s/it] 71%|███████▏ | 72/101 [01:26<00:34, 1.20s/it] 72%|███████▏ | 73/101 [01:27<00:33, 1.20s/it] 73%|███████▎ | 74/101 [01:28<00:32, 1.20s/it] 74%|███████▍ | 75/101 [01:29<00:31, 1.20s/it] 75%|███████▌ | 76/101 [01:31<00:30, 1.20s/it] 76%|███████▌ | 77/101 [01:32<00:28, 1.20s/it] 77%|███████▋ | 78/101 [01:33<00:27, 1.20s/it] 78%|███████▊ | 79/101 [01:34<00:26, 1.20s/it] 79%|███████▉ | 80/101 [01:35<00:25, 1.20s/it] 80%|████████ | 81/101 [01:37<00:24, 1.20s/it] 81%|████████ | 82/101 [01:38<00:22, 1.21s/it] 82%|████████▏ | 83/101 [01:39<00:21, 1.21s/it] 83%|████████▎ | 84/101 [01:40<00:20, 1.20s/it] 84%|████████▍ | 85/101 [01:41<00:19, 1.20s/it] 85%|████████▌ | 86/101 [01:43<00:18, 1.20s/it] 86%|████████▌ | 87/101 [01:44<00:16, 1.20s/it] 87%|████████▋ | 88/101 [01:45<00:15, 1.20s/it] 88%|████████▊ | 89/101 [01:46<00:14, 1.20s/it] 89%|████████▉ | 90/101 [01:47<00:13, 1.20s/it] 90%|█████████ | 91/101 [01:49<00:12, 1.20s/it] 91%|█████████ | 92/101 [01:50<00:10, 1.20s/it] 92%|█████████▏| 93/101 [01:51<00:09, 1.20s/it] 93%|█████████▎| 94/101 [01:52<00:08, 1.20s/it] 94%|█████████▍| 95/101 [01:53<00:07, 1.20s/it] 95%|█████████▌| 96/101 [01:55<00:06, 1.20s/it] 96%|█████████▌| 97/101 [01:56<00:04, 1.20s/it] 97%|█████████▋| 98/101 [01:57<00:03, 1.20s/it] 98%|█████████▊| 99/101 [01:58<00:02, 1.20s/it] 99%|█████████▉| 100/101 [01:59<00:01, 1.20s/it] 100%|██████████| 101/101 [02:01<00:00, 1.20s/it] 100%|██████████| 101/101 [02:01<00:00, 1.20s/it]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDbbbn26dboa4ctcaht67hi7pba4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1312
- prompt
- a cyberpunk taking a selfie in a divebar in the style of TOK
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { width: 928, height: 1312, prompt: "a cyberpunk taking a selfie in a divebar in the style of TOK", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="a cyberpunk taking a selfie in a divebar in the style of TOK"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-01T20:19:24.149070Z", "created_at": "2023-10-01T20:16:02.327577Z", "data_removed": false, "error": null, "id": "bbbn26dboa4ctcaht67hi7pba4", "input": { "width": 928, "height": 1312, "prompt": "a cyberpunk taking a selfie in a divebar in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 60445\nPrompt: a cyberpunk taking a selfie in a divebar in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:01<02:18, 1.75s/it]\n 2%|▎ | 2/80 [00:02<01:51, 1.43s/it]\n 4%|▍ | 3/80 [00:04<01:41, 1.32s/it]\n 5%|▌ | 4/80 [00:05<01:36, 1.27s/it]\n 6%|▋ | 5/80 [00:06<01:33, 1.25s/it]\n 8%|▊ | 6/80 [00:07<01:30, 1.23s/it]\n 9%|▉ | 7/80 [00:08<01:28, 1.22s/it]\n 10%|█ | 8/80 [00:10<01:27, 1.21s/it]\n 11%|█▏ | 9/80 [00:11<01:25, 1.21s/it]\n 12%|█▎ | 10/80 [00:12<01:24, 1.20s/it]\n 14%|█▍ | 11/80 [00:13<01:22, 1.20s/it]\n 15%|█▌ | 12/80 [00:14<01:21, 1.20s/it]\n 16%|█▋ | 13/80 [00:16<01:20, 1.20s/it]\n 18%|█▊ | 14/80 [00:17<01:19, 1.20s/it]\n 19%|█▉ | 15/80 [00:18<01:17, 1.20s/it]\n 20%|██ | 16/80 [00:19<01:16, 1.20s/it]\n 21%|██▏ | 17/80 [00:20<01:15, 1.20s/it]\n 22%|██▎ | 18/80 [00:22<01:14, 1.20s/it]\n 24%|██▍ | 19/80 [00:23<01:13, 1.20s/it]\n 25%|██▌ | 20/80 [00:24<01:11, 1.20s/it]\n 26%|██▋ | 21/80 [00:25<01:10, 1.20s/it]\n 28%|██▊ | 22/80 [00:26<01:09, 1.20s/it]\n 29%|██▉ | 23/80 [00:28<01:08, 1.20s/it]\n 30%|███ | 24/80 [00:29<01:07, 1.20s/it]\n 31%|███▏ | 25/80 [00:30<01:05, 1.20s/it]\n 32%|███▎ | 26/80 [00:31<01:04, 1.20s/it]\n 34%|███▍ | 27/80 [00:32<01:03, 1.20s/it]\n 35%|███▌ | 28/80 [00:34<01:02, 1.20s/it]\n 36%|███▋ | 29/80 [00:35<01:01, 1.20s/it]\n 38%|███▊ | 30/80 [00:36<01:00, 1.20s/it]\n 39%|███▉ | 31/80 [00:37<00:58, 1.20s/it]\n 40%|████ | 32/80 [00:38<00:57, 1.20s/it]\n 41%|████▏ | 33/80 [00:40<00:56, 1.20s/it]\n 42%|████▎ | 34/80 [00:41<00:55, 1.20s/it]\n 44%|████▍ | 35/80 [00:42<00:54, 1.21s/it]\n 45%|████▌ | 36/80 [00:43<00:52, 1.20s/it]\n 46%|████▋ | 37/80 [00:44<00:51, 1.20s/it]\n 48%|████▊ | 38/80 [00:46<00:50, 1.20s/it]\n 49%|████▉ | 39/80 [00:47<00:49, 1.20s/it]\n 50%|█████ | 40/80 [00:48<00:48, 1.21s/it]\n 51%|█████▏ | 41/80 [00:49<00:46, 1.20s/it]\n 52%|█████▎ | 42/80 [00:50<00:45, 1.20s/it]\n 54%|█████▍ | 43/80 [00:52<00:44, 1.20s/it]\n 55%|█████▌ | 44/80 [00:53<00:43, 1.20s/it]\n 56%|█████▋ | 45/80 [00:54<00:42, 1.20s/it]\n 57%|█████▊ | 46/80 [00:55<00:40, 1.20s/it]\n 59%|█████▉ | 47/80 [00:56<00:39, 1.20s/it]\n 60%|██████ | 48/80 [00:58<00:38, 1.20s/it]\n 61%|██████▏ | 49/80 [00:59<00:37, 1.20s/it]\n 62%|██████▎ | 50/80 [01:00<00:36, 1.20s/it]\n 64%|██████▍ | 51/80 [01:01<00:34, 1.21s/it]\n 65%|██████▌ | 52/80 [01:02<00:33, 1.21s/it]\n 66%|██████▋ | 53/80 [01:04<00:32, 1.20s/it]\n 68%|██████▊ | 54/80 [01:05<00:31, 1.20s/it]\n 69%|██████▉ | 55/80 [01:06<00:30, 1.21s/it]\n 70%|███████ | 56/80 [01:07<00:28, 1.21s/it]\n 71%|███████▏ | 57/80 [01:09<00:27, 1.20s/it]\n 72%|███████▎ | 58/80 [01:10<00:26, 1.21s/it]\n 74%|███████▍ | 59/80 [01:11<00:25, 1.21s/it]\n 75%|███████▌ | 60/80 [01:12<00:24, 1.21s/it]\n 76%|███████▋ | 61/80 [01:13<00:22, 1.21s/it]\n 78%|███████▊ | 62/80 [01:15<00:21, 1.21s/it]\n 79%|███████▉ | 63/80 [01:16<00:20, 1.21s/it]\n 80%|████████ | 64/80 [01:17<00:19, 1.21s/it]\n 81%|████████▏ | 65/80 [01:18<00:18, 1.21s/it]\n 82%|████████▎ | 66/80 [01:19<00:16, 1.21s/it]\n 84%|████████▍ | 67/80 [01:21<00:15, 1.21s/it]\n 85%|████████▌ | 68/80 [01:22<00:14, 1.21s/it]\n 86%|████████▋ | 69/80 [01:23<00:13, 1.21s/it]\n 88%|████████▊ | 70/80 [01:24<00:12, 1.21s/it]\n 89%|████████▉ | 71/80 [01:25<00:10, 1.21s/it]\n 90%|█████████ | 72/80 [01:27<00:09, 1.21s/it]\n 91%|█████████▏| 73/80 [01:28<00:08, 1.21s/it]\n 92%|█████████▎| 74/80 [01:29<00:07, 1.21s/it]\n 94%|█████████▍| 75/80 [01:30<00:06, 1.21s/it]\n 95%|█████████▌| 76/80 [01:31<00:04, 1.21s/it]\n 96%|█████████▋| 77/80 [01:33<00:03, 1.21s/it]\n 98%|█████████▊| 78/80 [01:34<00:02, 1.21s/it]\n 99%|█████████▉| 79/80 [01:35<00:01, 1.21s/it]\n100%|██████████| 80/80 [01:36<00:00, 1.21s/it]\n100%|██████████| 80/80 [01:36<00:00, 1.21s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:01<00:19, 1.01s/it]\n 10%|█ | 2/20 [00:02<00:18, 1.01s/it]\n 15%|█▌ | 3/20 [00:03<00:17, 1.01s/it]\n 20%|██ | 4/20 [00:04<00:16, 1.01s/it]\n 25%|██▌ | 5/20 [00:05<00:15, 1.01s/it]\n 30%|███ | 6/20 [00:06<00:14, 1.01s/it]\n 35%|███▌ | 7/20 [00:07<00:13, 1.01s/it]\n 40%|████ | 8/20 [00:08<00:12, 1.01s/it]\n 45%|████▌ | 9/20 [00:09<00:11, 1.01s/it]\n 50%|█████ | 10/20 [00:10<00:10, 1.01s/it]\n 55%|█████▌ | 11/20 [00:11<00:09, 1.01s/it]\n 60%|██████ | 12/20 [00:12<00:08, 1.01s/it]\n 65%|██████▌ | 13/20 [00:13<00:07, 1.01s/it]\n 70%|███████ | 14/20 [00:14<00:06, 1.01s/it]\n 75%|███████▌ | 15/20 [00:15<00:05, 1.01s/it]\n 80%|████████ | 16/20 [00:16<00:04, 1.01s/it]\n 85%|████████▌ | 17/20 [00:17<00:03, 1.01s/it]\n 90%|█████████ | 18/20 [00:18<00:02, 1.01s/it]\n 95%|█████████▌| 19/20 [00:19<00:01, 1.01s/it]\n100%|██████████| 20/20 [00:20<00:00, 1.01s/it]\n100%|██████████| 20/20 [00:20<00:00, 1.01s/it]", "metrics": { "predict_time": 129.452848, "total_time": 201.821493 }, "output": [ "https://pbxt.replicate.delivery/FBkiCvnopFbGKx5ectv8QOIzYZqiMWP7QOP2cVX2ARGiM80IA/out-0.png", "https://pbxt.replicate.delivery/18TtKIXerd2KWKfvWYKiTMlYPxfZcZV7e3g3tZt2pdQokhnGB/out-1.png", "https://pbxt.replicate.delivery/17OFd6Z1AEIJE9DQhTpvdFgxO3JmnVrDwyLLB8Dkft8lM80IA/out-2.png", "https://pbxt.replicate.delivery/imXonkngtaKZBhOYA2frQAWrYLAKL2wfxETzaNwf1cVWywTjA/out-3.png" ], "started_at": "2023-10-01T20:17:14.696222Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bbbn26dboa4ctcaht67hi7pba4", "cancel": "https://api.replicate.com/v1/predictions/bbbn26dboa4ctcaht67hi7pba4/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 60445 Prompt: a cyberpunk taking a selfie in a divebar in the style of <s0><s1> txt2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:01<02:18, 1.75s/it] 2%|▎ | 2/80 [00:02<01:51, 1.43s/it] 4%|▍ | 3/80 [00:04<01:41, 1.32s/it] 5%|▌ | 4/80 [00:05<01:36, 1.27s/it] 6%|▋ | 5/80 [00:06<01:33, 1.25s/it] 8%|▊ | 6/80 [00:07<01:30, 1.23s/it] 9%|▉ | 7/80 [00:08<01:28, 1.22s/it] 10%|█ | 8/80 [00:10<01:27, 1.21s/it] 11%|█▏ | 9/80 [00:11<01:25, 1.21s/it] 12%|█▎ | 10/80 [00:12<01:24, 1.20s/it] 14%|█▍ | 11/80 [00:13<01:22, 1.20s/it] 15%|█▌ | 12/80 [00:14<01:21, 1.20s/it] 16%|█▋ | 13/80 [00:16<01:20, 1.20s/it] 18%|█▊ | 14/80 [00:17<01:19, 1.20s/it] 19%|█▉ | 15/80 [00:18<01:17, 1.20s/it] 20%|██ | 16/80 [00:19<01:16, 1.20s/it] 21%|██▏ | 17/80 [00:20<01:15, 1.20s/it] 22%|██▎ | 18/80 [00:22<01:14, 1.20s/it] 24%|██▍ | 19/80 [00:23<01:13, 1.20s/it] 25%|██▌ | 20/80 [00:24<01:11, 1.20s/it] 26%|██▋ | 21/80 [00:25<01:10, 1.20s/it] 28%|██▊ | 22/80 [00:26<01:09, 1.20s/it] 29%|██▉ | 23/80 [00:28<01:08, 1.20s/it] 30%|███ | 24/80 [00:29<01:07, 1.20s/it] 31%|███▏ | 25/80 [00:30<01:05, 1.20s/it] 32%|███▎ | 26/80 [00:31<01:04, 1.20s/it] 34%|███▍ | 27/80 [00:32<01:03, 1.20s/it] 35%|███▌ | 28/80 [00:34<01:02, 1.20s/it] 36%|███▋ | 29/80 [00:35<01:01, 1.20s/it] 38%|███▊ | 30/80 [00:36<01:00, 1.20s/it] 39%|███▉ | 31/80 [00:37<00:58, 1.20s/it] 40%|████ | 32/80 [00:38<00:57, 1.20s/it] 41%|████▏ | 33/80 [00:40<00:56, 1.20s/it] 42%|████▎ | 34/80 [00:41<00:55, 1.20s/it] 44%|████▍ | 35/80 [00:42<00:54, 1.21s/it] 45%|████▌ | 36/80 [00:43<00:52, 1.20s/it] 46%|████▋ | 37/80 [00:44<00:51, 1.20s/it] 48%|████▊ | 38/80 [00:46<00:50, 1.20s/it] 49%|████▉ | 39/80 [00:47<00:49, 1.20s/it] 50%|█████ | 40/80 [00:48<00:48, 1.21s/it] 51%|█████▏ | 41/80 [00:49<00:46, 1.20s/it] 52%|█████▎ | 42/80 [00:50<00:45, 1.20s/it] 54%|█████▍ | 43/80 [00:52<00:44, 1.20s/it] 55%|█████▌ | 44/80 [00:53<00:43, 1.20s/it] 56%|█████▋ | 45/80 [00:54<00:42, 1.20s/it] 57%|█████▊ | 46/80 [00:55<00:40, 1.20s/it] 59%|█████▉ | 47/80 [00:56<00:39, 1.20s/it] 60%|██████ | 48/80 [00:58<00:38, 1.20s/it] 61%|██████▏ | 49/80 [00:59<00:37, 1.20s/it] 62%|██████▎ | 50/80 [01:00<00:36, 1.20s/it] 64%|██████▍ | 51/80 [01:01<00:34, 1.21s/it] 65%|██████▌ | 52/80 [01:02<00:33, 1.21s/it] 66%|██████▋ | 53/80 [01:04<00:32, 1.20s/it] 68%|██████▊ | 54/80 [01:05<00:31, 1.20s/it] 69%|██████▉ | 55/80 [01:06<00:30, 1.21s/it] 70%|███████ | 56/80 [01:07<00:28, 1.21s/it] 71%|███████▏ | 57/80 [01:09<00:27, 1.20s/it] 72%|███████▎ | 58/80 [01:10<00:26, 1.21s/it] 74%|███████▍ | 59/80 [01:11<00:25, 1.21s/it] 75%|███████▌ | 60/80 [01:12<00:24, 1.21s/it] 76%|███████▋ | 61/80 [01:13<00:22, 1.21s/it] 78%|███████▊ | 62/80 [01:15<00:21, 1.21s/it] 79%|███████▉ | 63/80 [01:16<00:20, 1.21s/it] 80%|████████ | 64/80 [01:17<00:19, 1.21s/it] 81%|████████▏ | 65/80 [01:18<00:18, 1.21s/it] 82%|████████▎ | 66/80 [01:19<00:16, 1.21s/it] 84%|████████▍ | 67/80 [01:21<00:15, 1.21s/it] 85%|████████▌ | 68/80 [01:22<00:14, 1.21s/it] 86%|████████▋ | 69/80 [01:23<00:13, 1.21s/it] 88%|████████▊ | 70/80 [01:24<00:12, 1.21s/it] 89%|████████▉ | 71/80 [01:25<00:10, 1.21s/it] 90%|█████████ | 72/80 [01:27<00:09, 1.21s/it] 91%|█████████▏| 73/80 [01:28<00:08, 1.21s/it] 92%|█████████▎| 74/80 [01:29<00:07, 1.21s/it] 94%|█████████▍| 75/80 [01:30<00:06, 1.21s/it] 95%|█████████▌| 76/80 [01:31<00:04, 1.21s/it] 96%|█████████▋| 77/80 [01:33<00:03, 1.21s/it] 98%|█████████▊| 78/80 [01:34<00:02, 1.21s/it] 99%|█████████▉| 79/80 [01:35<00:01, 1.21s/it] 100%|██████████| 80/80 [01:36<00:00, 1.21s/it] 100%|██████████| 80/80 [01:36<00:00, 1.21s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:01<00:19, 1.01s/it] 10%|█ | 2/20 [00:02<00:18, 1.01s/it] 15%|█▌ | 3/20 [00:03<00:17, 1.01s/it] 20%|██ | 4/20 [00:04<00:16, 1.01s/it] 25%|██▌ | 5/20 [00:05<00:15, 1.01s/it] 30%|███ | 6/20 [00:06<00:14, 1.01s/it] 35%|███▌ | 7/20 [00:07<00:13, 1.01s/it] 40%|████ | 8/20 [00:08<00:12, 1.01s/it] 45%|████▌ | 9/20 [00:09<00:11, 1.01s/it] 50%|█████ | 10/20 [00:10<00:10, 1.01s/it] 55%|█████▌ | 11/20 [00:11<00:09, 1.01s/it] 60%|██████ | 12/20 [00:12<00:08, 1.01s/it] 65%|██████▌ | 13/20 [00:13<00:07, 1.01s/it] 70%|███████ | 14/20 [00:14<00:06, 1.01s/it] 75%|███████▌ | 15/20 [00:15<00:05, 1.01s/it] 80%|████████ | 16/20 [00:16<00:04, 1.01s/it] 85%|████████▌ | 17/20 [00:17<00:03, 1.01s/it] 90%|█████████ | 18/20 [00:18<00:02, 1.01s/it] 95%|█████████▌| 19/20 [00:19<00:01, 1.01s/it] 100%|██████████| 20/20 [00:20<00:00, 1.01s/it] 100%|██████████| 20/20 [00:20<00:00, 1.01s/it]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDyhh5j2lbcxc5jcajd4u6y7qm3qStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- cyberpunk2077 divebar bathroom covered with graffiti
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 928, "height": 1232, "prompt": "cyberpunk2077 divebar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { width: 928, height: 1232, prompt: "cyberpunk2077 divebar bathroom covered with graffiti", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "width": 928, "height": 1232, "prompt": "cyberpunk2077 divebar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "width": 928, "height": 1232, "prompt": "cyberpunk2077 divebar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="cyberpunk2077 divebar bathroom covered with graffiti"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 928, "height": 1232, "prompt": "cyberpunk2077 divebar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-01T21:09:53.673716Z", "created_at": "2023-10-01T21:06:54.017959Z", "data_removed": false, "error": null, "id": "yhh5j2lbcxc5jcajd4u6y7qm3q", "input": { "width": 928, "height": 1232, "prompt": "cyberpunk2077 divebar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 39399\nPrompt: cyberpunk2077 divebar bathroom covered with graffiti\ntxt2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:02<02:47, 2.12s/it]\n 2%|▎ | 2/80 [00:03<01:59, 1.53s/it]\n 4%|▍ | 3/80 [00:04<01:43, 1.35s/it]\n 5%|▌ | 4/80 [00:05<01:35, 1.26s/it]\n 6%|▋ | 5/80 [00:06<01:31, 1.21s/it]\n 8%|▊ | 6/80 [00:07<01:27, 1.19s/it]\n 9%|▉ | 7/80 [00:08<01:25, 1.17s/it]\n 10%|█ | 8/80 [00:10<01:23, 1.16s/it]\n 11%|█▏ | 9/80 [00:11<01:21, 1.15s/it]\n 12%|█▎ | 10/80 [00:12<01:19, 1.14s/it]\n 14%|█▍ | 11/80 [00:13<01:18, 1.14s/it]\n 15%|█▌ | 12/80 [00:14<01:17, 1.13s/it]\n 16%|█▋ | 13/80 [00:15<01:15, 1.13s/it]\n 18%|█▊ | 14/80 [00:16<01:14, 1.13s/it]\n 19%|█▉ | 15/80 [00:17<01:13, 1.13s/it]\n 20%|██ | 16/80 [00:19<01:12, 1.13s/it]\n 21%|██▏ | 17/80 [00:20<01:11, 1.13s/it]\n 22%|██▎ | 18/80 [00:21<01:09, 1.13s/it]\n 24%|██▍ | 19/80 [00:22<01:08, 1.13s/it]\n 25%|██▌ | 20/80 [00:23<01:07, 1.13s/it]\n 26%|██▋ | 21/80 [00:24<01:06, 1.13s/it]\n 28%|██▊ | 22/80 [00:25<01:05, 1.13s/it]\n 29%|██▉ | 23/80 [00:26<01:04, 1.13s/it]\n 30%|███ | 24/80 [00:28<01:03, 1.13s/it]\n 31%|███▏ | 25/80 [00:29<01:02, 1.13s/it]\n 32%|███▎ | 26/80 [00:30<01:01, 1.13s/it]\n 34%|███▍ | 27/80 [00:31<00:59, 1.13s/it]\n 35%|███▌ | 28/80 [00:32<00:58, 1.13s/it]\n 36%|███▋ | 29/80 [00:33<00:57, 1.13s/it]\n 38%|███▊ | 30/80 [00:34<00:56, 1.13s/it]\n 39%|███▉ | 31/80 [00:35<00:55, 1.13s/it]\n 40%|████ | 32/80 [00:37<00:54, 1.13s/it]\n 41%|████▏ | 33/80 [00:38<00:53, 1.13s/it]\n 42%|████▎ | 34/80 [00:39<00:52, 1.13s/it]\n 44%|████▍ | 35/80 [00:40<00:51, 1.13s/it]\n 45%|████▌ | 36/80 [00:41<00:49, 1.13s/it]\n 46%|████▋ | 37/80 [00:42<00:48, 1.13s/it]\n 48%|████▊ | 38/80 [00:43<00:47, 1.13s/it]\n 49%|████▉ | 39/80 [00:45<00:46, 1.13s/it]\n 50%|█████ | 40/80 [00:46<00:45, 1.13s/it]\n 51%|█████▏ | 41/80 [00:47<00:44, 1.13s/it]\n 52%|█████▎ | 42/80 [00:48<00:43, 1.13s/it]\n 54%|█████▍ | 43/80 [00:49<00:41, 1.13s/it]\n 55%|█████▌ | 44/80 [00:50<00:40, 1.14s/it]\n 56%|█████▋ | 45/80 [00:51<00:39, 1.14s/it]\n 57%|█████▊ | 46/80 [00:53<00:38, 1.14s/it]\n 59%|█████▉ | 47/80 [00:54<00:37, 1.14s/it]\n 60%|██████ | 48/80 [00:55<00:36, 1.14s/it]\n 61%|██████▏ | 49/80 [00:56<00:35, 1.14s/it]\n 62%|██████▎ | 50/80 [00:57<00:34, 1.14s/it]\n 64%|██████▍ | 51/80 [00:58<00:32, 1.14s/it]\n 65%|██████▌ | 52/80 [00:59<00:31, 1.14s/it]\n 66%|██████▋ | 53/80 [01:00<00:30, 1.14s/it]\n 68%|██████▊ | 54/80 [01:02<00:29, 1.14s/it]\n 69%|██████▉ | 55/80 [01:03<00:28, 1.13s/it]\n 70%|███████ | 56/80 [01:04<00:27, 1.14s/it]\n 71%|███████▏ | 57/80 [01:05<00:26, 1.14s/it]\n 72%|███████▎ | 58/80 [01:06<00:25, 1.14s/it]\n 74%|███████▍ | 59/80 [01:07<00:23, 1.14s/it]\n 75%|███████▌ | 60/80 [01:08<00:22, 1.14s/it]\n 76%|███████▋ | 61/80 [01:10<00:21, 1.14s/it]\n 78%|███████▊ | 62/80 [01:11<00:20, 1.14s/it]\n 79%|███████▉ | 63/80 [01:12<00:19, 1.14s/it]\n 80%|████████ | 64/80 [01:13<00:18, 1.14s/it]\n 81%|████████▏ | 65/80 [01:14<00:17, 1.14s/it]\n 82%|████████▎ | 66/80 [01:15<00:15, 1.14s/it]\n 84%|████████▍ | 67/80 [01:16<00:14, 1.14s/it]\n 85%|████████▌ | 68/80 [01:18<00:13, 1.14s/it]\n 86%|████████▋ | 69/80 [01:19<00:12, 1.14s/it]\n 88%|████████▊ | 70/80 [01:20<00:11, 1.14s/it]\n 89%|████████▉ | 71/80 [01:21<00:10, 1.14s/it]\n 90%|█████████ | 72/80 [01:22<00:09, 1.14s/it]\n 91%|█████████▏| 73/80 [01:23<00:07, 1.14s/it]\n 92%|█████████▎| 74/80 [01:24<00:06, 1.14s/it]\n 94%|█████████▍| 75/80 [01:25<00:05, 1.14s/it]\n 95%|█████████▌| 76/80 [01:27<00:04, 1.14s/it]\n 96%|█████████▋| 77/80 [01:28<00:03, 1.14s/it]\n 98%|█████████▊| 78/80 [01:29<00:02, 1.14s/it]\n 99%|█████████▉| 79/80 [01:30<00:01, 1.14s/it]\n100%|██████████| 80/80 [01:31<00:00, 1.14s/it]\n100%|██████████| 80/80 [01:31<00:00, 1.15s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:17, 1.07it/s]\n 10%|█ | 2/20 [00:01<00:16, 1.07it/s]\n 15%|█▌ | 3/20 [00:02<00:15, 1.07it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.07it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.06it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.06it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.06it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.06it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.07it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.06it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.06it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.06it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.06it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.06it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.06it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.06it/s]\n 85%|████████▌ | 17/20 [00:15<00:02, 1.06it/s]\n 90%|█████████ | 18/20 [00:16<00:01, 1.06it/s]\n 95%|█████████▌| 19/20 [00:17<00:00, 1.06it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.06it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.06it/s]", "metrics": { "predict_time": 118.112974, "total_time": 179.655757 }, "output": [ "https://pbxt.replicate.delivery/8jbGSc6B127JMVeMEMPzhnxhKbPGgWXJ1vVodM95bl1Pk80IA/out-0.png", "https://pbxt.replicate.delivery/LNktcLBoeiUndCB8JvxY6AQ31g4CQltpgZ4VEtebqkrgI5pRA/out-1.png", "https://pbxt.replicate.delivery/SGtifFSWbeoVz0qHv8f46h4f1tfjvWotezZD51wPCHuJISe0IA/out-2.png", "https://pbxt.replicate.delivery/jxYjeNt6hkQPMaV1a3PrS0Ft1mvNh1kaYUH0ZroK6fthI5pRA/out-3.png" ], "started_at": "2023-10-01T21:07:55.560742Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yhh5j2lbcxc5jcajd4u6y7qm3q", "cancel": "https://api.replicate.com/v1/predictions/yhh5j2lbcxc5jcajd4u6y7qm3q/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 39399 Prompt: cyberpunk2077 divebar bathroom covered with graffiti txt2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:02<02:47, 2.12s/it] 2%|▎ | 2/80 [00:03<01:59, 1.53s/it] 4%|▍ | 3/80 [00:04<01:43, 1.35s/it] 5%|▌ | 4/80 [00:05<01:35, 1.26s/it] 6%|▋ | 5/80 [00:06<01:31, 1.21s/it] 8%|▊ | 6/80 [00:07<01:27, 1.19s/it] 9%|▉ | 7/80 [00:08<01:25, 1.17s/it] 10%|█ | 8/80 [00:10<01:23, 1.16s/it] 11%|█▏ | 9/80 [00:11<01:21, 1.15s/it] 12%|█▎ | 10/80 [00:12<01:19, 1.14s/it] 14%|█▍ | 11/80 [00:13<01:18, 1.14s/it] 15%|█▌ | 12/80 [00:14<01:17, 1.13s/it] 16%|█▋ | 13/80 [00:15<01:15, 1.13s/it] 18%|█▊ | 14/80 [00:16<01:14, 1.13s/it] 19%|█▉ | 15/80 [00:17<01:13, 1.13s/it] 20%|██ | 16/80 [00:19<01:12, 1.13s/it] 21%|██▏ | 17/80 [00:20<01:11, 1.13s/it] 22%|██▎ | 18/80 [00:21<01:09, 1.13s/it] 24%|██▍ | 19/80 [00:22<01:08, 1.13s/it] 25%|██▌ | 20/80 [00:23<01:07, 1.13s/it] 26%|██▋ | 21/80 [00:24<01:06, 1.13s/it] 28%|██▊ | 22/80 [00:25<01:05, 1.13s/it] 29%|██▉ | 23/80 [00:26<01:04, 1.13s/it] 30%|███ | 24/80 [00:28<01:03, 1.13s/it] 31%|███▏ | 25/80 [00:29<01:02, 1.13s/it] 32%|███▎ | 26/80 [00:30<01:01, 1.13s/it] 34%|███▍ | 27/80 [00:31<00:59, 1.13s/it] 35%|███▌ | 28/80 [00:32<00:58, 1.13s/it] 36%|███▋ | 29/80 [00:33<00:57, 1.13s/it] 38%|███▊ | 30/80 [00:34<00:56, 1.13s/it] 39%|███▉ | 31/80 [00:35<00:55, 1.13s/it] 40%|████ | 32/80 [00:37<00:54, 1.13s/it] 41%|████▏ | 33/80 [00:38<00:53, 1.13s/it] 42%|████▎ | 34/80 [00:39<00:52, 1.13s/it] 44%|████▍ | 35/80 [00:40<00:51, 1.13s/it] 45%|████▌ | 36/80 [00:41<00:49, 1.13s/it] 46%|████▋ | 37/80 [00:42<00:48, 1.13s/it] 48%|████▊ | 38/80 [00:43<00:47, 1.13s/it] 49%|████▉ | 39/80 [00:45<00:46, 1.13s/it] 50%|█████ | 40/80 [00:46<00:45, 1.13s/it] 51%|█████▏ | 41/80 [00:47<00:44, 1.13s/it] 52%|█████▎ | 42/80 [00:48<00:43, 1.13s/it] 54%|█████▍ | 43/80 [00:49<00:41, 1.13s/it] 55%|█████▌ | 44/80 [00:50<00:40, 1.14s/it] 56%|█████▋ | 45/80 [00:51<00:39, 1.14s/it] 57%|█████▊ | 46/80 [00:53<00:38, 1.14s/it] 59%|█████▉ | 47/80 [00:54<00:37, 1.14s/it] 60%|██████ | 48/80 [00:55<00:36, 1.14s/it] 61%|██████▏ | 49/80 [00:56<00:35, 1.14s/it] 62%|██████▎ | 50/80 [00:57<00:34, 1.14s/it] 64%|██████▍ | 51/80 [00:58<00:32, 1.14s/it] 65%|██████▌ | 52/80 [00:59<00:31, 1.14s/it] 66%|██████▋ | 53/80 [01:00<00:30, 1.14s/it] 68%|██████▊ | 54/80 [01:02<00:29, 1.14s/it] 69%|██████▉ | 55/80 [01:03<00:28, 1.13s/it] 70%|███████ | 56/80 [01:04<00:27, 1.14s/it] 71%|███████▏ | 57/80 [01:05<00:26, 1.14s/it] 72%|███████▎ | 58/80 [01:06<00:25, 1.14s/it] 74%|███████▍ | 59/80 [01:07<00:23, 1.14s/it] 75%|███████▌ | 60/80 [01:08<00:22, 1.14s/it] 76%|███████▋ | 61/80 [01:10<00:21, 1.14s/it] 78%|███████▊ | 62/80 [01:11<00:20, 1.14s/it] 79%|███████▉ | 63/80 [01:12<00:19, 1.14s/it] 80%|████████ | 64/80 [01:13<00:18, 1.14s/it] 81%|████████▏ | 65/80 [01:14<00:17, 1.14s/it] 82%|████████▎ | 66/80 [01:15<00:15, 1.14s/it] 84%|████████▍ | 67/80 [01:16<00:14, 1.14s/it] 85%|████████▌ | 68/80 [01:18<00:13, 1.14s/it] 86%|████████▋ | 69/80 [01:19<00:12, 1.14s/it] 88%|████████▊ | 70/80 [01:20<00:11, 1.14s/it] 89%|████████▉ | 71/80 [01:21<00:10, 1.14s/it] 90%|█████████ | 72/80 [01:22<00:09, 1.14s/it] 91%|█████████▏| 73/80 [01:23<00:07, 1.14s/it] 92%|█████████▎| 74/80 [01:24<00:06, 1.14s/it] 94%|█████████▍| 75/80 [01:25<00:05, 1.14s/it] 95%|█████████▌| 76/80 [01:27<00:04, 1.14s/it] 96%|█████████▋| 77/80 [01:28<00:03, 1.14s/it] 98%|█████████▊| 78/80 [01:29<00:02, 1.14s/it] 99%|█████████▉| 79/80 [01:30<00:01, 1.14s/it] 100%|██████████| 80/80 [01:31<00:00, 1.14s/it] 100%|██████████| 80/80 [01:31<00:00, 1.15s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:17, 1.07it/s] 10%|█ | 2/20 [00:01<00:16, 1.07it/s] 15%|█▌ | 3/20 [00:02<00:15, 1.07it/s] 20%|██ | 4/20 [00:03<00:15, 1.07it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.06it/s] 30%|███ | 6/20 [00:05<00:13, 1.06it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.06it/s] 40%|████ | 8/20 [00:07<00:11, 1.06it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.07it/s] 50%|█████ | 10/20 [00:09<00:09, 1.06it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.06it/s] 60%|██████ | 12/20 [00:11<00:07, 1.06it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.06it/s] 70%|███████ | 14/20 [00:13<00:05, 1.06it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.06it/s] 80%|████████ | 16/20 [00:15<00:03, 1.06it/s] 85%|████████▌ | 17/20 [00:15<00:02, 1.06it/s] 90%|█████████ | 18/20 [00:16<00:01, 1.06it/s] 95%|█████████▌| 19/20 [00:17<00:00, 1.06it/s] 100%|██████████| 20/20 [00:18<00:00, 1.06it/s] 100%|██████████| 20/20 [00:18<00:00, 1.06it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID57s3fdlbjk25vfrx62xtvdcis4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", width: 928, height: 1232, prompt: " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt=" cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-02T02:04:08.628097Z", "created_at": "2023-10-02T02:01:32.172197Z", "data_removed": false, "error": null, "id": "57s3fdlbjk25vfrx62xtvdcis4", "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 18097\nPrompt: cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:00, 1.03s/it]\n 3%|▎ | 2/60 [00:02<00:58, 1.01s/it]\n 5%|▌ | 3/60 [00:03<00:57, 1.01s/it]\n 7%|▋ | 4/60 [00:04<00:56, 1.01s/it]\n 8%|▊ | 5/60 [00:05<00:55, 1.01s/it]\n 10%|█ | 6/60 [00:06<00:54, 1.01s/it]\n 12%|█▏ | 7/60 [00:07<00:53, 1.01s/it]\n 13%|█▎ | 8/60 [00:08<00:52, 1.00s/it]\n 15%|█▌ | 9/60 [00:09<00:51, 1.00s/it]\n 17%|█▋ | 10/60 [00:10<00:50, 1.00s/it]\n 18%|█▊ | 11/60 [00:11<00:49, 1.00s/it]\n 20%|██ | 12/60 [00:12<00:48, 1.00s/it]\n 22%|██▏ | 13/60 [00:13<00:47, 1.00s/it]\n 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it]\n 25%|██▌ | 15/60 [00:15<00:45, 1.01s/it]\n 27%|██▋ | 16/60 [00:16<00:44, 1.01s/it]\n 28%|██▊ | 17/60 [00:17<00:43, 1.01s/it]\n 30%|███ | 18/60 [00:18<00:42, 1.01s/it]\n 32%|███▏ | 19/60 [00:19<00:41, 1.01s/it]\n 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it]\n 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it]\n 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it]\n 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it]\n 40%|████ | 24/60 [00:24<00:36, 1.01s/it]\n 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it]\n 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it]\n 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it]\n 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it]\n 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it]\n 50%|█████ | 30/60 [00:30<00:30, 1.01s/it]\n 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it]\n 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it]\n 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it]\n 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it]\n 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it]\n 60%|██████ | 36/60 [00:36<00:24, 1.01s/it]\n 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it]\n 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it]\n 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it]\n 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it]\n 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it]\n 70%|███████ | 42/60 [00:42<00:18, 1.01s/it]\n 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it]\n 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it]\n 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it]\n 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it]\n 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it]\n 80%|████████ | 48/60 [00:48<00:12, 1.01s/it]\n 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it]\n 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it]\n 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it]\n 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it]\n 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it]\n 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it]\n 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it]\n 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it]\n 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it]\n 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it]\n 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.02s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.22it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.22it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s]\n 20%|██ | 4/20 [00:03<00:13, 1.22it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.22it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.22it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.22it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.22it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]", "metrics": { "predict_time": 86.786356, "total_time": 156.4559 }, "output": [ "https://pbxt.replicate.delivery/G0eM2utnJpS4LSVRJg4zIuyD3myCceUiYgt0xgiKwsjWc9pRA/out-0.png", "https://pbxt.replicate.delivery/esDfTinAExnoeofZ4nyAYxt0KC7jexJJ94iEX7ecxNV7FXf0IA/out-1.png", "https://pbxt.replicate.delivery/Sg2yzGTQz5ZRAdm8ZlJPJ0e3dAMLEgB09CWDRNy2yqrLuepRA/out-2.png", "https://pbxt.replicate.delivery/9KtNZGgYqopEDh6hzVdcVqEJcKu04cJwscWIeQpxtaWMuepRA/out-3.png" ], "started_at": "2023-10-02T02:02:41.841741Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/57s3fdlbjk25vfrx62xtvdcis4", "cancel": "https://api.replicate.com/v1/predictions/57s3fdlbjk25vfrx62xtvdcis4/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 18097 Prompt: cyberpunk taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:00, 1.03s/it] 3%|▎ | 2/60 [00:02<00:58, 1.01s/it] 5%|▌ | 3/60 [00:03<00:57, 1.01s/it] 7%|▋ | 4/60 [00:04<00:56, 1.01s/it] 8%|▊ | 5/60 [00:05<00:55, 1.01s/it] 10%|█ | 6/60 [00:06<00:54, 1.01s/it] 12%|█▏ | 7/60 [00:07<00:53, 1.01s/it] 13%|█▎ | 8/60 [00:08<00:52, 1.00s/it] 15%|█▌ | 9/60 [00:09<00:51, 1.00s/it] 17%|█▋ | 10/60 [00:10<00:50, 1.00s/it] 18%|█▊ | 11/60 [00:11<00:49, 1.00s/it] 20%|██ | 12/60 [00:12<00:48, 1.00s/it] 22%|██▏ | 13/60 [00:13<00:47, 1.00s/it] 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it] 25%|██▌ | 15/60 [00:15<00:45, 1.01s/it] 27%|██▋ | 16/60 [00:16<00:44, 1.01s/it] 28%|██▊ | 17/60 [00:17<00:43, 1.01s/it] 30%|███ | 18/60 [00:18<00:42, 1.01s/it] 32%|███▏ | 19/60 [00:19<00:41, 1.01s/it] 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it] 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it] 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it] 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it] 40%|████ | 24/60 [00:24<00:36, 1.01s/it] 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it] 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it] 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it] 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it] 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it] 50%|█████ | 30/60 [00:30<00:30, 1.01s/it] 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it] 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it] 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it] 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it] 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it] 60%|██████ | 36/60 [00:36<00:24, 1.01s/it] 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it] 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it] 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it] 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it] 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it] 70%|███████ | 42/60 [00:42<00:18, 1.01s/it] 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it] 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it] 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it] 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it] 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it] 80%|████████ | 48/60 [00:48<00:12, 1.01s/it] 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it] 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it] 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it] 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it] 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it] 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it] 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it] 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it] 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it] 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it] 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.02s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.22it/s] 10%|█ | 2/20 [00:01<00:14, 1.22it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s] 20%|██ | 4/20 [00:03<00:13, 1.22it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s] 30%|███ | 6/20 [00:04<00:11, 1.22it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s] 40%|████ | 8/20 [00:06<00:09, 1.22it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s] 50%|█████ | 10/20 [00:08<00:08, 1.22it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s] 60%|██████ | 12/20 [00:09<00:06, 1.22it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s] 70%|███████ | 14/20 [00:11<00:04, 1.22it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s] 80%|████████ | 16/20 [00:13<00:03, 1.22it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID6j6h4y3biss6tv246tc6xxqmceStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/Jcvy83h7HoLcdUWUtpgkKbYY66ZnPZ3YvJ53W8dMgbwucqbl/IMG_3210.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/Jcvy83h7HoLcdUWUtpgkKbYY66ZnPZ3YvJ53W8dMgbwucqbl/IMG_3210.png", width: 928, height: 1232, prompt: " cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/Jcvy83h7HoLcdUWUtpgkKbYY66ZnPZ3YvJ53W8dMgbwucqbl/IMG_3210.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/Jcvy83h7HoLcdUWUtpgkKbYY66ZnPZ3YvJ53W8dMgbwucqbl/IMG_3210.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/Jcvy83h7HoLcdUWUtpgkKbYY66ZnPZ3YvJ53W8dMgbwucqbl/IMG_3210.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt=" cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/Jcvy83h7HoLcdUWUtpgkKbYY66ZnPZ3YvJ53W8dMgbwucqbl/IMG_3210.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-02T02:43:10.811235Z", "created_at": "2023-10-02T02:40:28.972614Z", "data_removed": false, "error": null, "id": "6j6h4y3biss6tv246tc6xxqmce", "input": { "image": "https://replicate.delivery/pbxt/Jcvy83h7HoLcdUWUtpgkKbYY66ZnPZ3YvJ53W8dMgbwucqbl/IMG_3210.png", "width": 928, "height": 1232, "prompt": " cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 58823\nPrompt: cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:03, 1.07s/it]\n 3%|▎ | 2/60 [00:02<01:02, 1.07s/it]\n 5%|▌ | 3/60 [00:03<01:01, 1.07s/it]\n 7%|▋ | 4/60 [00:04<00:59, 1.07s/it]\n 8%|▊ | 5/60 [00:05<00:58, 1.07s/it]\n 10%|█ | 6/60 [00:06<00:57, 1.07s/it]\n 12%|█▏ | 7/60 [00:07<00:56, 1.07s/it]\n 13%|█▎ | 8/60 [00:08<00:55, 1.07s/it]\n 15%|█▌ | 9/60 [00:09<00:54, 1.07s/it]\n 17%|█▋ | 10/60 [00:10<00:53, 1.07s/it]\n 18%|█▊ | 11/60 [00:11<00:52, 1.07s/it]\n 20%|██ | 12/60 [00:12<00:51, 1.07s/it]\n 22%|██▏ | 13/60 [00:13<00:50, 1.07s/it]\n 23%|██▎ | 14/60 [00:15<00:49, 1.08s/it]\n 25%|██▌ | 15/60 [00:16<00:48, 1.08s/it]\n 27%|██▋ | 16/60 [00:17<00:47, 1.08s/it]\n 28%|██▊ | 17/60 [00:18<00:46, 1.08s/it]\n 30%|███ | 18/60 [00:19<00:45, 1.08s/it]\n 32%|███▏ | 19/60 [00:20<00:44, 1.08s/it]\n 33%|███▎ | 20/60 [00:21<00:43, 1.08s/it]\n 35%|███▌ | 21/60 [00:22<00:42, 1.08s/it]\n 37%|███▋ | 22/60 [00:23<00:41, 1.08s/it]\n 38%|███▊ | 23/60 [00:24<00:39, 1.08s/it]\n 40%|████ | 24/60 [00:25<00:38, 1.08s/it]\n 42%|████▏ | 25/60 [00:26<00:37, 1.08s/it]\n 43%|████▎ | 26/60 [00:27<00:36, 1.08s/it]\n 45%|████▌ | 27/60 [00:29<00:35, 1.08s/it]\n 47%|████▋ | 28/60 [00:30<00:34, 1.08s/it]\n 48%|████▊ | 29/60 [00:31<00:33, 1.08s/it]\n 50%|█████ | 30/60 [00:32<00:32, 1.08s/it]\n 52%|█████▏ | 31/60 [00:33<00:31, 1.08s/it]\n 53%|█████▎ | 32/60 [00:34<00:30, 1.08s/it]\n 55%|█████▌ | 33/60 [00:35<00:29, 1.08s/it]\n 57%|█████▋ | 34/60 [00:36<00:28, 1.08s/it]\n 58%|█████▊ | 35/60 [00:37<00:27, 1.08s/it]\n 60%|██████ | 36/60 [00:38<00:26, 1.08s/it]\n 62%|██████▏ | 37/60 [00:39<00:24, 1.08s/it]\n 63%|██████▎ | 38/60 [00:40<00:23, 1.08s/it]\n 65%|██████▌ | 39/60 [00:42<00:22, 1.08s/it]\n 67%|██████▋ | 40/60 [00:43<00:21, 1.09s/it]\n 68%|██████▊ | 41/60 [00:44<00:20, 1.09s/it]\n 70%|███████ | 42/60 [00:45<00:19, 1.09s/it]\n 72%|███████▏ | 43/60 [00:46<00:18, 1.09s/it]\n 73%|███████▎ | 44/60 [00:47<00:17, 1.09s/it]\n 75%|███████▌ | 45/60 [00:48<00:16, 1.09s/it]\n 77%|███████▋ | 46/60 [00:49<00:15, 1.09s/it]\n 78%|███████▊ | 47/60 [00:50<00:14, 1.09s/it]\n 80%|████████ | 48/60 [00:51<00:13, 1.09s/it]\n 82%|████████▏ | 49/60 [00:52<00:11, 1.09s/it]\n 83%|████████▎ | 50/60 [00:54<00:10, 1.09s/it]\n 85%|████████▌ | 51/60 [00:55<00:09, 1.09s/it]\n 87%|████████▋ | 52/60 [00:56<00:08, 1.09s/it]\n 88%|████████▊ | 53/60 [00:57<00:07, 1.09s/it]\n 90%|█████████ | 54/60 [00:58<00:06, 1.09s/it]\n 92%|█████████▏| 55/60 [00:59<00:05, 1.09s/it]\n 93%|█████████▎| 56/60 [01:00<00:04, 1.09s/it]\n 95%|█████████▌| 57/60 [01:01<00:03, 1.09s/it]\n 97%|█████████▋| 58/60 [01:02<00:02, 1.09s/it]\n 98%|█████████▊| 59/60 [01:03<00:01, 1.09s/it]\n100%|██████████| 60/60 [01:04<00:00, 1.09s/it]\n100%|██████████| 60/60 [01:04<00:00, 1.08s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:16, 1.14it/s]\n 10%|█ | 2/20 [00:01<00:15, 1.14it/s]\n 15%|█▌ | 3/20 [00:02<00:14, 1.14it/s]\n 20%|██ | 4/20 [00:03<00:14, 1.14it/s]\n 25%|██▌ | 5/20 [00:04<00:13, 1.14it/s]\n 30%|███ | 6/20 [00:05<00:12, 1.14it/s]\n 35%|███▌ | 7/20 [00:06<00:11, 1.14it/s]\n 40%|████ | 8/20 [00:07<00:10, 1.14it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.14it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.14it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.14it/s]\n 60%|██████ | 12/20 [00:10<00:07, 1.14it/s]\n 65%|██████▌ | 13/20 [00:11<00:06, 1.14it/s]\n 70%|███████ | 14/20 [00:12<00:05, 1.14it/s]\n 75%|███████▌ | 15/20 [00:13<00:04, 1.14it/s]\n 80%|████████ | 16/20 [00:14<00:03, 1.14it/s]\n 85%|████████▌ | 17/20 [00:14<00:02, 1.14it/s]\n 90%|█████████ | 18/20 [00:15<00:01, 1.14it/s]\n 95%|█████████▌| 19/20 [00:16<00:00, 1.14it/s]\n100%|██████████| 20/20 [00:17<00:00, 1.13it/s]\n100%|██████████| 20/20 [00:17<00:00, 1.14it/s]", "metrics": { "predict_time": 90.56987, "total_time": 161.838621 }, "output": [ "https://pbxt.replicate.delivery/DGABbNilaFI5HZfS3U9kpsefnHwyWoayTIjfBTnkef8OPgf0IA/out-0.png", "https://pbxt.replicate.delivery/nCrfybqdx7SKJCebvCPapQJT2R0IeQLxvlfSBd2NqJQ2D4nGB/out-1.png", "https://pbxt.replicate.delivery/pEERFGEIsYpvP95To1qcE2gz8d5mA3fCXtTxIJs6tVkeAeTjA/out-2.png", "https://pbxt.replicate.delivery/HIrOyXs8xB4fe0bdB1C27NGgI75vO7wB5gSdWtjDheu9B8TjA/out-3.png" ], "started_at": "2023-10-02T02:41:40.241365Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6j6h4y3biss6tv246tc6xxqmce", "cancel": "https://api.replicate.com/v1/predictions/6j6h4y3biss6tv246tc6xxqmce/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 58823 Prompt: cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:03, 1.07s/it] 3%|▎ | 2/60 [00:02<01:02, 1.07s/it] 5%|▌ | 3/60 [00:03<01:01, 1.07s/it] 7%|▋ | 4/60 [00:04<00:59, 1.07s/it] 8%|▊ | 5/60 [00:05<00:58, 1.07s/it] 10%|█ | 6/60 [00:06<00:57, 1.07s/it] 12%|█▏ | 7/60 [00:07<00:56, 1.07s/it] 13%|█▎ | 8/60 [00:08<00:55, 1.07s/it] 15%|█▌ | 9/60 [00:09<00:54, 1.07s/it] 17%|█▋ | 10/60 [00:10<00:53, 1.07s/it] 18%|█▊ | 11/60 [00:11<00:52, 1.07s/it] 20%|██ | 12/60 [00:12<00:51, 1.07s/it] 22%|██▏ | 13/60 [00:13<00:50, 1.07s/it] 23%|██▎ | 14/60 [00:15<00:49, 1.08s/it] 25%|██▌ | 15/60 [00:16<00:48, 1.08s/it] 27%|██▋ | 16/60 [00:17<00:47, 1.08s/it] 28%|██▊ | 17/60 [00:18<00:46, 1.08s/it] 30%|███ | 18/60 [00:19<00:45, 1.08s/it] 32%|███▏ | 19/60 [00:20<00:44, 1.08s/it] 33%|███▎ | 20/60 [00:21<00:43, 1.08s/it] 35%|███▌ | 21/60 [00:22<00:42, 1.08s/it] 37%|███▋ | 22/60 [00:23<00:41, 1.08s/it] 38%|███▊ | 23/60 [00:24<00:39, 1.08s/it] 40%|████ | 24/60 [00:25<00:38, 1.08s/it] 42%|████▏ | 25/60 [00:26<00:37, 1.08s/it] 43%|████▎ | 26/60 [00:27<00:36, 1.08s/it] 45%|████▌ | 27/60 [00:29<00:35, 1.08s/it] 47%|████▋ | 28/60 [00:30<00:34, 1.08s/it] 48%|████▊ | 29/60 [00:31<00:33, 1.08s/it] 50%|█████ | 30/60 [00:32<00:32, 1.08s/it] 52%|█████▏ | 31/60 [00:33<00:31, 1.08s/it] 53%|█████▎ | 32/60 [00:34<00:30, 1.08s/it] 55%|█████▌ | 33/60 [00:35<00:29, 1.08s/it] 57%|█████▋ | 34/60 [00:36<00:28, 1.08s/it] 58%|█████▊ | 35/60 [00:37<00:27, 1.08s/it] 60%|██████ | 36/60 [00:38<00:26, 1.08s/it] 62%|██████▏ | 37/60 [00:39<00:24, 1.08s/it] 63%|██████▎ | 38/60 [00:40<00:23, 1.08s/it] 65%|██████▌ | 39/60 [00:42<00:22, 1.08s/it] 67%|██████▋ | 40/60 [00:43<00:21, 1.09s/it] 68%|██████▊ | 41/60 [00:44<00:20, 1.09s/it] 70%|███████ | 42/60 [00:45<00:19, 1.09s/it] 72%|███████▏ | 43/60 [00:46<00:18, 1.09s/it] 73%|███████▎ | 44/60 [00:47<00:17, 1.09s/it] 75%|███████▌ | 45/60 [00:48<00:16, 1.09s/it] 77%|███████▋ | 46/60 [00:49<00:15, 1.09s/it] 78%|███████▊ | 47/60 [00:50<00:14, 1.09s/it] 80%|████████ | 48/60 [00:51<00:13, 1.09s/it] 82%|████████▏ | 49/60 [00:52<00:11, 1.09s/it] 83%|████████▎ | 50/60 [00:54<00:10, 1.09s/it] 85%|████████▌ | 51/60 [00:55<00:09, 1.09s/it] 87%|████████▋ | 52/60 [00:56<00:08, 1.09s/it] 88%|████████▊ | 53/60 [00:57<00:07, 1.09s/it] 90%|█████████ | 54/60 [00:58<00:06, 1.09s/it] 92%|█████████▏| 55/60 [00:59<00:05, 1.09s/it] 93%|█████████▎| 56/60 [01:00<00:04, 1.09s/it] 95%|█████████▌| 57/60 [01:01<00:03, 1.09s/it] 97%|█████████▋| 58/60 [01:02<00:02, 1.09s/it] 98%|█████████▊| 59/60 [01:03<00:01, 1.09s/it] 100%|██████████| 60/60 [01:04<00:00, 1.09s/it] 100%|██████████| 60/60 [01:04<00:00, 1.08s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:16, 1.14it/s] 10%|█ | 2/20 [00:01<00:15, 1.14it/s] 15%|█▌ | 3/20 [00:02<00:14, 1.14it/s] 20%|██ | 4/20 [00:03<00:14, 1.14it/s] 25%|██▌ | 5/20 [00:04<00:13, 1.14it/s] 30%|███ | 6/20 [00:05<00:12, 1.14it/s] 35%|███▌ | 7/20 [00:06<00:11, 1.14it/s] 40%|████ | 8/20 [00:07<00:10, 1.14it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.14it/s] 50%|█████ | 10/20 [00:08<00:08, 1.14it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.14it/s] 60%|██████ | 12/20 [00:10<00:07, 1.14it/s] 65%|██████▌ | 13/20 [00:11<00:06, 1.14it/s] 70%|███████ | 14/20 [00:12<00:05, 1.14it/s] 75%|███████▌ | 15/20 [00:13<00:04, 1.14it/s] 80%|████████ | 16/20 [00:14<00:03, 1.14it/s] 85%|████████▌ | 17/20 [00:14<00:02, 1.14it/s] 90%|█████████ | 18/20 [00:15<00:01, 1.14it/s] 95%|█████████▌| 19/20 [00:16<00:00, 1.14it/s] 100%|██████████| 20/20 [00:17<00:00, 1.13it/s] 100%|██████████| 20/20 [00:17<00:00, 1.14it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDepm7oqtbozmmt63csbgg3mjtaaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", width: 928, height: 1232, prompt: "Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-02T03:00:00.053738Z", "created_at": "2023-10-02T02:57:50.800612Z", "data_removed": false, "error": null, "id": "epm7oqtbozmmt63csbgg3mjtaa", "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 51245\nPrompt: Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<00:59, 1.00s/it]\n 3%|▎ | 2/60 [00:02<00:58, 1.00s/it]\n 5%|▌ | 3/60 [00:03<00:57, 1.00s/it]\n 7%|▋ | 4/60 [00:04<00:56, 1.00s/it]\n 8%|▊ | 5/60 [00:05<00:55, 1.00s/it]\n 10%|█ | 6/60 [00:06<00:54, 1.00s/it]\n 12%|█▏ | 7/60 [00:07<00:53, 1.00s/it]\n 13%|█▎ | 8/60 [00:08<00:51, 1.00it/s]\n 15%|█▌ | 9/60 [00:09<00:50, 1.00it/s]\n 17%|█▋ | 10/60 [00:10<00:49, 1.00it/s]\n 18%|█▊ | 11/60 [00:11<00:48, 1.00it/s]\n 20%|██ | 12/60 [00:12<00:47, 1.00it/s]\n 22%|██▏ | 13/60 [00:13<00:47, 1.00s/it]\n 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it]\n 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it]\n 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it]\n 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it]\n 30%|███ | 18/60 [00:18<00:42, 1.00s/it]\n 32%|███▏ | 19/60 [00:19<00:41, 1.00s/it]\n 33%|███▎ | 20/60 [00:20<00:40, 1.00s/it]\n 35%|███▌ | 21/60 [00:21<00:39, 1.00s/it]\n 37%|███▋ | 22/60 [00:22<00:38, 1.00s/it]\n 38%|███▊ | 23/60 [00:23<00:37, 1.00s/it]\n 40%|████ | 24/60 [00:24<00:36, 1.01s/it]\n 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it]\n 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it]\n 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it]\n 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it]\n 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it]\n 50%|█████ | 30/60 [00:30<00:30, 1.01s/it]\n 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it]\n 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it]\n 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it]\n 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it]\n 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it]\n 60%|██████ | 36/60 [00:36<00:24, 1.01s/it]\n 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it]\n 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it]\n 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it]\n 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it]\n 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it]\n 70%|███████ | 42/60 [00:42<00:18, 1.01s/it]\n 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it]\n 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it]\n 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it]\n 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it]\n 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it]\n 80%|████████ | 48/60 [00:48<00:12, 1.01s/it]\n 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it]\n 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it]\n 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it]\n 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it]\n 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it]\n 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it]\n 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it]\n 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it]\n 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it]\n 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it]\n 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.22it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.22it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s]\n 20%|██ | 4/20 [00:03<00:13, 1.22it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.22it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.22it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.22it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.22it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]", "metrics": { "predict_time": 84.593318, "total_time": 129.253126 }, "output": [ "https://pbxt.replicate.delivery/DKSRx6eaMjTcUS56mMYEaxWrCdRShzvVv4FAeS9mevBbh8TjA/out-0.png", "https://pbxt.replicate.delivery/RAolJ4KfMNXoJCGNpZfiLJx4HNEfo3rwViFv0nAu6Jf4C5nGB/out-1.png", "https://pbxt.replicate.delivery/oHYG5fJk8MU1bywIVLHplE6QReJRcMF2qabjUwvJRuavQeTjA/out-2.png", "https://pbxt.replicate.delivery/LP4m1VA7GQp4HR1xleWW6F5Q2HNZcRjJOLvVlMU0fz0vQeTjA/out-3.png" ], "started_at": "2023-10-02T02:58:35.460420Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/epm7oqtbozmmt63csbgg3mjtaa", "cancel": "https://api.replicate.com/v1/predictions/epm7oqtbozmmt63csbgg3mjtaa/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 51245 Prompt: Sick Boy from Trainspotting as cyberpunk taking a selfie in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<00:59, 1.00s/it] 3%|▎ | 2/60 [00:02<00:58, 1.00s/it] 5%|▌ | 3/60 [00:03<00:57, 1.00s/it] 7%|▋ | 4/60 [00:04<00:56, 1.00s/it] 8%|▊ | 5/60 [00:05<00:55, 1.00s/it] 10%|█ | 6/60 [00:06<00:54, 1.00s/it] 12%|█▏ | 7/60 [00:07<00:53, 1.00s/it] 13%|█▎ | 8/60 [00:08<00:51, 1.00it/s] 15%|█▌ | 9/60 [00:09<00:50, 1.00it/s] 17%|█▋ | 10/60 [00:10<00:49, 1.00it/s] 18%|█▊ | 11/60 [00:11<00:48, 1.00it/s] 20%|██ | 12/60 [00:12<00:47, 1.00it/s] 22%|██▏ | 13/60 [00:13<00:47, 1.00s/it] 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it] 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it] 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it] 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it] 30%|███ | 18/60 [00:18<00:42, 1.00s/it] 32%|███▏ | 19/60 [00:19<00:41, 1.00s/it] 33%|███▎ | 20/60 [00:20<00:40, 1.00s/it] 35%|███▌ | 21/60 [00:21<00:39, 1.00s/it] 37%|███▋ | 22/60 [00:22<00:38, 1.00s/it] 38%|███▊ | 23/60 [00:23<00:37, 1.00s/it] 40%|████ | 24/60 [00:24<00:36, 1.01s/it] 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it] 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it] 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it] 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it] 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it] 50%|█████ | 30/60 [00:30<00:30, 1.01s/it] 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it] 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it] 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it] 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it] 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it] 60%|██████ | 36/60 [00:36<00:24, 1.01s/it] 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it] 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it] 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it] 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it] 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it] 70%|███████ | 42/60 [00:42<00:18, 1.01s/it] 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it] 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it] 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it] 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it] 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it] 80%|████████ | 48/60 [00:48<00:12, 1.01s/it] 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it] 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it] 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it] 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it] 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it] 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it] 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it] 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it] 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it] 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it] 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.22it/s] 10%|█ | 2/20 [00:01<00:14, 1.22it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s] 20%|██ | 4/20 [00:03<00:13, 1.22it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s] 30%|███ | 6/20 [00:04<00:11, 1.22it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s] 40%|████ | 8/20 [00:06<00:09, 1.22it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s] 50%|█████ | 10/20 [00:08<00:08, 1.22it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s] 60%|██████ | 12/20 [00:09<00:06, 1.22it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s] 70%|███████ | 14/20 [00:11<00:04, 1.22it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s] 80%|████████ | 16/20 [00:13<00:03, 1.22it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDhiafb3dbeqchoufoj7npgeen6uStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", width: 928, height: 1232, prompt: "cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-02T18:04:10.896530Z", "created_at": "2023-10-02T18:02:48.190047Z", "data_removed": false, "error": null, "id": "hiafb3dbeqchoufoj7npgeen6u", "input": { "image": "https://replicate.delivery/pbxt/JcwEZtYc3pgjPjYIlvy7nnegfKXvdudEHFdBKAaToq4llZyc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 22013\nPrompt: cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:58, 1.01it/s]\n 3%|▎ | 2/60 [00:01<00:57, 1.01it/s]\n 5%|▌ | 3/60 [00:02<00:56, 1.01it/s]\n 7%|▋ | 4/60 [00:03<00:55, 1.01it/s]\n 8%|▊ | 5/60 [00:04<00:54, 1.01it/s]\n 10%|█ | 6/60 [00:05<00:53, 1.00it/s]\n 12%|█▏ | 7/60 [00:06<00:52, 1.00it/s]\n 13%|█▎ | 8/60 [00:07<00:51, 1.00it/s]\n 15%|█▌ | 9/60 [00:08<00:50, 1.01it/s]\n 17%|█▋ | 10/60 [00:09<00:49, 1.01it/s]\n 18%|█▊ | 11/60 [00:10<00:48, 1.01it/s]\n 20%|██ | 12/60 [00:11<00:47, 1.01it/s]\n 22%|██▏ | 13/60 [00:12<00:46, 1.00it/s]\n 23%|██▎ | 14/60 [00:13<00:45, 1.00it/s]\n 25%|██▌ | 15/60 [00:14<00:44, 1.00it/s]\n 27%|██▋ | 16/60 [00:15<00:43, 1.01it/s]\n 28%|██▊ | 17/60 [00:16<00:42, 1.01it/s]\n 30%|███ | 18/60 [00:17<00:41, 1.01it/s]\n 32%|███▏ | 19/60 [00:18<00:40, 1.01it/s]\n 33%|███▎ | 20/60 [00:19<00:39, 1.01it/s]\n 35%|███▌ | 21/60 [00:20<00:38, 1.01it/s]\n 37%|███▋ | 22/60 [00:21<00:37, 1.01it/s]\n 38%|███▊ | 23/60 [00:22<00:36, 1.00it/s]\n 40%|████ | 24/60 [00:23<00:35, 1.00it/s]\n 42%|████▏ | 25/60 [00:24<00:34, 1.00it/s]\n 43%|████▎ | 26/60 [00:25<00:33, 1.00it/s]\n 45%|████▌ | 27/60 [00:26<00:32, 1.00it/s]\n 47%|████▋ | 28/60 [00:27<00:31, 1.00it/s]\n 48%|████▊ | 29/60 [00:28<00:30, 1.00it/s]\n 50%|█████ | 30/60 [00:29<00:29, 1.00it/s]\n 52%|█████▏ | 31/60 [00:30<00:28, 1.00it/s]\n 53%|█████▎ | 32/60 [00:31<00:27, 1.00it/s]\n 55%|█████▌ | 33/60 [00:32<00:26, 1.00it/s]\n 57%|█████▋ | 34/60 [00:33<00:25, 1.00it/s]\n 58%|█████▊ | 35/60 [00:34<00:24, 1.00it/s]\n 60%|██████ | 36/60 [00:35<00:23, 1.00it/s]\n 62%|██████▏ | 37/60 [00:36<00:22, 1.00it/s]\n 63%|██████▎ | 38/60 [00:37<00:21, 1.00it/s]\n 65%|██████▌ | 39/60 [00:38<00:20, 1.00it/s]\n 67%|██████▋ | 40/60 [00:39<00:19, 1.00it/s]\n 68%|██████▊ | 41/60 [00:40<00:18, 1.00it/s]\n 70%|███████ | 42/60 [00:41<00:18, 1.00s/it]\n 72%|███████▏ | 43/60 [00:42<00:17, 1.00s/it]\n 73%|███████▎ | 44/60 [00:43<00:16, 1.00s/it]\n 75%|███████▌ | 45/60 [00:44<00:15, 1.00s/it]\n 77%|███████▋ | 46/60 [00:45<00:14, 1.00s/it]\n 78%|███████▊ | 47/60 [00:46<00:13, 1.00s/it]\n 80%|████████ | 48/60 [00:47<00:12, 1.00s/it]\n 82%|████████▏ | 49/60 [00:48<00:11, 1.00s/it]\n 83%|████████▎ | 50/60 [00:49<00:10, 1.00s/it]\n 85%|████████▌ | 51/60 [00:50<00:09, 1.00s/it]\n 87%|████████▋ | 52/60 [00:51<00:08, 1.00s/it]\n 88%|████████▊ | 53/60 [00:52<00:07, 1.00s/it]\n 90%|█████████ | 54/60 [00:53<00:06, 1.00s/it]\n 92%|█████████▏| 55/60 [00:54<00:05, 1.00s/it]\n 93%|█████████▎| 56/60 [00:55<00:04, 1.00s/it]\n 95%|█████████▌| 57/60 [00:56<00:03, 1.00s/it]\n 97%|█████████▋| 58/60 [00:57<00:02, 1.00s/it]\n 98%|█████████▊| 59/60 [00:58<00:01, 1.00s/it]\n100%|██████████| 60/60 [00:59<00:00, 1.00s/it]\n100%|██████████| 60/60 [00:59<00:00, 1.00it/s]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.24it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.24it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.23it/s]\n 20%|██ | 4/20 [00:03<00:12, 1.23it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.23it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.23it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.23it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.23it/s]\n 45%|████▌ | 9/20 [00:07<00:08, 1.23it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.23it/s]\n 55%|█████▌ | 11/20 [00:08<00:07, 1.23it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.23it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.23it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.23it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.23it/s]\n 80%|████████ | 16/20 [00:12<00:03, 1.23it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.23it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.23it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.23it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.23it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.23it/s]", "metrics": { "predict_time": 82.702469, "total_time": 82.706483 }, "output": [ "https://pbxt.replicate.delivery/oLo0NmbVWUYZNBVLFLVR1kUj7pIhcuE6QsWpCC3DhoIG4iaE/out-0.png", "https://pbxt.replicate.delivery/RXN2CFpKTC4IM5zZm31lRukyDl60W43xwpkbuoaln4SG4iaE/out-1.png", "https://pbxt.replicate.delivery/shEPxFEcCqqlDRfehfOIVsyS8Nn9UhJ1YpID6DlWtNY1AXUjA/out-2.png", "https://pbxt.replicate.delivery/2A4eLwGEcazOESmmGqWGGe7SzKXnZRRPJaLkblf2ej1qBuoGB/out-3.png" ], "started_at": "2023-10-02T18:02:48.194061Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/hiafb3dbeqchoufoj7npgeen6u", "cancel": "https://api.replicate.com/v1/predictions/hiafb3dbeqchoufoj7npgeen6u/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 22013 Prompt: cracks in the porcelain skin with neon light leaks punk anime girl who looks like Amber Midthunder and Mary Elizabeth Winstead shedding her cracking porcelain skin, pieces missing, both eyes looking forward, skin finished with a blue translucent coating on black, photorealistic, 3D model in a divebar bathroom covered with graffiti, Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:58, 1.01it/s] 3%|▎ | 2/60 [00:01<00:57, 1.01it/s] 5%|▌ | 3/60 [00:02<00:56, 1.01it/s] 7%|▋ | 4/60 [00:03<00:55, 1.01it/s] 8%|▊ | 5/60 [00:04<00:54, 1.01it/s] 10%|█ | 6/60 [00:05<00:53, 1.00it/s] 12%|█▏ | 7/60 [00:06<00:52, 1.00it/s] 13%|█▎ | 8/60 [00:07<00:51, 1.00it/s] 15%|█▌ | 9/60 [00:08<00:50, 1.01it/s] 17%|█▋ | 10/60 [00:09<00:49, 1.01it/s] 18%|█▊ | 11/60 [00:10<00:48, 1.01it/s] 20%|██ | 12/60 [00:11<00:47, 1.01it/s] 22%|██▏ | 13/60 [00:12<00:46, 1.00it/s] 23%|██▎ | 14/60 [00:13<00:45, 1.00it/s] 25%|██▌ | 15/60 [00:14<00:44, 1.00it/s] 27%|██▋ | 16/60 [00:15<00:43, 1.01it/s] 28%|██▊ | 17/60 [00:16<00:42, 1.01it/s] 30%|███ | 18/60 [00:17<00:41, 1.01it/s] 32%|███▏ | 19/60 [00:18<00:40, 1.01it/s] 33%|███▎ | 20/60 [00:19<00:39, 1.01it/s] 35%|███▌ | 21/60 [00:20<00:38, 1.01it/s] 37%|███▋ | 22/60 [00:21<00:37, 1.01it/s] 38%|███▊ | 23/60 [00:22<00:36, 1.00it/s] 40%|████ | 24/60 [00:23<00:35, 1.00it/s] 42%|████▏ | 25/60 [00:24<00:34, 1.00it/s] 43%|████▎ | 26/60 [00:25<00:33, 1.00it/s] 45%|████▌ | 27/60 [00:26<00:32, 1.00it/s] 47%|████▋ | 28/60 [00:27<00:31, 1.00it/s] 48%|████▊ | 29/60 [00:28<00:30, 1.00it/s] 50%|█████ | 30/60 [00:29<00:29, 1.00it/s] 52%|█████▏ | 31/60 [00:30<00:28, 1.00it/s] 53%|█████▎ | 32/60 [00:31<00:27, 1.00it/s] 55%|█████▌ | 33/60 [00:32<00:26, 1.00it/s] 57%|█████▋ | 34/60 [00:33<00:25, 1.00it/s] 58%|█████▊ | 35/60 [00:34<00:24, 1.00it/s] 60%|██████ | 36/60 [00:35<00:23, 1.00it/s] 62%|██████▏ | 37/60 [00:36<00:22, 1.00it/s] 63%|██████▎ | 38/60 [00:37<00:21, 1.00it/s] 65%|██████▌ | 39/60 [00:38<00:20, 1.00it/s] 67%|██████▋ | 40/60 [00:39<00:19, 1.00it/s] 68%|██████▊ | 41/60 [00:40<00:18, 1.00it/s] 70%|███████ | 42/60 [00:41<00:18, 1.00s/it] 72%|███████▏ | 43/60 [00:42<00:17, 1.00s/it] 73%|███████▎ | 44/60 [00:43<00:16, 1.00s/it] 75%|███████▌ | 45/60 [00:44<00:15, 1.00s/it] 77%|███████▋ | 46/60 [00:45<00:14, 1.00s/it] 78%|███████▊ | 47/60 [00:46<00:13, 1.00s/it] 80%|████████ | 48/60 [00:47<00:12, 1.00s/it] 82%|████████▏ | 49/60 [00:48<00:11, 1.00s/it] 83%|████████▎ | 50/60 [00:49<00:10, 1.00s/it] 85%|████████▌ | 51/60 [00:50<00:09, 1.00s/it] 87%|████████▋ | 52/60 [00:51<00:08, 1.00s/it] 88%|████████▊ | 53/60 [00:52<00:07, 1.00s/it] 90%|█████████ | 54/60 [00:53<00:06, 1.00s/it] 92%|█████████▏| 55/60 [00:54<00:05, 1.00s/it] 93%|█████████▎| 56/60 [00:55<00:04, 1.00s/it] 95%|█████████▌| 57/60 [00:56<00:03, 1.00s/it] 97%|█████████▋| 58/60 [00:57<00:02, 1.00s/it] 98%|█████████▊| 59/60 [00:58<00:01, 1.00s/it] 100%|██████████| 60/60 [00:59<00:00, 1.00s/it] 100%|██████████| 60/60 [00:59<00:00, 1.00it/s] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.24it/s] 10%|█ | 2/20 [00:01<00:14, 1.24it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.23it/s] 20%|██ | 4/20 [00:03<00:12, 1.23it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.23it/s] 30%|███ | 6/20 [00:04<00:11, 1.23it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.23it/s] 40%|████ | 8/20 [00:06<00:09, 1.23it/s] 45%|████▌ | 9/20 [00:07<00:08, 1.23it/s] 50%|█████ | 10/20 [00:08<00:08, 1.23it/s] 55%|█████▌ | 11/20 [00:08<00:07, 1.23it/s] 60%|██████ | 12/20 [00:09<00:06, 1.23it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.23it/s] 70%|███████ | 14/20 [00:11<00:04, 1.23it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.23it/s] 80%|████████ | 16/20 [00:12<00:03, 1.23it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.23it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.23it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.23it/s] 100%|██████████| 20/20 [00:16<00:00, 1.23it/s] 100%|██████████| 20/20 [00:16<00:00, 1.23it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID53vdusdbfb4xstmxbpmmlfjrguStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdIMJ1FunArvg0lLhFbikzhNaxjxrTjv00yjCCvUZYCk7TY9/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdIMJ1FunArvg0lLhFbikzhNaxjxrTjv00yjCCvUZYCk7TY9/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdIMJ1FunArvg0lLhFbikzhNaxjxrTjv00yjCCvUZYCk7TY9/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdIMJ1FunArvg0lLhFbikzhNaxjxrTjv00yjCCvUZYCk7TY9/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdIMJ1FunArvg0lLhFbikzhNaxjxrTjv00yjCCvUZYCk7TY9/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdIMJ1FunArvg0lLhFbikzhNaxjxrTjv00yjCCvUZYCk7TY9/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T03:07:09.136213Z", "created_at": "2023-10-03T03:05:32.174187Z", "data_removed": false, "error": null, "id": "53vdusdbfb4xstmxbpmmlfjrgu", "input": { "image": "https://replicate.delivery/pbxt/JdIMJ1FunArvg0lLhFbikzhNaxjxrTjv00yjCCvUZYCk7TY9/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 35988\nPrompt: Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:08, 1.17s/it]\n 3%|▎ | 2/60 [00:02<01:07, 1.17s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.17s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.17s/it]\n 8%|▊ | 5/60 [00:05<01:04, 1.17s/it]\n 10%|█ | 6/60 [00:07<01:03, 1.17s/it]\n 12%|█▏ | 7/60 [00:08<01:02, 1.17s/it]\n 13%|█▎ | 8/60 [00:09<01:00, 1.17s/it]\n 15%|█▌ | 9/60 [00:10<00:59, 1.17s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.17s/it]\n 20%|██ | 12/60 [00:14<00:56, 1.17s/it]\n 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it]\n 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it]\n 30%|███ | 18/60 [00:21<00:49, 1.17s/it]\n 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it]\n 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it]\n 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.17s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.18s/it]\n 43%|████▎ | 26/60 [00:30<00:39, 1.18s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.18s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.18s/it]\n 48%|████▊ | 29/60 [00:33<00:36, 1.18s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.18s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.18s/it]\n 53%|█████▎ | 32/60 [00:37<00:32, 1.18s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.18s/it]\n 57%|█████▋ | 34/60 [00:39<00:30, 1.18s/it]\n 58%|█████▊ | 35/60 [00:41<00:29, 1.18s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.18s/it]\n 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it]\n 63%|██████▎ | 38/60 [00:44<00:25, 1.18s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it]\n 67%|██████▋ | 40/60 [00:46<00:23, 1.18s/it]\n 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.18s/it]\n 72%|███████▏ | 43/60 [00:50<00:20, 1.18s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it]\n 77%|███████▋ | 46/60 [00:54<00:16, 1.18s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.18s/it]\n 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it]\n 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it]\n 87%|████████▋ | 52/60 [01:01<00:09, 1.18s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.19s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it]\n 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it]\n 95%|█████████▌| 57/60 [01:07<00:03, 1.18s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.04it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 96.949511, "total_time": 96.962026 }, "output": [ "https://pbxt.replicate.delivery/fSefVOiofwxeeM5ugqea1yRgooouDvOROXT7BDIIF47eadTqRA/out-0.png", "https://pbxt.replicate.delivery/xBPf1oD4Q727KCSL1iFdxldgxULiY718U9boLIghSA6tuJ1IA/out-1.png", "https://pbxt.replicate.delivery/Fy3MIgAlWvbBJJGh0YVJZpofcJSILFEKmu54zEx0xFLuuJ1IA/out-2.png", "https://pbxt.replicate.delivery/uwfTWRSasoXsGiOVAKfQ8SeoSp0VfmYtrVPXitdY47yz1NpGB/out-3.png" ], "started_at": "2023-10-03T03:05:32.186702Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/53vdusdbfb4xstmxbpmmlfjrgu", "cancel": "https://api.replicate.com/v1/predictions/53vdusdbfb4xstmxbpmmlfjrgu/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 35988 Prompt: Punk anime girl with pink hair in a dive bar bathroom covered with graffiti, Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:08, 1.17s/it] 3%|▎ | 2/60 [00:02<01:07, 1.17s/it] 5%|▌ | 3/60 [00:03<01:06, 1.17s/it] 7%|▋ | 4/60 [00:04<01:05, 1.17s/it] 8%|▊ | 5/60 [00:05<01:04, 1.17s/it] 10%|█ | 6/60 [00:07<01:03, 1.17s/it] 12%|█▏ | 7/60 [00:08<01:02, 1.17s/it] 13%|█▎ | 8/60 [00:09<01:00, 1.17s/it] 15%|█▌ | 9/60 [00:10<00:59, 1.17s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.17s/it] 20%|██ | 12/60 [00:14<00:56, 1.17s/it] 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it] 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it] 30%|███ | 18/60 [00:21<00:49, 1.17s/it] 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it] 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it] 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it] 40%|████ | 24/60 [00:28<00:42, 1.17s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.18s/it] 43%|████▎ | 26/60 [00:30<00:39, 1.18s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.18s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.18s/it] 48%|████▊ | 29/60 [00:33<00:36, 1.18s/it] 50%|█████ | 30/60 [00:35<00:35, 1.18s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.18s/it] 53%|█████▎ | 32/60 [00:37<00:32, 1.18s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.18s/it] 57%|█████▋ | 34/60 [00:39<00:30, 1.18s/it] 58%|█████▊ | 35/60 [00:41<00:29, 1.18s/it] 60%|██████ | 36/60 [00:42<00:28, 1.18s/it] 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it] 63%|██████▎ | 38/60 [00:44<00:25, 1.18s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it] 67%|██████▋ | 40/60 [00:46<00:23, 1.18s/it] 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it] 70%|███████ | 42/60 [00:49<00:21, 1.18s/it] 72%|███████▏ | 43/60 [00:50<00:20, 1.18s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it] 77%|███████▋ | 46/60 [00:54<00:16, 1.18s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it] 80%|████████ | 48/60 [00:56<00:14, 1.18s/it] 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it] 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it] 87%|████████▋ | 52/60 [01:01<00:09, 1.18s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.19s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it] 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it] 95%|█████████▌| 57/60 [01:07<00:03, 1.18s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s] 80%|████████ | 16/20 [00:15<00:03, 1.04it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID3kv72d3bx56pc263ut42vmwm7yStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdIZdeO5ZivCM1PugyYZaxzAdvEWFCJzJdRV9BOuEEXrc0Kl/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdIZdeO5ZivCM1PugyYZaxzAdvEWFCJzJdRV9BOuEEXrc0Kl/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdIZdeO5ZivCM1PugyYZaxzAdvEWFCJzJdRV9BOuEEXrc0Kl/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdIZdeO5ZivCM1PugyYZaxzAdvEWFCJzJdRV9BOuEEXrc0Kl/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdIZdeO5ZivCM1PugyYZaxzAdvEWFCJzJdRV9BOuEEXrc0Kl/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdIZdeO5ZivCM1PugyYZaxzAdvEWFCJzJdRV9BOuEEXrc0Kl/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T03:21:12.772063Z", "created_at": "2023-10-03T03:19:36.124852Z", "data_removed": false, "error": null, "id": "3kv72d3bx56pc263ut42vmwm7y", "input": { "image": "https://replicate.delivery/pbxt/JdIZdeO5ZivCM1PugyYZaxzAdvEWFCJzJdRV9BOuEEXrc0Kl/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 52744\nPrompt: Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:08, 1.16s/it]\n 3%|▎ | 2/60 [00:02<01:07, 1.16s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.17s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.17s/it]\n 8%|▊ | 5/60 [00:05<01:04, 1.17s/it]\n 10%|█ | 6/60 [00:07<01:03, 1.17s/it]\n 12%|█▏ | 7/60 [00:08<01:02, 1.17s/it]\n 13%|█▎ | 8/60 [00:09<01:00, 1.17s/it]\n 15%|█▌ | 9/60 [00:10<00:59, 1.17s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.17s/it]\n 20%|██ | 12/60 [00:14<00:56, 1.17s/it]\n 22%|██▏ | 13/60 [00:15<00:55, 1.17s/it]\n 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it]\n 30%|███ | 18/60 [00:21<00:49, 1.17s/it]\n 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it]\n 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it]\n 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.17s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it]\n 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it]\n 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.17s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it]\n 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it]\n 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it]\n 58%|█████▊ | 35/60 [00:41<00:29, 1.17s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.17s/it]\n 62%|██████▏ | 37/60 [00:43<00:27, 1.17s/it]\n 63%|██████▎ | 38/60 [00:44<00:25, 1.17s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.17s/it]\n 67%|██████▋ | 40/60 [00:46<00:23, 1.17s/it]\n 68%|██████▊ | 41/60 [00:48<00:22, 1.17s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.17s/it]\n 72%|███████▏ | 43/60 [00:50<00:19, 1.17s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it]\n 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.18s/it]\n 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it]\n 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it]\n 87%|████████▋ | 52/60 [01:01<00:09, 1.18s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it]\n 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it]\n 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.17s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.04it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 96.676504, "total_time": 96.647211 }, "output": [ "https://pbxt.replicate.delivery/ZOJEAuvFHeyKdSP7DhAQuNl53SqWWaY1F3WYYbS4yf4mqTqRA/out-0.png", "https://pbxt.replicate.delivery/fc0OMUC4pbTxQigMdeQkhrCYzj9r5MUei2qlDWpWwLLOVnUjA/out-1.png", "https://pbxt.replicate.delivery/jt2GSD3WblbfMykdeUinnnJRvaPPlo74eltaBtE32f1cqOpGB/out-2.png", "https://pbxt.replicate.delivery/BzKdF01SDQqjBxW2nviI68eAK5BB311Nl2ko1LGqLOGU1J1IA/out-3.png" ], "started_at": "2023-10-03T03:19:36.095559Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3kv72d3bx56pc263ut42vmwm7y", "cancel": "https://api.replicate.com/v1/predictions/3kv72d3bx56pc263ut42vmwm7y/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 52744 Prompt: Claire Silver with pink hair in a cyberpunk dive bar bathroom covered with graffiti, cyberpunk style of Blade Runner and Trainspotting img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:08, 1.16s/it] 3%|▎ | 2/60 [00:02<01:07, 1.16s/it] 5%|▌ | 3/60 [00:03<01:06, 1.17s/it] 7%|▋ | 4/60 [00:04<01:05, 1.17s/it] 8%|▊ | 5/60 [00:05<01:04, 1.17s/it] 10%|█ | 6/60 [00:07<01:03, 1.17s/it] 12%|█▏ | 7/60 [00:08<01:02, 1.17s/it] 13%|█▎ | 8/60 [00:09<01:00, 1.17s/it] 15%|█▌ | 9/60 [00:10<00:59, 1.17s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.17s/it] 20%|██ | 12/60 [00:14<00:56, 1.17s/it] 22%|██▏ | 13/60 [00:15<00:55, 1.17s/it] 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it] 30%|███ | 18/60 [00:21<00:49, 1.17s/it] 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it] 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it] 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it] 40%|████ | 24/60 [00:28<00:42, 1.17s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it] 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it] 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it] 50%|█████ | 30/60 [00:35<00:35, 1.17s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it] 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it] 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it] 58%|█████▊ | 35/60 [00:41<00:29, 1.17s/it] 60%|██████ | 36/60 [00:42<00:28, 1.17s/it] 62%|██████▏ | 37/60 [00:43<00:27, 1.17s/it] 63%|██████▎ | 38/60 [00:44<00:25, 1.17s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.17s/it] 67%|██████▋ | 40/60 [00:46<00:23, 1.17s/it] 68%|██████▊ | 41/60 [00:48<00:22, 1.17s/it] 70%|███████ | 42/60 [00:49<00:21, 1.17s/it] 72%|███████▏ | 43/60 [00:50<00:19, 1.17s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it] 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it] 80%|████████ | 48/60 [00:56<00:14, 1.18s/it] 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it] 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it] 87%|████████▋ | 52/60 [01:01<00:09, 1.18s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it] 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it] 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.17s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s] 80%|████████ | 16/20 [00:15<00:03, 1.04it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID6fnkzqtbautpkmwwtevv2r6ureStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdImgLeniHTD8yJFasAF1XZTQCzJikVW8isFHVmeviVO5RwX/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdImgLeniHTD8yJFasAF1XZTQCzJikVW8isFHVmeviVO5RwX/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdImgLeniHTD8yJFasAF1XZTQCzJikVW8isFHVmeviVO5RwX/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdImgLeniHTD8yJFasAF1XZTQCzJikVW8isFHVmeviVO5RwX/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdImgLeniHTD8yJFasAF1XZTQCzJikVW8isFHVmeviVO5RwX/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdImgLeniHTD8yJFasAF1XZTQCzJikVW8isFHVmeviVO5RwX/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T03:34:58.889286Z", "created_at": "2023-10-03T03:33:21.929693Z", "data_removed": false, "error": null, "id": "6fnkzqtbautpkmwwtevv2r6ure", "input": { "image": "https://replicate.delivery/pbxt/JdImgLeniHTD8yJFasAF1XZTQCzJikVW8isFHVmeviVO5RwX/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 45036\nPrompt: Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:08, 1.16s/it]\n 3%|▎ | 2/60 [00:02<01:07, 1.16s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.17s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.16s/it]\n 8%|▊ | 5/60 [00:05<01:03, 1.16s/it]\n 10%|█ | 6/60 [00:06<01:02, 1.16s/it]\n 12%|█▏ | 7/60 [00:08<01:01, 1.16s/it]\n 13%|█▎ | 8/60 [00:09<01:00, 1.16s/it]\n 15%|█▌ | 9/60 [00:10<00:59, 1.16s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.16s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.16s/it]\n 20%|██ | 12/60 [00:13<00:55, 1.17s/it]\n 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it]\n 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it]\n 30%|███ | 18/60 [00:20<00:49, 1.17s/it]\n 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it]\n 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it]\n 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.17s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it]\n 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it]\n 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.17s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it]\n 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it]\n 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it]\n 58%|█████▊ | 35/60 [00:40<00:29, 1.17s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.17s/it]\n 62%|██████▏ | 37/60 [00:43<00:27, 1.17s/it]\n 63%|██████▎ | 38/60 [00:44<00:25, 1.17s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.17s/it]\n 67%|██████▋ | 40/60 [00:46<00:23, 1.17s/it]\n 68%|██████▊ | 41/60 [00:47<00:22, 1.17s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.18s/it]\n 72%|███████▏ | 43/60 [00:50<00:19, 1.17s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it]\n 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.18s/it]\n 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it]\n 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it]\n 87%|████████▋ | 52/60 [01:00<00:09, 1.18s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it]\n 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it]\n 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.17s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.04it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 96.950481, "total_time": 96.959593 }, "output": [ "https://pbxt.replicate.delivery/ABGZFpc1AopKKlyMym26BY1D4mZGExL29HIwDVZ89N339kaE/out-0.png", "https://pbxt.replicate.delivery/hxCBIzakr2b5KxfTwu6APcHplFcIygU2ZiHmHGp7OQyw7J1IA/out-1.png", "https://pbxt.replicate.delivery/c8VLlivyuKYAPNq63uz2fbAcC2UPvlK7LHL9MSraqb0w7J1IA/out-2.png", "https://pbxt.replicate.delivery/viaBN3KAzQ7VOJIE82xdRGoUeFNTgd7L3qeDvRE9MzBi3TqRA/out-3.png" ], "started_at": "2023-10-03T03:33:21.938805Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6fnkzqtbautpkmwwtevv2r6ure", "cancel": "https://api.replicate.com/v1/predictions/6fnkzqtbautpkmwwtevv2r6ure/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 45036 Prompt: Cyberpunk in a dive bar bathroom covered with graffiti that says Claire Silver! happy birthday, Claire Silver! in the style of Blade Runner and Trainspotting img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:08, 1.16s/it] 3%|▎ | 2/60 [00:02<01:07, 1.16s/it] 5%|▌ | 3/60 [00:03<01:06, 1.17s/it] 7%|▋ | 4/60 [00:04<01:05, 1.16s/it] 8%|▊ | 5/60 [00:05<01:03, 1.16s/it] 10%|█ | 6/60 [00:06<01:02, 1.16s/it] 12%|█▏ | 7/60 [00:08<01:01, 1.16s/it] 13%|█▎ | 8/60 [00:09<01:00, 1.16s/it] 15%|█▌ | 9/60 [00:10<00:59, 1.16s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.16s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.16s/it] 20%|██ | 12/60 [00:13<00:55, 1.17s/it] 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it] 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it] 30%|███ | 18/60 [00:20<00:49, 1.17s/it] 32%|███▏ | 19/60 [00:22<00:48, 1.17s/it] 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it] 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it] 40%|████ | 24/60 [00:28<00:42, 1.17s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it] 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it] 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it] 50%|█████ | 30/60 [00:35<00:35, 1.17s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.17s/it] 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it] 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it] 58%|█████▊ | 35/60 [00:40<00:29, 1.17s/it] 60%|██████ | 36/60 [00:42<00:28, 1.17s/it] 62%|██████▏ | 37/60 [00:43<00:27, 1.17s/it] 63%|██████▎ | 38/60 [00:44<00:25, 1.17s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.17s/it] 67%|██████▋ | 40/60 [00:46<00:23, 1.17s/it] 68%|██████▊ | 41/60 [00:47<00:22, 1.17s/it] 70%|███████ | 42/60 [00:49<00:21, 1.18s/it] 72%|███████▏ | 43/60 [00:50<00:19, 1.17s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it] 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it] 80%|████████ | 48/60 [00:56<00:14, 1.18s/it] 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it] 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it] 87%|████████▋ | 52/60 [01:00<00:09, 1.18s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it] 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it] 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.17s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.04it/s] 80%|████████ | 16/20 [00:15<00:03, 1.04it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.04it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.04it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDqkm3nsdb7ysw2io33rzm6naojuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdJ5ZR77xlX4y2oNTbWaTb8kLovrfx2jjBZtoXgovMkRlZqI/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdJ5ZR77xlX4y2oNTbWaTb8kLovrfx2jjBZtoXgovMkRlZqI/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdJ5ZR77xlX4y2oNTbWaTb8kLovrfx2jjBZtoXgovMkRlZqI/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdJ5ZR77xlX4y2oNTbWaTb8kLovrfx2jjBZtoXgovMkRlZqI/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdJ5ZR77xlX4y2oNTbWaTb8kLovrfx2jjBZtoXgovMkRlZqI/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdJ5ZR77xlX4y2oNTbWaTb8kLovrfx2jjBZtoXgovMkRlZqI/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T03:54:54.451099Z", "created_at": "2023-10-03T03:53:17.650069Z", "data_removed": false, "error": null, "id": "qkm3nsdb7ysw2io33rzm6naoju", "input": { "image": "https://replicate.delivery/pbxt/JdJ5ZR77xlX4y2oNTbWaTb8kLovrfx2jjBZtoXgovMkRlZqI/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 65220\nPrompt: Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:08, 1.16s/it]\n 3%|▎ | 2/60 [00:02<01:07, 1.17s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.17s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.17s/it]\n 8%|▊ | 5/60 [00:05<01:04, 1.17s/it]\n 10%|█ | 6/60 [00:06<01:02, 1.16s/it]\n 12%|█▏ | 7/60 [00:08<01:01, 1.16s/it]\n 13%|█▎ | 8/60 [00:09<01:00, 1.16s/it]\n 15%|█▌ | 9/60 [00:10<00:59, 1.16s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.16s/it]\n 20%|██ | 12/60 [00:13<00:55, 1.17s/it]\n 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it]\n 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it]\n 30%|███ | 18/60 [00:20<00:49, 1.17s/it]\n 32%|███▏ | 19/60 [00:22<00:47, 1.17s/it]\n 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it]\n 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.17s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it]\n 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it]\n 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.18s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.18s/it]\n 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it]\n 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it]\n 58%|█████▊ | 35/60 [00:40<00:29, 1.17s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.17s/it]\n 62%|██████▏ | 37/60 [00:43<00:27, 1.17s/it]\n 63%|██████▎ | 38/60 [00:44<00:25, 1.17s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.17s/it]\n 67%|██████▋ | 40/60 [00:46<00:23, 1.17s/it]\n 68%|██████▊ | 41/60 [00:47<00:22, 1.18s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.18s/it]\n 72%|███████▏ | 43/60 [00:50<00:19, 1.18s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it]\n 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.18s/it]\n 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it]\n 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it]\n 87%|████████▋ | 52/60 [01:00<00:09, 1.18s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it]\n 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it]\n 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.17s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.04it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.04it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.04it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.04it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.04it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.04it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.04it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.04it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.03it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.03it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.03it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.04it/s]", "metrics": { "predict_time": 96.840682, "total_time": 96.80103 }, "output": [ "https://pbxt.replicate.delivery/mhUJvP2m5V7vKZJIafav5fXKChCfQkdbYSCET0MVtjzWUoUjA/out-0.png", "https://pbxt.replicate.delivery/YEFfA7DqtLQWDS1rossFgz7eZ6F8HwhFTju36gyKrXqMKUqRA/out-1.png", "https://pbxt.replicate.delivery/22OQ9ZfKOL0hf03s4qDQfT61f4aHYqQISe7kNF1r8OfYjClaE/out-2.png", "https://pbxt.replicate.delivery/P3FPCXD37Aa4J9juXH7exg0IRtANw3hJPuBeCgZGuptOKUqRA/out-3.png" ], "started_at": "2023-10-03T03:53:17.610417Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qkm3nsdb7ysw2io33rzm6naoju", "cancel": "https://api.replicate.com/v1/predictions/qkm3nsdb7ysw2io33rzm6naoju/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 65220 Prompt: Happy Birthday Claire Silver! Girl with pink hair In a dive bar bathroom covered in graffiti, in style of Blade Runner and Trainspotting img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:08, 1.16s/it] 3%|▎ | 2/60 [00:02<01:07, 1.17s/it] 5%|▌ | 3/60 [00:03<01:06, 1.17s/it] 7%|▋ | 4/60 [00:04<01:05, 1.17s/it] 8%|▊ | 5/60 [00:05<01:04, 1.17s/it] 10%|█ | 6/60 [00:06<01:02, 1.16s/it] 12%|█▏ | 7/60 [00:08<01:01, 1.16s/it] 13%|█▎ | 8/60 [00:09<01:00, 1.16s/it] 15%|█▌ | 9/60 [00:10<00:59, 1.16s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.17s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.16s/it] 20%|██ | 12/60 [00:13<00:55, 1.17s/it] 22%|██▏ | 13/60 [00:15<00:54, 1.17s/it] 23%|██▎ | 14/60 [00:16<00:53, 1.17s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.17s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.17s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.17s/it] 30%|███ | 18/60 [00:20<00:49, 1.17s/it] 32%|███▏ | 19/60 [00:22<00:47, 1.17s/it] 33%|███▎ | 20/60 [00:23<00:46, 1.17s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.17s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.17s/it] 38%|███▊ | 23/60 [00:26<00:43, 1.17s/it] 40%|████ | 24/60 [00:28<00:42, 1.17s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.17s/it] 43%|████▎ | 26/60 [00:30<00:39, 1.17s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.17s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.17s/it] 48%|████▊ | 29/60 [00:33<00:36, 1.17s/it] 50%|█████ | 30/60 [00:35<00:35, 1.18s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.18s/it] 53%|█████▎ | 32/60 [00:37<00:32, 1.17s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.17s/it] 57%|█████▋ | 34/60 [00:39<00:30, 1.17s/it] 58%|█████▊ | 35/60 [00:40<00:29, 1.17s/it] 60%|██████ | 36/60 [00:42<00:28, 1.17s/it] 62%|██████▏ | 37/60 [00:43<00:27, 1.17s/it] 63%|██████▎ | 38/60 [00:44<00:25, 1.17s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.17s/it] 67%|██████▋ | 40/60 [00:46<00:23, 1.17s/it] 68%|██████▊ | 41/60 [00:47<00:22, 1.18s/it] 70%|███████ | 42/60 [00:49<00:21, 1.18s/it] 72%|███████▏ | 43/60 [00:50<00:19, 1.18s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:52<00:17, 1.18s/it] 77%|███████▋ | 46/60 [00:53<00:16, 1.18s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.18s/it] 80%|████████ | 48/60 [00:56<00:14, 1.18s/it] 82%|████████▏ | 49/60 [00:57<00:12, 1.18s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.18s/it] 85%|████████▌ | 51/60 [00:59<00:10, 1.18s/it] 87%|████████▋ | 52/60 [01:00<00:09, 1.18s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.18s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.18s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.18s/it] 93%|█████████▎| 56/60 [01:05<00:04, 1.18s/it] 95%|█████████▌| 57/60 [01:06<00:03, 1.18s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.18s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 100%|██████████| 60/60 [01:10<00:00, 1.17s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.04it/s] 10%|█ | 2/20 [00:01<00:17, 1.04it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.04it/s] 20%|██ | 4/20 [00:03<00:15, 1.04it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.04it/s] 30%|███ | 6/20 [00:05<00:13, 1.04it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.04it/s] 40%|████ | 8/20 [00:07<00:11, 1.04it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.04it/s] 50%|█████ | 10/20 [00:09<00:09, 1.04it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.04it/s] 60%|██████ | 12/20 [00:11<00:07, 1.04it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.04it/s] 70%|███████ | 14/20 [00:13<00:05, 1.04it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.03it/s] 80%|████████ | 16/20 [00:15<00:03, 1.03it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.03it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.04it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDtjnvka3bqdsibjympjxasffp5qStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", width: 896, height: 1344, prompt: "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-03T18:34:29.139924Z", "created_at": "2023-10-03T18:31:48.450309Z", "data_removed": false, "error": null, "id": "tjnvka3bqdsibjympjxasffp5q", "input": { "image": "https://replicate.delivery/pbxt/JdIhALlAjFRGUtoTJaxxlOw7UoX9WKUW2Sz0tBcdhLomQNMt/marcaaron_punk_anime_girl_who_looks_like_Amber_Midthunder_and_M_77dd3386-4d3e-45ce-9786-d0a0aa21527e.png", "width": 896, "height": 1344, "prompt": "Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 31203\nPrompt: Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver!\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:09, 1.17s/it]\n 3%|▎ | 2/60 [00:02<01:08, 1.17s/it]\n 5%|▌ | 3/60 [00:03<01:06, 1.17s/it]\n 7%|▋ | 4/60 [00:04<01:05, 1.17s/it]\n 8%|▊ | 5/60 [00:05<01:04, 1.17s/it]\n 10%|█ | 6/60 [00:07<01:03, 1.17s/it]\n 12%|█▏ | 7/60 [00:08<01:02, 1.18s/it]\n 13%|█▎ | 8/60 [00:09<01:01, 1.18s/it]\n 15%|█▌ | 9/60 [00:10<01:00, 1.18s/it]\n 17%|█▋ | 10/60 [00:11<00:58, 1.18s/it]\n 18%|█▊ | 11/60 [00:12<00:57, 1.18s/it]\n 20%|██ | 12/60 [00:14<00:56, 1.18s/it]\n 22%|██▏ | 13/60 [00:15<00:55, 1.18s/it]\n 23%|██▎ | 14/60 [00:16<00:54, 1.18s/it]\n 25%|██▌ | 15/60 [00:17<00:52, 1.18s/it]\n 27%|██▋ | 16/60 [00:18<00:51, 1.18s/it]\n 28%|██▊ | 17/60 [00:19<00:50, 1.18s/it]\n 30%|███ | 18/60 [00:21<00:49, 1.18s/it]\n 32%|███▏ | 19/60 [00:22<00:48, 1.18s/it]\n 33%|███▎ | 20/60 [00:23<00:47, 1.18s/it]\n 35%|███▌ | 21/60 [00:24<00:45, 1.18s/it]\n 37%|███▋ | 22/60 [00:25<00:44, 1.18s/it]\n 38%|███▊ | 23/60 [00:27<00:43, 1.18s/it]\n 40%|████ | 24/60 [00:28<00:42, 1.18s/it]\n 42%|████▏ | 25/60 [00:29<00:41, 1.18s/it]\n 43%|████▎ | 26/60 [00:30<00:40, 1.18s/it]\n 45%|████▌ | 27/60 [00:31<00:38, 1.18s/it]\n 47%|████▋ | 28/60 [00:32<00:37, 1.18s/it]\n 48%|████▊ | 29/60 [00:34<00:36, 1.18s/it]\n 50%|█████ | 30/60 [00:35<00:35, 1.18s/it]\n 52%|█████▏ | 31/60 [00:36<00:34, 1.18s/it]\n 53%|█████▎ | 32/60 [00:37<00:33, 1.18s/it]\n 55%|█████▌ | 33/60 [00:38<00:31, 1.18s/it]\n 57%|█████▋ | 34/60 [00:40<00:30, 1.18s/it]\n 58%|█████▊ | 35/60 [00:41<00:29, 1.18s/it]\n 60%|██████ | 36/60 [00:42<00:28, 1.18s/it]\n 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it]\n 63%|██████▎ | 38/60 [00:44<00:26, 1.18s/it]\n 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it]\n 67%|██████▋ | 40/60 [00:47<00:23, 1.18s/it]\n 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it]\n 70%|███████ | 42/60 [00:49<00:21, 1.18s/it]\n 72%|███████▏ | 43/60 [00:50<00:20, 1.18s/it]\n 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it]\n 75%|███████▌ | 45/60 [00:53<00:17, 1.18s/it]\n 77%|███████▋ | 46/60 [00:54<00:16, 1.18s/it]\n 78%|███████▊ | 47/60 [00:55<00:15, 1.19s/it]\n 80%|████████ | 48/60 [00:56<00:14, 1.19s/it]\n 82%|████████▏ | 49/60 [00:57<00:13, 1.19s/it]\n 83%|████████▎ | 50/60 [00:58<00:11, 1.19s/it]\n 85%|████████▌ | 51/60 [01:00<00:10, 1.19s/it]\n 87%|████████▋ | 52/60 [01:01<00:09, 1.19s/it]\n 88%|████████▊ | 53/60 [01:02<00:08, 1.19s/it]\n 90%|█████████ | 54/60 [01:03<00:07, 1.19s/it]\n 92%|█████████▏| 55/60 [01:04<00:05, 1.19s/it]\n 93%|█████████▎| 56/60 [01:06<00:04, 1.19s/it]\n 95%|█████████▌| 57/60 [01:07<00:03, 1.19s/it]\n 97%|█████████▋| 58/60 [01:08<00:02, 1.19s/it]\n 98%|█████████▊| 59/60 [01:09<00:01, 1.19s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.19s/it]\n100%|██████████| 60/60 [01:10<00:00, 1.18s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:18, 1.02it/s]\n 10%|█ | 2/20 [00:01<00:17, 1.03it/s]\n 15%|█▌ | 3/20 [00:02<00:16, 1.03it/s]\n 20%|██ | 4/20 [00:03<00:15, 1.03it/s]\n 25%|██▌ | 5/20 [00:04<00:14, 1.03it/s]\n 30%|███ | 6/20 [00:05<00:13, 1.03it/s]\n 35%|███▌ | 7/20 [00:06<00:12, 1.03it/s]\n 40%|████ | 8/20 [00:07<00:11, 1.03it/s]\n 45%|████▌ | 9/20 [00:08<00:10, 1.03it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.03it/s]\n 55%|█████▌ | 11/20 [00:10<00:08, 1.03it/s]\n 60%|██████ | 12/20 [00:11<00:07, 1.03it/s]\n 65%|██████▌ | 13/20 [00:12<00:06, 1.03it/s]\n 70%|███████ | 14/20 [00:13<00:05, 1.03it/s]\n 75%|███████▌ | 15/20 [00:14<00:04, 1.03it/s]\n 80%|████████ | 16/20 [00:15<00:03, 1.03it/s]\n 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s]\n 90%|█████████ | 18/20 [00:17<00:01, 1.03it/s]\n 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.03it/s]\n100%|██████████| 20/20 [00:19<00:00, 1.03it/s]", "metrics": { "predict_time": 102.870812, "total_time": 160.689615 }, "output": [ "https://pbxt.replicate.delivery/SnroN7f3I2xfepfHHJx1DJAdZbvilQLImJpAWpyJ7CWKLEqGB/out-0.png", "https://pbxt.replicate.delivery/fjN8c3wtzV3jAazniJIXbwds6VKAYJXS7H78MXM0QRmZhQ1IA/out-1.png", "https://pbxt.replicate.delivery/YRKTjiBkmObbA98fX0xZd6KA2oHVd7ODJinVUv3os5JahQ1IA/out-2.png", "https://pbxt.replicate.delivery/jhhXG0EJQw5BLJwTMNTKJrEnwAr31nyPdqtDPgyeIIIahQ1IA/out-3.png" ], "started_at": "2023-10-03T18:32:46.269112Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/tjnvka3bqdsibjympjxasffp5q", "cancel": "https://api.replicate.com/v1/predictions/tjnvka3bqdsibjympjxasffp5q/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 31203 Prompt: Cyberpunk with pink hair taking a selfie in a dive bar bathroom covered with graffiti that says Happy Birthday! Claire Silver! img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:09, 1.17s/it] 3%|▎ | 2/60 [00:02<01:08, 1.17s/it] 5%|▌ | 3/60 [00:03<01:06, 1.17s/it] 7%|▋ | 4/60 [00:04<01:05, 1.17s/it] 8%|▊ | 5/60 [00:05<01:04, 1.17s/it] 10%|█ | 6/60 [00:07<01:03, 1.17s/it] 12%|█▏ | 7/60 [00:08<01:02, 1.18s/it] 13%|█▎ | 8/60 [00:09<01:01, 1.18s/it] 15%|█▌ | 9/60 [00:10<01:00, 1.18s/it] 17%|█▋ | 10/60 [00:11<00:58, 1.18s/it] 18%|█▊ | 11/60 [00:12<00:57, 1.18s/it] 20%|██ | 12/60 [00:14<00:56, 1.18s/it] 22%|██▏ | 13/60 [00:15<00:55, 1.18s/it] 23%|██▎ | 14/60 [00:16<00:54, 1.18s/it] 25%|██▌ | 15/60 [00:17<00:52, 1.18s/it] 27%|██▋ | 16/60 [00:18<00:51, 1.18s/it] 28%|██▊ | 17/60 [00:19<00:50, 1.18s/it] 30%|███ | 18/60 [00:21<00:49, 1.18s/it] 32%|███▏ | 19/60 [00:22<00:48, 1.18s/it] 33%|███▎ | 20/60 [00:23<00:47, 1.18s/it] 35%|███▌ | 21/60 [00:24<00:45, 1.18s/it] 37%|███▋ | 22/60 [00:25<00:44, 1.18s/it] 38%|███▊ | 23/60 [00:27<00:43, 1.18s/it] 40%|████ | 24/60 [00:28<00:42, 1.18s/it] 42%|████▏ | 25/60 [00:29<00:41, 1.18s/it] 43%|████▎ | 26/60 [00:30<00:40, 1.18s/it] 45%|████▌ | 27/60 [00:31<00:38, 1.18s/it] 47%|████▋ | 28/60 [00:32<00:37, 1.18s/it] 48%|████▊ | 29/60 [00:34<00:36, 1.18s/it] 50%|█████ | 30/60 [00:35<00:35, 1.18s/it] 52%|█████▏ | 31/60 [00:36<00:34, 1.18s/it] 53%|█████▎ | 32/60 [00:37<00:33, 1.18s/it] 55%|█████▌ | 33/60 [00:38<00:31, 1.18s/it] 57%|█████▋ | 34/60 [00:40<00:30, 1.18s/it] 58%|█████▊ | 35/60 [00:41<00:29, 1.18s/it] 60%|██████ | 36/60 [00:42<00:28, 1.18s/it] 62%|██████▏ | 37/60 [00:43<00:27, 1.18s/it] 63%|██████▎ | 38/60 [00:44<00:26, 1.18s/it] 65%|██████▌ | 39/60 [00:45<00:24, 1.18s/it] 67%|██████▋ | 40/60 [00:47<00:23, 1.18s/it] 68%|██████▊ | 41/60 [00:48<00:22, 1.18s/it] 70%|███████ | 42/60 [00:49<00:21, 1.18s/it] 72%|███████▏ | 43/60 [00:50<00:20, 1.18s/it] 73%|███████▎ | 44/60 [00:51<00:18, 1.18s/it] 75%|███████▌ | 45/60 [00:53<00:17, 1.18s/it] 77%|███████▋ | 46/60 [00:54<00:16, 1.18s/it] 78%|███████▊ | 47/60 [00:55<00:15, 1.19s/it] 80%|████████ | 48/60 [00:56<00:14, 1.19s/it] 82%|████████▏ | 49/60 [00:57<00:13, 1.19s/it] 83%|████████▎ | 50/60 [00:58<00:11, 1.19s/it] 85%|████████▌ | 51/60 [01:00<00:10, 1.19s/it] 87%|████████▋ | 52/60 [01:01<00:09, 1.19s/it] 88%|████████▊ | 53/60 [01:02<00:08, 1.19s/it] 90%|█████████ | 54/60 [01:03<00:07, 1.19s/it] 92%|█████████▏| 55/60 [01:04<00:05, 1.19s/it] 93%|█████████▎| 56/60 [01:06<00:04, 1.19s/it] 95%|█████████▌| 57/60 [01:07<00:03, 1.19s/it] 97%|█████████▋| 58/60 [01:08<00:02, 1.19s/it] 98%|█████████▊| 59/60 [01:09<00:01, 1.19s/it] 100%|██████████| 60/60 [01:10<00:00, 1.19s/it] 100%|██████████| 60/60 [01:10<00:00, 1.18s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:18, 1.02it/s] 10%|█ | 2/20 [00:01<00:17, 1.03it/s] 15%|█▌ | 3/20 [00:02<00:16, 1.03it/s] 20%|██ | 4/20 [00:03<00:15, 1.03it/s] 25%|██▌ | 5/20 [00:04<00:14, 1.03it/s] 30%|███ | 6/20 [00:05<00:13, 1.03it/s] 35%|███▌ | 7/20 [00:06<00:12, 1.03it/s] 40%|████ | 8/20 [00:07<00:11, 1.03it/s] 45%|████▌ | 9/20 [00:08<00:10, 1.03it/s] 50%|█████ | 10/20 [00:09<00:09, 1.03it/s] 55%|█████▌ | 11/20 [00:10<00:08, 1.03it/s] 60%|██████ | 12/20 [00:11<00:07, 1.03it/s] 65%|██████▌ | 13/20 [00:12<00:06, 1.03it/s] 70%|███████ | 14/20 [00:13<00:05, 1.03it/s] 75%|███████▌ | 15/20 [00:14<00:04, 1.03it/s] 80%|████████ | 16/20 [00:15<00:03, 1.03it/s] 85%|████████▌ | 17/20 [00:16<00:02, 1.03it/s] 90%|█████████ | 18/20 [00:17<00:01, 1.03it/s] 95%|█████████▌| 19/20 [00:18<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.03it/s] 100%|██████████| 20/20 [00:19<00:00, 1.03it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID3dy477dbyhslpikzqo4e5cfyrqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JeY65QShkqvsliAMLnZ3Iwoc8ngoohzKQHB4VWonoqZM26Md/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JeY65QShkqvsliAMLnZ3Iwoc8ngoohzKQHB4VWonoqZM26Md/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", width: 928, height: 1232, prompt: "Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JeY65QShkqvsliAMLnZ3Iwoc8ngoohzKQHB4VWonoqZM26Md/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JeY65QShkqvsliAMLnZ3Iwoc8ngoohzKQHB4VWonoqZM26Md/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JeY65QShkqvsliAMLnZ3Iwoc8ngoohzKQHB4VWonoqZM26Md/_b602cb61-1eff-400f-9469-1889f131e474.jpeg"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JeY65QShkqvsliAMLnZ3Iwoc8ngoohzKQHB4VWonoqZM26Md/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-06T15:54:23.138382Z", "created_at": "2023-10-06T15:52:08.689436Z", "data_removed": false, "error": null, "id": "3dy477dbyhslpikzqo4e5cfyrq", "input": { "image": "https://replicate.delivery/pbxt/JeY65QShkqvsliAMLnZ3Iwoc8ngoohzKQHB4VWonoqZM26Md/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 20656\nPrompt: Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<00:59, 1.00s/it]\n 3%|▎ | 2/60 [00:02<00:58, 1.00s/it]\n 5%|▌ | 3/60 [00:03<00:57, 1.00s/it]\n 7%|▋ | 4/60 [00:04<00:56, 1.00s/it]\n 8%|▊ | 5/60 [00:05<00:55, 1.01s/it]\n 10%|█ | 6/60 [00:06<00:54, 1.01s/it]\n 12%|█▏ | 7/60 [00:07<00:53, 1.01s/it]\n 13%|█▎ | 8/60 [00:08<00:52, 1.00s/it]\n 15%|█▌ | 9/60 [00:09<00:51, 1.00s/it]\n 17%|█▋ | 10/60 [00:10<00:50, 1.00s/it]\n 18%|█▊ | 11/60 [00:11<00:49, 1.00s/it]\n 20%|██ | 12/60 [00:12<00:48, 1.01s/it]\n 22%|██▏ | 13/60 [00:13<00:47, 1.01s/it]\n 23%|██▎ | 14/60 [00:14<00:46, 1.01s/it]\n 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it]\n 27%|██▋ | 16/60 [00:16<00:44, 1.01s/it]\n 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it]\n 30%|███ | 18/60 [00:18<00:42, 1.00s/it]\n 32%|███▏ | 19/60 [00:19<00:41, 1.01s/it]\n 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it]\n 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it]\n 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it]\n 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it]\n 40%|████ | 24/60 [00:24<00:36, 1.01s/it]\n 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it]\n 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it]\n 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it]\n 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it]\n 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it]\n 50%|█████ | 30/60 [00:30<00:30, 1.01s/it]\n 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it]\n 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it]\n 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it]\n 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it]\n 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it]\n 60%|██████ | 36/60 [00:36<00:24, 1.01s/it]\n 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it]\n 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it]\n 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it]\n 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it]\n 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it]\n 70%|███████ | 42/60 [00:42<00:18, 1.01s/it]\n 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it]\n 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it]\n 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it]\n 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it]\n 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it]\n 80%|████████ | 48/60 [00:48<00:12, 1.01s/it]\n 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it]\n 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it]\n 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it]\n 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it]\n 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it]\n 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it]\n 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it]\n 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it]\n 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it]\n 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it]\n 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.22it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.22it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s]\n 20%|██ | 4/20 [00:03<00:13, 1.22it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.22it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.22it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.22it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.22it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]", "metrics": { "predict_time": 85.228188, "total_time": 134.448946 }, "output": [ "https://pbxt.replicate.delivery/3jjvFgvr4GpJOtcUhspZJrTxff0egZLzDmbYriiBl9ZW97WjA/out-0.png", "https://pbxt.replicate.delivery/TeE4iMcKedjZDEekPn0vQrCspzqrHs88xpVgcMfHz35163tGB/out-1.png", "https://pbxt.replicate.delivery/I7lCeNPOg0VaAKx28bbtEJ6URMMbA8uiobKOanlEAtCXfdrRA/out-2.png", "https://pbxt.replicate.delivery/btK72qfs7DU2PqySPyDOSuk6bS9iLPSB5oHWhcK78yRXfdrRA/out-3.png" ], "started_at": "2023-10-06T15:52:57.910194Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3dy477dbyhslpikzqo4e5cfyrq", "cancel": "https://api.replicate.com/v1/predictions/3dy477dbyhslpikzqo4e5cfyrq/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 20656 Prompt: Asian girls with pink and green hair emerging from inside their Cracked and crumbling porcelain skin finished with a blue translucent coating on black, glowing green magenta neon light coming leaks from the cracks in their skin, pieces missing, in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<00:59, 1.00s/it] 3%|▎ | 2/60 [00:02<00:58, 1.00s/it] 5%|▌ | 3/60 [00:03<00:57, 1.00s/it] 7%|▋ | 4/60 [00:04<00:56, 1.00s/it] 8%|▊ | 5/60 [00:05<00:55, 1.01s/it] 10%|█ | 6/60 [00:06<00:54, 1.01s/it] 12%|█▏ | 7/60 [00:07<00:53, 1.01s/it] 13%|█▎ | 8/60 [00:08<00:52, 1.00s/it] 15%|█▌ | 9/60 [00:09<00:51, 1.00s/it] 17%|█▋ | 10/60 [00:10<00:50, 1.00s/it] 18%|█▊ | 11/60 [00:11<00:49, 1.00s/it] 20%|██ | 12/60 [00:12<00:48, 1.01s/it] 22%|██▏ | 13/60 [00:13<00:47, 1.01s/it] 23%|██▎ | 14/60 [00:14<00:46, 1.01s/it] 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it] 27%|██▋ | 16/60 [00:16<00:44, 1.01s/it] 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it] 30%|███ | 18/60 [00:18<00:42, 1.00s/it] 32%|███▏ | 19/60 [00:19<00:41, 1.01s/it] 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it] 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it] 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it] 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it] 40%|████ | 24/60 [00:24<00:36, 1.01s/it] 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it] 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it] 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it] 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it] 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it] 50%|█████ | 30/60 [00:30<00:30, 1.01s/it] 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it] 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it] 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it] 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it] 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it] 60%|██████ | 36/60 [00:36<00:24, 1.01s/it] 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it] 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it] 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it] 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it] 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it] 70%|███████ | 42/60 [00:42<00:18, 1.01s/it] 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it] 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it] 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it] 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it] 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it] 80%|████████ | 48/60 [00:48<00:12, 1.01s/it] 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it] 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it] 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it] 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it] 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it] 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it] 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it] 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it] 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it] 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it] 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.22it/s] 10%|█ | 2/20 [00:01<00:14, 1.22it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s] 20%|██ | 4/20 [00:03<00:13, 1.22it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s] 30%|███ | 6/20 [00:04<00:11, 1.22it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s] 40%|████ | 8/20 [00:06<00:09, 1.22it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s] 50%|█████ | 10/20 [00:08<00:08, 1.22it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s] 60%|██████ | 12/20 [00:09<00:06, 1.22it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s] 70%|███████ | 14/20 [00:11<00:04, 1.22it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s] 80%|████████ | 16/20 [00:13<00:03, 1.22it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDnvhhtzdbwtpg36v4kbwbi7jmtuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", width: 928, height: 1232, prompt: "in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-06T15:59:46.850620Z", "created_at": "2023-10-06T15:58:22.993929Z", "data_removed": false, "error": null, "id": "nvhhtzdbwtpg36v4kbwbi7jmtu", "input": { "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 43225\nPrompt: in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<00:59, 1.00s/it]\n 3%|▎ | 2/60 [00:02<00:58, 1.00s/it]\n 5%|▌ | 3/60 [00:03<00:57, 1.00s/it]\n 7%|▋ | 4/60 [00:04<00:56, 1.00s/it]\n 8%|▊ | 5/60 [00:05<00:55, 1.00s/it]\n 10%|█ | 6/60 [00:06<00:54, 1.00s/it]\n 12%|█▏ | 7/60 [00:07<00:53, 1.01s/it]\n 13%|█▎ | 8/60 [00:08<00:52, 1.00s/it]\n 15%|█▌ | 9/60 [00:09<00:51, 1.00s/it]\n 17%|█▋ | 10/60 [00:10<00:50, 1.00s/it]\n 18%|█▊ | 11/60 [00:11<00:49, 1.00s/it]\n 20%|██ | 12/60 [00:12<00:48, 1.00s/it]\n 22%|██▏ | 13/60 [00:13<00:47, 1.00s/it]\n 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it]\n 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it]\n 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it]\n 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it]\n 30%|███ | 18/60 [00:18<00:42, 1.00s/it]\n 32%|███▏ | 19/60 [00:19<00:41, 1.01s/it]\n 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it]\n 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it]\n 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it]\n 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it]\n 40%|████ | 24/60 [00:24<00:36, 1.01s/it]\n 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it]\n 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it]\n 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it]\n 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it]\n 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it]\n 50%|█████ | 30/60 [00:30<00:30, 1.01s/it]\n 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it]\n 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it]\n 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it]\n 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it]\n 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it]\n 60%|██████ | 36/60 [00:36<00:24, 1.01s/it]\n 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it]\n 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it]\n 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it]\n 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it]\n 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it]\n 70%|███████ | 42/60 [00:42<00:18, 1.01s/it]\n 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it]\n 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it]\n 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it]\n 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it]\n 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it]\n 80%|████████ | 48/60 [00:48<00:12, 1.01s/it]\n 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it]\n 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it]\n 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it]\n 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it]\n 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it]\n 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it]\n 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it]\n 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it]\n 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it]\n 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it]\n 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.23it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.22it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s]\n 20%|██ | 4/20 [00:03<00:13, 1.22it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.22it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.22it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.22it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.22it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]", "metrics": { "predict_time": 83.876399, "total_time": 83.856691 }, "output": [ "https://pbxt.replicate.delivery/N3qlUDFgxU6RK182Z1K63KxddPteiEOXPr5f3PRpezFfO4tGB/out-0.png", "https://pbxt.replicate.delivery/KzGYS6S8YEqGGJKxNYQ29fnTrf8cv6KnADtrLZ22N0LxDeWjA/out-1.png", "https://pbxt.replicate.delivery/BOTSgFKye63DIqbWHPpjz0kcbdSc5ANqH6Q4WrPnkGr4Bv1IA/out-2.png", "https://pbxt.replicate.delivery/71cEnKIeRfrcfJShtgQHgifiUGUW1hoL3Ph2JSO28mNIP4tGB/out-3.png" ], "started_at": "2023-10-06T15:58:22.974221Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nvhhtzdbwtpg36v4kbwbi7jmtu", "cancel": "https://api.replicate.com/v1/predictions/nvhhtzdbwtpg36v4kbwbi7jmtu/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 43225 Prompt: in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<00:59, 1.00s/it] 3%|▎ | 2/60 [00:02<00:58, 1.00s/it] 5%|▌ | 3/60 [00:03<00:57, 1.00s/it] 7%|▋ | 4/60 [00:04<00:56, 1.00s/it] 8%|▊ | 5/60 [00:05<00:55, 1.00s/it] 10%|█ | 6/60 [00:06<00:54, 1.00s/it] 12%|█▏ | 7/60 [00:07<00:53, 1.01s/it] 13%|█▎ | 8/60 [00:08<00:52, 1.00s/it] 15%|█▌ | 9/60 [00:09<00:51, 1.00s/it] 17%|█▋ | 10/60 [00:10<00:50, 1.00s/it] 18%|█▊ | 11/60 [00:11<00:49, 1.00s/it] 20%|██ | 12/60 [00:12<00:48, 1.00s/it] 22%|██▏ | 13/60 [00:13<00:47, 1.00s/it] 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it] 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it] 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it] 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it] 30%|███ | 18/60 [00:18<00:42, 1.00s/it] 32%|███▏ | 19/60 [00:19<00:41, 1.01s/it] 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it] 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it] 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it] 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it] 40%|████ | 24/60 [00:24<00:36, 1.01s/it] 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it] 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it] 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it] 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it] 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it] 50%|█████ | 30/60 [00:30<00:30, 1.01s/it] 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it] 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it] 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it] 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it] 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it] 60%|██████ | 36/60 [00:36<00:24, 1.01s/it] 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it] 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it] 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it] 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it] 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it] 70%|███████ | 42/60 [00:42<00:18, 1.01s/it] 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it] 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it] 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it] 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it] 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it] 80%|████████ | 48/60 [00:48<00:12, 1.01s/it] 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it] 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it] 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it] 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it] 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it] 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it] 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it] 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it] 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it] 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it] 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.23it/s] 10%|█ | 2/20 [00:01<00:14, 1.22it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s] 20%|██ | 4/20 [00:03<00:13, 1.22it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s] 30%|███ | 6/20 [00:04<00:11, 1.22it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s] 40%|████ | 8/20 [00:06<00:09, 1.22it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s] 50%|█████ | 10/20 [00:08<00:08, 1.22it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s] 60%|██████ | 12/20 [00:09<00:06, 1.22it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s] 70%|███████ | 14/20 [00:11<00:04, 1.22it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s] 80%|████████ | 16/20 [00:13<00:03, 1.22it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDwuydsydbrajpzwr3xkydwn4hpuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", width: 928, height: 1232, prompt: "Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-06T23:48:11.173147Z", "created_at": "2023-10-06T23:45:09.516397Z", "data_removed": false, "error": null, "id": "wuydsydbrajpzwr3xkydwn4hpu", "input": { "image": "https://replicate.delivery/pbxt/JeYBz6bhxLQNSjhFfX58wiwdcjuFTyrcnklP8Ibm89t3goOi/_b602cb61-1eff-400f-9469-1889f131e474.jpeg", "width": 928, "height": 1232, "prompt": "Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 15152\nPrompt: Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<00:59, 1.00s/it]\n 3%|▎ | 2/60 [00:02<00:58, 1.00s/it]\n 5%|▌ | 3/60 [00:03<00:57, 1.00s/it]\n 7%|▋ | 4/60 [00:04<00:56, 1.00s/it]\n 8%|▊ | 5/60 [00:05<00:54, 1.00it/s]\n 10%|█ | 6/60 [00:06<00:53, 1.00it/s]\n 12%|█▏ | 7/60 [00:07<00:52, 1.00it/s]\n 13%|█▎ | 8/60 [00:08<00:51, 1.00it/s]\n 15%|█▌ | 9/60 [00:09<00:50, 1.00it/s]\n 17%|█▋ | 10/60 [00:10<00:49, 1.00it/s]\n 18%|█▊ | 11/60 [00:11<00:48, 1.00it/s]\n 20%|██ | 12/60 [00:12<00:48, 1.00s/it]\n 22%|██▏ | 13/60 [00:13<00:47, 1.00s/it]\n 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it]\n 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it]\n 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it]\n 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it]\n 30%|███ | 18/60 [00:18<00:42, 1.00s/it]\n 32%|███▏ | 19/60 [00:19<00:41, 1.00s/it]\n 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it]\n 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it]\n 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it]\n 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it]\n 40%|████ | 24/60 [00:24<00:36, 1.01s/it]\n 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it]\n 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it]\n 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it]\n 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it]\n 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it]\n 50%|█████ | 30/60 [00:30<00:30, 1.01s/it]\n 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it]\n 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it]\n 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it]\n 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it]\n 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it]\n 60%|██████ | 36/60 [00:36<00:24, 1.01s/it]\n 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it]\n 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it]\n 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it]\n 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it]\n 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it]\n 70%|███████ | 42/60 [00:42<00:18, 1.01s/it]\n 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it]\n 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it]\n 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it]\n 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it]\n 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it]\n 80%|████████ | 48/60 [00:48<00:12, 1.01s/it]\n 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it]\n 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it]\n 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it]\n 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it]\n 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it]\n 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it]\n 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it]\n 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it]\n 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it]\n 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it]\n 98%|█████████▊| 59/60 [00:59<00:01, 1.02s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.21it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.21it/s]\n 15%|█▌ | 3/20 [00:02<00:14, 1.21it/s]\n 20%|██ | 4/20 [00:03<00:13, 1.21it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.21it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.21it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.21it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.21it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.21it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.21it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.21it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.21it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.21it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.21it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.21it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.21it/s]\n 85%|████████▌ | 17/20 [00:14<00:02, 1.21it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.21it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.21it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.21it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.21it/s]", "metrics": { "predict_time": 84.832227, "total_time": 181.65675 }, "output": [ "https://pbxt.replicate.delivery/v0TqlJK15IomO97k1kZ0p2TH123jLYhD2QKbLxNdSuHuO5aE/out-0.png", "https://pbxt.replicate.delivery/wDZY3B2PCVotFZuxWNWBz1V5QIv244t9sPt022OSdEQuO5aE/out-1.png", "https://pbxt.replicate.delivery/SpUBsIrCGM7oC5ai0DYHeTecVfYh9wvxR8Wj8ymKyjforTuGB/out-2.png", "https://pbxt.replicate.delivery/03fGw978ibxwS6g4rBSCMgA69YfTxeraN2Bomw3jOnforTuGB/out-3.png" ], "started_at": "2023-10-06T23:46:46.340920Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/wuydsydbrajpzwr3xkydwn4hpu", "cancel": "https://api.replicate.com/v1/predictions/wuydsydbrajpzwr3xkydwn4hpu/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 15152 Prompt: Cyberpunk twins with pink and green hair in a divebar bathroom covered with graffiti, Blade Runner, Fight Club and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<00:59, 1.00s/it] 3%|▎ | 2/60 [00:02<00:58, 1.00s/it] 5%|▌ | 3/60 [00:03<00:57, 1.00s/it] 7%|▋ | 4/60 [00:04<00:56, 1.00s/it] 8%|▊ | 5/60 [00:05<00:54, 1.00it/s] 10%|█ | 6/60 [00:06<00:53, 1.00it/s] 12%|█▏ | 7/60 [00:07<00:52, 1.00it/s] 13%|█▎ | 8/60 [00:08<00:51, 1.00it/s] 15%|█▌ | 9/60 [00:09<00:50, 1.00it/s] 17%|█▋ | 10/60 [00:10<00:49, 1.00it/s] 18%|█▊ | 11/60 [00:11<00:48, 1.00it/s] 20%|██ | 12/60 [00:12<00:48, 1.00s/it] 22%|██▏ | 13/60 [00:13<00:47, 1.00s/it] 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it] 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it] 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it] 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it] 30%|███ | 18/60 [00:18<00:42, 1.00s/it] 32%|███▏ | 19/60 [00:19<00:41, 1.00s/it] 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it] 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it] 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it] 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it] 40%|████ | 24/60 [00:24<00:36, 1.01s/it] 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it] 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it] 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it] 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it] 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it] 50%|█████ | 30/60 [00:30<00:30, 1.01s/it] 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it] 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it] 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it] 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it] 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it] 60%|██████ | 36/60 [00:36<00:24, 1.01s/it] 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it] 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it] 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it] 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it] 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it] 70%|███████ | 42/60 [00:42<00:18, 1.01s/it] 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it] 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it] 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it] 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it] 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it] 80%|████████ | 48/60 [00:48<00:12, 1.01s/it] 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it] 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it] 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it] 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it] 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it] 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it] 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it] 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it] 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it] 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it] 98%|█████████▊| 59/60 [00:59<00:01, 1.02s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.21it/s] 10%|█ | 2/20 [00:01<00:14, 1.21it/s] 15%|█▌ | 3/20 [00:02<00:14, 1.21it/s] 20%|██ | 4/20 [00:03<00:13, 1.21it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.21it/s] 30%|███ | 6/20 [00:04<00:11, 1.21it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.21it/s] 40%|████ | 8/20 [00:06<00:09, 1.21it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.21it/s] 50%|█████ | 10/20 [00:08<00:08, 1.21it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.21it/s] 60%|██████ | 12/20 [00:09<00:06, 1.21it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.21it/s] 70%|███████ | 14/20 [00:11<00:04, 1.21it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.21it/s] 80%|████████ | 16/20 [00:13<00:03, 1.21it/s] 85%|████████▌ | 17/20 [00:14<00:02, 1.21it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.21it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.21it/s] 100%|██████████| 20/20 [00:16<00:00, 1.21it/s] 100%|██████████| 20/20 [00:16<00:00, 1.21it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDe6bpimlbulqcgqxveybdnnfipiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JeiC3WQgsM9qraCu7LiiiznTeqZFY6UM6CjthdzQp009UzRx/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JeiC3WQgsM9qraCu7LiiiznTeqZFY6UM6CjthdzQp009UzRx/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", width: 896, height: 1344, prompt: "Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JeiC3WQgsM9qraCu7LiiiznTeqZFY6UM6CjthdzQp009UzRx/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JeiC3WQgsM9qraCu7LiiiznTeqZFY6UM6CjthdzQp009UzRx/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JeiC3WQgsM9qraCu7LiiiznTeqZFY6UM6CjthdzQp009UzRx/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JeiC3WQgsM9qraCu7LiiiznTeqZFY6UM6CjthdzQp009UzRx/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-07T02:54:20.161745Z", "created_at": "2023-10-07T02:52:47.371350Z", "data_removed": false, "error": null, "id": "e6bpimlbulqcgqxveybdnnfipi", "input": { "image": "https://replicate.delivery/pbxt/JeiC3WQgsM9qraCu7LiiiznTeqZFY6UM6CjthdzQp009UzRx/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 12190\nPrompt: Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:06, 1.13s/it]\n 3%|▎ | 2/60 [00:02<01:05, 1.13s/it]\n 5%|▌ | 3/60 [00:03<01:04, 1.13s/it]\n 7%|▋ | 4/60 [00:04<01:03, 1.13s/it]\n 8%|▊ | 5/60 [00:05<01:02, 1.13s/it]\n 10%|█ | 6/60 [00:06<01:01, 1.13s/it]\n 12%|█▏ | 7/60 [00:07<00:59, 1.13s/it]\n 13%|█▎ | 8/60 [00:09<00:58, 1.13s/it]\n 15%|█▌ | 9/60 [00:10<00:57, 1.13s/it]\n 17%|█▋ | 10/60 [00:11<00:56, 1.13s/it]\n 18%|█▊ | 11/60 [00:12<00:55, 1.13s/it]\n 20%|██ | 12/60 [00:13<00:54, 1.13s/it]\n 22%|██▏ | 13/60 [00:14<00:53, 1.13s/it]\n 23%|██▎ | 14/60 [00:15<00:51, 1.13s/it]\n 25%|██▌ | 15/60 [00:16<00:50, 1.13s/it]\n 27%|██▋ | 16/60 [00:18<00:49, 1.13s/it]\n 28%|██▊ | 17/60 [00:19<00:48, 1.13s/it]\n 30%|███ | 18/60 [00:20<00:47, 1.13s/it]\n 32%|███▏ | 19/60 [00:21<00:46, 1.13s/it]\n 33%|███▎ | 20/60 [00:22<00:45, 1.13s/it]\n 35%|███▌ | 21/60 [00:23<00:44, 1.13s/it]\n 37%|███▋ | 22/60 [00:24<00:42, 1.13s/it]\n 38%|███▊ | 23/60 [00:25<00:41, 1.13s/it]\n 40%|████ | 24/60 [00:27<00:40, 1.13s/it]\n 42%|████▏ | 25/60 [00:28<00:39, 1.13s/it]\n 43%|████▎ | 26/60 [00:29<00:38, 1.13s/it]\n 45%|████▌ | 27/60 [00:30<00:37, 1.13s/it]\n 47%|████▋ | 28/60 [00:31<00:36, 1.13s/it]\n 48%|████▊ | 29/60 [00:32<00:35, 1.13s/it]\n 50%|█████ | 30/60 [00:33<00:33, 1.13s/it]\n 52%|█████▏ | 31/60 [00:35<00:32, 1.13s/it]\n 53%|█████▎ | 32/60 [00:36<00:31, 1.13s/it]\n 55%|█████▌ | 33/60 [00:37<00:30, 1.13s/it]\n 57%|█████▋ | 34/60 [00:38<00:29, 1.13s/it]\n 58%|█████▊ | 35/60 [00:39<00:28, 1.13s/it]\n 60%|██████ | 36/60 [00:40<00:27, 1.13s/it]\n 62%|██████▏ | 37/60 [00:41<00:26, 1.13s/it]\n 63%|██████▎ | 38/60 [00:42<00:24, 1.13s/it]\n 65%|██████▌ | 39/60 [00:44<00:23, 1.13s/it]\n 67%|██████▋ | 40/60 [00:45<00:22, 1.14s/it]\n 68%|██████▊ | 41/60 [00:46<00:21, 1.13s/it]\n 70%|███████ | 42/60 [00:47<00:20, 1.13s/it]\n 72%|███████▏ | 43/60 [00:48<00:19, 1.13s/it]\n 73%|███████▎ | 44/60 [00:49<00:18, 1.14s/it]\n 75%|███████▌ | 45/60 [00:50<00:17, 1.14s/it]\n 77%|███████▋ | 46/60 [00:52<00:15, 1.14s/it]\n 78%|███████▊ | 47/60 [00:53<00:14, 1.14s/it]\n 80%|████████ | 48/60 [00:54<00:13, 1.14s/it]\n 82%|████████▏ | 49/60 [00:55<00:12, 1.14s/it]\n 83%|████████▎ | 50/60 [00:56<00:11, 1.14s/it]\n 85%|████████▌ | 51/60 [00:57<00:10, 1.14s/it]\n 87%|████████▋ | 52/60 [00:58<00:09, 1.14s/it]\n 88%|████████▊ | 53/60 [01:00<00:07, 1.14s/it]\n 90%|█████████ | 54/60 [01:01<00:06, 1.14s/it]\n 92%|█████████▏| 55/60 [01:02<00:05, 1.14s/it]\n 93%|█████████▎| 56/60 [01:03<00:04, 1.14s/it]\n 95%|█████████▌| 57/60 [01:04<00:03, 1.14s/it]\n 97%|█████████▋| 58/60 [01:05<00:02, 1.14s/it]\n 98%|█████████▊| 59/60 [01:06<00:01, 1.14s/it]\n100%|██████████| 60/60 [01:08<00:00, 1.14s/it]\n100%|██████████| 60/60 [01:08<00:00, 1.13s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:17, 1.10it/s]\n 10%|█ | 2/20 [00:01<00:16, 1.10it/s]\n 15%|█▌ | 3/20 [00:02<00:15, 1.10it/s]\n 20%|██ | 4/20 [00:03<00:14, 1.10it/s]\n 25%|██▌ | 5/20 [00:04<00:13, 1.10it/s]\n 30%|███ | 6/20 [00:05<00:12, 1.10it/s]\n 35%|███▌ | 7/20 [00:06<00:11, 1.10it/s]\n 40%|████ | 8/20 [00:07<00:10, 1.10it/s]\n 45%|████▌ | 9/20 [00:08<00:09, 1.10it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.10it/s]\n 55%|█████▌ | 11/20 [00:09<00:08, 1.10it/s]\n 60%|██████ | 12/20 [00:10<00:07, 1.10it/s]\n 65%|██████▌ | 13/20 [00:11<00:06, 1.10it/s]\n 70%|███████ | 14/20 [00:12<00:05, 1.10it/s]\n 75%|███████▌ | 15/20 [00:13<00:04, 1.10it/s]\n 80%|████████ | 16/20 [00:14<00:03, 1.10it/s]\n 85%|████████▌ | 17/20 [00:15<00:02, 1.10it/s]\n 90%|█████████ | 18/20 [00:16<00:01, 1.10it/s]\n 95%|█████████▌| 19/20 [00:17<00:00, 1.10it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.10it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.10it/s]", "metrics": { "predict_time": 92.853114, "total_time": 92.790395 }, "output": [ "https://pbxt.replicate.delivery/6g47ZBqXtgLEKxwPRvpeSqxqG4Ph7VoWpffFjkr6lMfmlecNC/out-0.png", "https://pbxt.replicate.delivery/IpR1V7nxfSXaJCyeTieDS14t5Dor3eGk3yXRe9Rfv5RlW65aE/out-1.png", "https://pbxt.replicate.delivery/p9Ke6RG1D0RPZC4n2kmrebj7djGXp7Ws8Sk63oFh6xCbpnrRA/out-2.png", "https://pbxt.replicate.delivery/WVUkjxT4SlZqP1cTufB9Xz3JzbS98E25uaCrykePBe22SPXjA/out-3.png" ], "started_at": "2023-10-07T02:52:47.308631Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/e6bpimlbulqcgqxveybdnnfipi", "cancel": "https://api.replicate.com/v1/predictions/e6bpimlbulqcgqxveybdnnfipi/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 12190 Prompt: Young Mary Elizabeth Winstead from Scott Pilgrim vs. the World a in a Cyberpunk dive bar bathroom covered with graffiti img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:06, 1.13s/it] 3%|▎ | 2/60 [00:02<01:05, 1.13s/it] 5%|▌ | 3/60 [00:03<01:04, 1.13s/it] 7%|▋ | 4/60 [00:04<01:03, 1.13s/it] 8%|▊ | 5/60 [00:05<01:02, 1.13s/it] 10%|█ | 6/60 [00:06<01:01, 1.13s/it] 12%|█▏ | 7/60 [00:07<00:59, 1.13s/it] 13%|█▎ | 8/60 [00:09<00:58, 1.13s/it] 15%|█▌ | 9/60 [00:10<00:57, 1.13s/it] 17%|█▋ | 10/60 [00:11<00:56, 1.13s/it] 18%|█▊ | 11/60 [00:12<00:55, 1.13s/it] 20%|██ | 12/60 [00:13<00:54, 1.13s/it] 22%|██▏ | 13/60 [00:14<00:53, 1.13s/it] 23%|██▎ | 14/60 [00:15<00:51, 1.13s/it] 25%|██▌ | 15/60 [00:16<00:50, 1.13s/it] 27%|██▋ | 16/60 [00:18<00:49, 1.13s/it] 28%|██▊ | 17/60 [00:19<00:48, 1.13s/it] 30%|███ | 18/60 [00:20<00:47, 1.13s/it] 32%|███▏ | 19/60 [00:21<00:46, 1.13s/it] 33%|███▎ | 20/60 [00:22<00:45, 1.13s/it] 35%|███▌ | 21/60 [00:23<00:44, 1.13s/it] 37%|███▋ | 22/60 [00:24<00:42, 1.13s/it] 38%|███▊ | 23/60 [00:25<00:41, 1.13s/it] 40%|████ | 24/60 [00:27<00:40, 1.13s/it] 42%|████▏ | 25/60 [00:28<00:39, 1.13s/it] 43%|████▎ | 26/60 [00:29<00:38, 1.13s/it] 45%|████▌ | 27/60 [00:30<00:37, 1.13s/it] 47%|████▋ | 28/60 [00:31<00:36, 1.13s/it] 48%|████▊ | 29/60 [00:32<00:35, 1.13s/it] 50%|█████ | 30/60 [00:33<00:33, 1.13s/it] 52%|█████▏ | 31/60 [00:35<00:32, 1.13s/it] 53%|█████▎ | 32/60 [00:36<00:31, 1.13s/it] 55%|█████▌ | 33/60 [00:37<00:30, 1.13s/it] 57%|█████▋ | 34/60 [00:38<00:29, 1.13s/it] 58%|█████▊ | 35/60 [00:39<00:28, 1.13s/it] 60%|██████ | 36/60 [00:40<00:27, 1.13s/it] 62%|██████▏ | 37/60 [00:41<00:26, 1.13s/it] 63%|██████▎ | 38/60 [00:42<00:24, 1.13s/it] 65%|██████▌ | 39/60 [00:44<00:23, 1.13s/it] 67%|██████▋ | 40/60 [00:45<00:22, 1.14s/it] 68%|██████▊ | 41/60 [00:46<00:21, 1.13s/it] 70%|███████ | 42/60 [00:47<00:20, 1.13s/it] 72%|███████▏ | 43/60 [00:48<00:19, 1.13s/it] 73%|███████▎ | 44/60 [00:49<00:18, 1.14s/it] 75%|███████▌ | 45/60 [00:50<00:17, 1.14s/it] 77%|███████▋ | 46/60 [00:52<00:15, 1.14s/it] 78%|███████▊ | 47/60 [00:53<00:14, 1.14s/it] 80%|████████ | 48/60 [00:54<00:13, 1.14s/it] 82%|████████▏ | 49/60 [00:55<00:12, 1.14s/it] 83%|████████▎ | 50/60 [00:56<00:11, 1.14s/it] 85%|████████▌ | 51/60 [00:57<00:10, 1.14s/it] 87%|████████▋ | 52/60 [00:58<00:09, 1.14s/it] 88%|████████▊ | 53/60 [01:00<00:07, 1.14s/it] 90%|█████████ | 54/60 [01:01<00:06, 1.14s/it] 92%|█████████▏| 55/60 [01:02<00:05, 1.14s/it] 93%|█████████▎| 56/60 [01:03<00:04, 1.14s/it] 95%|█████████▌| 57/60 [01:04<00:03, 1.14s/it] 97%|█████████▋| 58/60 [01:05<00:02, 1.14s/it] 98%|█████████▊| 59/60 [01:06<00:01, 1.14s/it] 100%|██████████| 60/60 [01:08<00:00, 1.14s/it] 100%|██████████| 60/60 [01:08<00:00, 1.13s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:17, 1.10it/s] 10%|█ | 2/20 [00:01<00:16, 1.10it/s] 15%|█▌ | 3/20 [00:02<00:15, 1.10it/s] 20%|██ | 4/20 [00:03<00:14, 1.10it/s] 25%|██▌ | 5/20 [00:04<00:13, 1.10it/s] 30%|███ | 6/20 [00:05<00:12, 1.10it/s] 35%|███▌ | 7/20 [00:06<00:11, 1.10it/s] 40%|████ | 8/20 [00:07<00:10, 1.10it/s] 45%|████▌ | 9/20 [00:08<00:09, 1.10it/s] 50%|█████ | 10/20 [00:09<00:09, 1.10it/s] 55%|█████▌ | 11/20 [00:09<00:08, 1.10it/s] 60%|██████ | 12/20 [00:10<00:07, 1.10it/s] 65%|██████▌ | 13/20 [00:11<00:06, 1.10it/s] 70%|███████ | 14/20 [00:12<00:05, 1.10it/s] 75%|███████▌ | 15/20 [00:13<00:04, 1.10it/s] 80%|████████ | 16/20 [00:14<00:03, 1.10it/s] 85%|████████▌ | 17/20 [00:15<00:02, 1.10it/s] 90%|█████████ | 18/20 [00:16<00:01, 1.10it/s] 95%|█████████▌| 19/20 [00:17<00:00, 1.10it/s] 100%|██████████| 20/20 [00:18<00:00, 1.10it/s] 100%|██████████| 20/20 [00:18<00:00, 1.10it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDqqinzw3btmmjm6fesj5tdlwk6mStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JeiMUOUHP9MI0Gs29KgaVA2DfrVxDH1DBRiCLwuCDv3hk3co/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JeiMUOUHP9MI0Gs29KgaVA2DfrVxDH1DBRiCLwuCDv3hk3co/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", width: 896, height: 1344, prompt: "Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JeiMUOUHP9MI0Gs29KgaVA2DfrVxDH1DBRiCLwuCDv3hk3co/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JeiMUOUHP9MI0Gs29KgaVA2DfrVxDH1DBRiCLwuCDv3hk3co/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JeiMUOUHP9MI0Gs29KgaVA2DfrVxDH1DBRiCLwuCDv3hk3co/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JeiMUOUHP9MI0Gs29KgaVA2DfrVxDH1DBRiCLwuCDv3hk3co/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-07T03:05:20.545739Z", "created_at": "2023-10-07T03:03:47.758870Z", "data_removed": false, "error": null, "id": "qqinzw3btmmjm6fesj5tdlwk6m", "input": { "image": "https://replicate.delivery/pbxt/JeiMUOUHP9MI0Gs29KgaVA2DfrVxDH1DBRiCLwuCDv3hk3co/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 58694\nPrompt: Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:06, 1.13s/it]\n 3%|▎ | 2/60 [00:02<01:05, 1.13s/it]\n 5%|▌ | 3/60 [00:03<01:04, 1.13s/it]\n 7%|▋ | 4/60 [00:04<01:03, 1.13s/it]\n 8%|▊ | 5/60 [00:05<01:02, 1.13s/it]\n 10%|█ | 6/60 [00:06<01:01, 1.13s/it]\n 12%|█▏ | 7/60 [00:07<00:59, 1.13s/it]\n 13%|█▎ | 8/60 [00:09<00:58, 1.13s/it]\n 15%|█▌ | 9/60 [00:10<00:57, 1.13s/it]\n 17%|█▋ | 10/60 [00:11<00:56, 1.13s/it]\n 18%|█▊ | 11/60 [00:12<00:55, 1.13s/it]\n 20%|██ | 12/60 [00:13<00:54, 1.13s/it]\n 22%|██▏ | 13/60 [00:14<00:53, 1.13s/it]\n 23%|██▎ | 14/60 [00:15<00:51, 1.13s/it]\n 25%|██▌ | 15/60 [00:16<00:50, 1.13s/it]\n 27%|██▋ | 16/60 [00:18<00:49, 1.13s/it]\n 28%|██▊ | 17/60 [00:19<00:48, 1.13s/it]\n 30%|███ | 18/60 [00:20<00:47, 1.13s/it]\n 32%|███▏ | 19/60 [00:21<00:46, 1.13s/it]\n 33%|███▎ | 20/60 [00:22<00:45, 1.13s/it]\n 35%|███▌ | 21/60 [00:23<00:44, 1.13s/it]\n 37%|███▋ | 22/60 [00:24<00:42, 1.13s/it]\n 38%|███▊ | 23/60 [00:25<00:41, 1.13s/it]\n 40%|████ | 24/60 [00:27<00:40, 1.13s/it]\n 42%|████▏ | 25/60 [00:28<00:39, 1.13s/it]\n 43%|████▎ | 26/60 [00:29<00:38, 1.13s/it]\n 45%|████▌ | 27/60 [00:30<00:37, 1.13s/it]\n 47%|████▋ | 28/60 [00:31<00:36, 1.13s/it]\n 48%|████▊ | 29/60 [00:32<00:35, 1.13s/it]\n 50%|█████ | 30/60 [00:33<00:33, 1.13s/it]\n 52%|█████▏ | 31/60 [00:35<00:32, 1.13s/it]\n 53%|█████▎ | 32/60 [00:36<00:31, 1.13s/it]\n 55%|█████▌ | 33/60 [00:37<00:30, 1.13s/it]\n 57%|█████▋ | 34/60 [00:38<00:29, 1.13s/it]\n 58%|█████▊ | 35/60 [00:39<00:28, 1.13s/it]\n 60%|██████ | 36/60 [00:40<00:27, 1.13s/it]\n 62%|██████▏ | 37/60 [00:41<00:26, 1.13s/it]\n 63%|██████▎ | 38/60 [00:42<00:24, 1.13s/it]\n 65%|██████▌ | 39/60 [00:44<00:23, 1.13s/it]\n 67%|██████▋ | 40/60 [00:45<00:22, 1.13s/it]\n 68%|██████▊ | 41/60 [00:46<00:21, 1.13s/it]\n 70%|███████ | 42/60 [00:47<00:20, 1.13s/it]\n 72%|███████▏ | 43/60 [00:48<00:19, 1.13s/it]\n 73%|███████▎ | 44/60 [00:49<00:18, 1.13s/it]\n 75%|███████▌ | 45/60 [00:50<00:17, 1.13s/it]\n 77%|███████▋ | 46/60 [00:52<00:15, 1.13s/it]\n 78%|███████▊ | 47/60 [00:53<00:14, 1.13s/it]\n 80%|████████ | 48/60 [00:54<00:13, 1.14s/it]\n 82%|████████▏ | 49/60 [00:55<00:12, 1.13s/it]\n 83%|████████▎ | 50/60 [00:56<00:11, 1.14s/it]\n 85%|████████▌ | 51/60 [00:57<00:10, 1.14s/it]\n 87%|████████▋ | 52/60 [00:58<00:09, 1.14s/it]\n 88%|████████▊ | 53/60 [00:59<00:07, 1.14s/it]\n 90%|█████████ | 54/60 [01:01<00:06, 1.14s/it]\n 92%|█████████▏| 55/60 [01:02<00:05, 1.14s/it]\n 93%|█████████▎| 56/60 [01:03<00:04, 1.14s/it]\n 95%|█████████▌| 57/60 [01:04<00:03, 1.14s/it]\n 97%|█████████▋| 58/60 [01:05<00:02, 1.14s/it]\n 98%|█████████▊| 59/60 [01:06<00:01, 1.14s/it]\n100%|██████████| 60/60 [01:07<00:00, 1.14s/it]\n100%|██████████| 60/60 [01:07<00:00, 1.13s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:17, 1.09it/s]\n 10%|█ | 2/20 [00:01<00:16, 1.10it/s]\n 15%|█▌ | 3/20 [00:02<00:15, 1.10it/s]\n 20%|██ | 4/20 [00:03<00:14, 1.10it/s]\n 25%|██▌ | 5/20 [00:04<00:13, 1.10it/s]\n 30%|███ | 6/20 [00:05<00:12, 1.10it/s]\n 35%|███▌ | 7/20 [00:06<00:11, 1.10it/s]\n 40%|████ | 8/20 [00:07<00:10, 1.10it/s]\n 45%|████▌ | 9/20 [00:08<00:09, 1.10it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.10it/s]\n 55%|█████▌ | 11/20 [00:09<00:08, 1.10it/s]\n 60%|██████ | 12/20 [00:10<00:07, 1.10it/s]\n 65%|██████▌ | 13/20 [00:11<00:06, 1.10it/s]\n 70%|███████ | 14/20 [00:12<00:05, 1.10it/s]\n 75%|███████▌ | 15/20 [00:13<00:04, 1.10it/s]\n 80%|████████ | 16/20 [00:14<00:03, 1.10it/s]\n 85%|████████▌ | 17/20 [00:15<00:02, 1.10it/s]\n 90%|█████████ | 18/20 [00:16<00:01, 1.10it/s]\n 95%|█████████▌| 19/20 [00:17<00:00, 1.10it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.10it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.10it/s]", "metrics": { "predict_time": 92.792639, "total_time": 92.786869 }, "output": [ "https://pbxt.replicate.delivery/6dDHXziB114fCK2vX6yd3fEWV0B7Ljppevh0nZyzg2DbnPXjA/out-0.png", "https://pbxt.replicate.delivery/1TyyTs1Y0jL1BZ3HgZ0Uqgviatk8CsqJybfVeQtk1zqvznrRA/out-1.png", "https://pbxt.replicate.delivery/2HlKeIODD6xLUqyYa7cdjBG6OvqK9J4jUzwGWAgx66s35z1IA/out-2.png", "https://pbxt.replicate.delivery/b86pniBeDcxRXSUhSbeDz0O5G8CRQm8vyOf1b6I0wVpgnPXjA/out-3.png" ], "started_at": "2023-10-07T03:03:47.753100Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qqinzw3btmmjm6fesj5tdlwk6m", "cancel": "https://api.replicate.com/v1/predictions/qqinzw3btmmjm6fesj5tdlwk6m/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 58694 Prompt: Young Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting and Fight Club vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:06, 1.13s/it] 3%|▎ | 2/60 [00:02<01:05, 1.13s/it] 5%|▌ | 3/60 [00:03<01:04, 1.13s/it] 7%|▋ | 4/60 [00:04<01:03, 1.13s/it] 8%|▊ | 5/60 [00:05<01:02, 1.13s/it] 10%|█ | 6/60 [00:06<01:01, 1.13s/it] 12%|█▏ | 7/60 [00:07<00:59, 1.13s/it] 13%|█▎ | 8/60 [00:09<00:58, 1.13s/it] 15%|█▌ | 9/60 [00:10<00:57, 1.13s/it] 17%|█▋ | 10/60 [00:11<00:56, 1.13s/it] 18%|█▊ | 11/60 [00:12<00:55, 1.13s/it] 20%|██ | 12/60 [00:13<00:54, 1.13s/it] 22%|██▏ | 13/60 [00:14<00:53, 1.13s/it] 23%|██▎ | 14/60 [00:15<00:51, 1.13s/it] 25%|██▌ | 15/60 [00:16<00:50, 1.13s/it] 27%|██▋ | 16/60 [00:18<00:49, 1.13s/it] 28%|██▊ | 17/60 [00:19<00:48, 1.13s/it] 30%|███ | 18/60 [00:20<00:47, 1.13s/it] 32%|███▏ | 19/60 [00:21<00:46, 1.13s/it] 33%|███▎ | 20/60 [00:22<00:45, 1.13s/it] 35%|███▌ | 21/60 [00:23<00:44, 1.13s/it] 37%|███▋ | 22/60 [00:24<00:42, 1.13s/it] 38%|███▊ | 23/60 [00:25<00:41, 1.13s/it] 40%|████ | 24/60 [00:27<00:40, 1.13s/it] 42%|████▏ | 25/60 [00:28<00:39, 1.13s/it] 43%|████▎ | 26/60 [00:29<00:38, 1.13s/it] 45%|████▌ | 27/60 [00:30<00:37, 1.13s/it] 47%|████▋ | 28/60 [00:31<00:36, 1.13s/it] 48%|████▊ | 29/60 [00:32<00:35, 1.13s/it] 50%|█████ | 30/60 [00:33<00:33, 1.13s/it] 52%|█████▏ | 31/60 [00:35<00:32, 1.13s/it] 53%|█████▎ | 32/60 [00:36<00:31, 1.13s/it] 55%|█████▌ | 33/60 [00:37<00:30, 1.13s/it] 57%|█████▋ | 34/60 [00:38<00:29, 1.13s/it] 58%|█████▊ | 35/60 [00:39<00:28, 1.13s/it] 60%|██████ | 36/60 [00:40<00:27, 1.13s/it] 62%|██████▏ | 37/60 [00:41<00:26, 1.13s/it] 63%|██████▎ | 38/60 [00:42<00:24, 1.13s/it] 65%|██████▌ | 39/60 [00:44<00:23, 1.13s/it] 67%|██████▋ | 40/60 [00:45<00:22, 1.13s/it] 68%|██████▊ | 41/60 [00:46<00:21, 1.13s/it] 70%|███████ | 42/60 [00:47<00:20, 1.13s/it] 72%|███████▏ | 43/60 [00:48<00:19, 1.13s/it] 73%|███████▎ | 44/60 [00:49<00:18, 1.13s/it] 75%|███████▌ | 45/60 [00:50<00:17, 1.13s/it] 77%|███████▋ | 46/60 [00:52<00:15, 1.13s/it] 78%|███████▊ | 47/60 [00:53<00:14, 1.13s/it] 80%|████████ | 48/60 [00:54<00:13, 1.14s/it] 82%|████████▏ | 49/60 [00:55<00:12, 1.13s/it] 83%|████████▎ | 50/60 [00:56<00:11, 1.14s/it] 85%|████████▌ | 51/60 [00:57<00:10, 1.14s/it] 87%|████████▋ | 52/60 [00:58<00:09, 1.14s/it] 88%|████████▊ | 53/60 [00:59<00:07, 1.14s/it] 90%|█████████ | 54/60 [01:01<00:06, 1.14s/it] 92%|█████████▏| 55/60 [01:02<00:05, 1.14s/it] 93%|█████████▎| 56/60 [01:03<00:04, 1.14s/it] 95%|█████████▌| 57/60 [01:04<00:03, 1.14s/it] 97%|█████████▋| 58/60 [01:05<00:02, 1.14s/it] 98%|█████████▊| 59/60 [01:06<00:01, 1.14s/it] 100%|██████████| 60/60 [01:07<00:00, 1.14s/it] 100%|██████████| 60/60 [01:07<00:00, 1.13s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:17, 1.09it/s] 10%|█ | 2/20 [00:01<00:16, 1.10it/s] 15%|█▌ | 3/20 [00:02<00:15, 1.10it/s] 20%|██ | 4/20 [00:03<00:14, 1.10it/s] 25%|██▌ | 5/20 [00:04<00:13, 1.10it/s] 30%|███ | 6/20 [00:05<00:12, 1.10it/s] 35%|███▌ | 7/20 [00:06<00:11, 1.10it/s] 40%|████ | 8/20 [00:07<00:10, 1.10it/s] 45%|████▌ | 9/20 [00:08<00:09, 1.10it/s] 50%|█████ | 10/20 [00:09<00:09, 1.10it/s] 55%|█████▌ | 11/20 [00:09<00:08, 1.10it/s] 60%|██████ | 12/20 [00:10<00:07, 1.10it/s] 65%|██████▌ | 13/20 [00:11<00:06, 1.10it/s] 70%|███████ | 14/20 [00:12<00:05, 1.10it/s] 75%|███████▌ | 15/20 [00:13<00:04, 1.10it/s] 80%|████████ | 16/20 [00:14<00:03, 1.10it/s] 85%|████████▌ | 17/20 [00:15<00:02, 1.10it/s] 90%|█████████ | 18/20 [00:16<00:01, 1.10it/s] 95%|█████████▌| 19/20 [00:17<00:00, 1.10it/s] 100%|██████████| 20/20 [00:18<00:00, 1.10it/s] 100%|██████████| 20/20 [00:18<00:00, 1.10it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDpfry3ztbxyei7nt6ykcbubiwraStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JeiQ2nY46m2vHgfK5ejw0jTOwFVy5fOCKNhn865VfTeMeosB/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JeiQ2nY46m2vHgfK5ejw0jTOwFVy5fOCKNhn865VfTeMeosB/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", width: 896, height: 1344, prompt: "A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JeiQ2nY46m2vHgfK5ejw0jTOwFVy5fOCKNhn865VfTeMeosB/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JeiQ2nY46m2vHgfK5ejw0jTOwFVy5fOCKNhn865VfTeMeosB/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JeiQ2nY46m2vHgfK5ejw0jTOwFVy5fOCKNhn865VfTeMeosB/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JeiQ2nY46m2vHgfK5ejw0jTOwFVy5fOCKNhn865VfTeMeosB/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-07T03:09:06.283953Z", "created_at": "2023-10-07T03:07:33.474667Z", "data_removed": false, "error": null, "id": "pfry3ztbxyei7nt6ykcbubiwra", "input": { "image": "https://replicate.delivery/pbxt/JeiQ2nY46m2vHgfK5ejw0jTOwFVy5fOCKNhn865VfTeMeosB/3AD6EE2B-BB7D-4B6F-9D3D-24F008228D1A.jpeg", "width": 896, "height": 1344, "prompt": "A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 48727\nPrompt: A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<01:06, 1.13s/it]\n 3%|▎ | 2/60 [00:02<01:05, 1.13s/it]\n 5%|▌ | 3/60 [00:03<01:04, 1.13s/it]\n 7%|▋ | 4/60 [00:04<01:03, 1.13s/it]\n 8%|▊ | 5/60 [00:05<01:02, 1.13s/it]\n 10%|█ | 6/60 [00:06<01:01, 1.13s/it]\n 12%|█▏ | 7/60 [00:07<00:59, 1.13s/it]\n 13%|█▎ | 8/60 [00:09<00:58, 1.13s/it]\n 15%|█▌ | 9/60 [00:10<00:57, 1.13s/it]\n 17%|█▋ | 10/60 [00:11<00:56, 1.13s/it]\n 18%|█▊ | 11/60 [00:12<00:55, 1.13s/it]\n 20%|██ | 12/60 [00:13<00:54, 1.13s/it]\n 22%|██▏ | 13/60 [00:14<00:53, 1.13s/it]\n 23%|██▎ | 14/60 [00:15<00:51, 1.13s/it]\n 25%|██▌ | 15/60 [00:16<00:50, 1.13s/it]\n 27%|██▋ | 16/60 [00:18<00:49, 1.13s/it]\n 28%|██▊ | 17/60 [00:19<00:48, 1.13s/it]\n 30%|███ | 18/60 [00:20<00:47, 1.13s/it]\n 32%|███▏ | 19/60 [00:21<00:46, 1.13s/it]\n 33%|███▎ | 20/60 [00:22<00:45, 1.13s/it]\n 35%|███▌ | 21/60 [00:23<00:44, 1.13s/it]\n 37%|███▋ | 22/60 [00:24<00:42, 1.13s/it]\n 38%|███▊ | 23/60 [00:25<00:41, 1.13s/it]\n 40%|████ | 24/60 [00:27<00:40, 1.13s/it]\n 42%|████▏ | 25/60 [00:28<00:39, 1.13s/it]\n 43%|████▎ | 26/60 [00:29<00:38, 1.13s/it]\n 45%|████▌ | 27/60 [00:30<00:37, 1.13s/it]\n 47%|████▋ | 28/60 [00:31<00:36, 1.13s/it]\n 48%|████▊ | 29/60 [00:32<00:35, 1.13s/it]\n 50%|█████ | 30/60 [00:33<00:33, 1.13s/it]\n 52%|█████▏ | 31/60 [00:35<00:32, 1.13s/it]\n 53%|█████▎ | 32/60 [00:36<00:31, 1.13s/it]\n 55%|█████▌ | 33/60 [00:37<00:30, 1.13s/it]\n 57%|█████▋ | 34/60 [00:38<00:29, 1.13s/it]\n 58%|█████▊ | 35/60 [00:39<00:28, 1.13s/it]\n 60%|██████ | 36/60 [00:40<00:27, 1.13s/it]\n 62%|██████▏ | 37/60 [00:41<00:26, 1.13s/it]\n 63%|██████▎ | 38/60 [00:42<00:25, 1.14s/it]\n 65%|██████▌ | 39/60 [00:44<00:23, 1.14s/it]\n 67%|██████▋ | 40/60 [00:45<00:22, 1.14s/it]\n 68%|██████▊ | 41/60 [00:46<00:21, 1.14s/it]\n 70%|███████ | 42/60 [00:47<00:20, 1.14s/it]\n 72%|███████▏ | 43/60 [00:48<00:19, 1.14s/it]\n 73%|███████▎ | 44/60 [00:49<00:18, 1.14s/it]\n 75%|███████▌ | 45/60 [00:50<00:17, 1.14s/it]\n 77%|███████▋ | 46/60 [00:52<00:15, 1.14s/it]\n 78%|███████▊ | 47/60 [00:53<00:14, 1.14s/it]\n 80%|████████ | 48/60 [00:54<00:13, 1.14s/it]\n 82%|████████▏ | 49/60 [00:55<00:12, 1.14s/it]\n 83%|████████▎ | 50/60 [00:56<00:11, 1.14s/it]\n 85%|████████▌ | 51/60 [00:57<00:10, 1.14s/it]\n 87%|████████▋ | 52/60 [00:58<00:09, 1.14s/it]\n 88%|████████▊ | 53/60 [01:00<00:07, 1.14s/it]\n 90%|█████████ | 54/60 [01:01<00:06, 1.14s/it]\n 92%|█████████▏| 55/60 [01:02<00:05, 1.14s/it]\n 93%|█████████▎| 56/60 [01:03<00:04, 1.14s/it]\n 95%|█████████▌| 57/60 [01:04<00:03, 1.14s/it]\n 97%|█████████▋| 58/60 [01:05<00:02, 1.14s/it]\n 98%|█████████▊| 59/60 [01:06<00:01, 1.14s/it]\n100%|██████████| 60/60 [01:07<00:00, 1.14s/it]\n100%|██████████| 60/60 [01:07<00:00, 1.13s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:17, 1.10it/s]\n 10%|█ | 2/20 [00:01<00:16, 1.10it/s]\n 15%|█▌ | 3/20 [00:02<00:15, 1.10it/s]\n 20%|██ | 4/20 [00:03<00:14, 1.10it/s]\n 25%|██▌ | 5/20 [00:04<00:13, 1.10it/s]\n 30%|███ | 6/20 [00:05<00:12, 1.10it/s]\n 35%|███▌ | 7/20 [00:06<00:11, 1.10it/s]\n 40%|████ | 8/20 [00:07<00:10, 1.10it/s]\n 45%|████▌ | 9/20 [00:08<00:09, 1.10it/s]\n 50%|█████ | 10/20 [00:09<00:09, 1.10it/s]\n 55%|█████▌ | 11/20 [00:09<00:08, 1.10it/s]\n 60%|██████ | 12/20 [00:10<00:07, 1.10it/s]\n 65%|██████▌ | 13/20 [00:11<00:06, 1.10it/s]\n 70%|███████ | 14/20 [00:12<00:05, 1.10it/s]\n 75%|███████▌ | 15/20 [00:13<00:04, 1.10it/s]\n 80%|████████ | 16/20 [00:14<00:03, 1.10it/s]\n 85%|████████▌ | 17/20 [00:15<00:02, 1.10it/s]\n 90%|█████████ | 18/20 [00:16<00:01, 1.10it/s]\n 95%|█████████▌| 19/20 [00:17<00:00, 1.10it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.10it/s]\n100%|██████████| 20/20 [00:18<00:00, 1.10it/s]", "metrics": { "predict_time": 92.854934, "total_time": 92.809286 }, "output": [ "https://pbxt.replicate.delivery/iZUJpcO43yruAFWAeLjXq7UjAJ1iOa1oevbjY8ZPDZ4P3nrRA/out-0.png", "https://pbxt.replicate.delivery/it5EdxyW1d55AhiPUywYWlT8qJc9Zj4FxwjON9zMTEJ095aE/out-1.png", "https://pbxt.replicate.delivery/wgliXM0bXj6hNlE2G47HBGgMQE9FBtCz45DhDazbn2fo7z1IA/out-2.png", "https://pbxt.replicate.delivery/y7LjXsOd2bLuE5SpR0mgheh7Hso5bDTAza84OjblTMmo7z1IA/out-3.png" ], "started_at": "2023-10-07T03:07:33.429019Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pfry3ztbxyei7nt6ykcbubiwra", "cancel": "https://api.replicate.com/v1/predictions/pfry3ztbxyei7nt6ykcbubiwra/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 48727 Prompt: A cyberpunk Young Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered in graffiti, Trainspotting and Fight Club vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<01:06, 1.13s/it] 3%|▎ | 2/60 [00:02<01:05, 1.13s/it] 5%|▌ | 3/60 [00:03<01:04, 1.13s/it] 7%|▋ | 4/60 [00:04<01:03, 1.13s/it] 8%|▊ | 5/60 [00:05<01:02, 1.13s/it] 10%|█ | 6/60 [00:06<01:01, 1.13s/it] 12%|█▏ | 7/60 [00:07<00:59, 1.13s/it] 13%|█▎ | 8/60 [00:09<00:58, 1.13s/it] 15%|█▌ | 9/60 [00:10<00:57, 1.13s/it] 17%|█▋ | 10/60 [00:11<00:56, 1.13s/it] 18%|█▊ | 11/60 [00:12<00:55, 1.13s/it] 20%|██ | 12/60 [00:13<00:54, 1.13s/it] 22%|██▏ | 13/60 [00:14<00:53, 1.13s/it] 23%|██▎ | 14/60 [00:15<00:51, 1.13s/it] 25%|██▌ | 15/60 [00:16<00:50, 1.13s/it] 27%|██▋ | 16/60 [00:18<00:49, 1.13s/it] 28%|██▊ | 17/60 [00:19<00:48, 1.13s/it] 30%|███ | 18/60 [00:20<00:47, 1.13s/it] 32%|███▏ | 19/60 [00:21<00:46, 1.13s/it] 33%|███▎ | 20/60 [00:22<00:45, 1.13s/it] 35%|███▌ | 21/60 [00:23<00:44, 1.13s/it] 37%|███▋ | 22/60 [00:24<00:42, 1.13s/it] 38%|███▊ | 23/60 [00:25<00:41, 1.13s/it] 40%|████ | 24/60 [00:27<00:40, 1.13s/it] 42%|████▏ | 25/60 [00:28<00:39, 1.13s/it] 43%|████▎ | 26/60 [00:29<00:38, 1.13s/it] 45%|████▌ | 27/60 [00:30<00:37, 1.13s/it] 47%|████▋ | 28/60 [00:31<00:36, 1.13s/it] 48%|████▊ | 29/60 [00:32<00:35, 1.13s/it] 50%|█████ | 30/60 [00:33<00:33, 1.13s/it] 52%|█████▏ | 31/60 [00:35<00:32, 1.13s/it] 53%|█████▎ | 32/60 [00:36<00:31, 1.13s/it] 55%|█████▌ | 33/60 [00:37<00:30, 1.13s/it] 57%|█████▋ | 34/60 [00:38<00:29, 1.13s/it] 58%|█████▊ | 35/60 [00:39<00:28, 1.13s/it] 60%|██████ | 36/60 [00:40<00:27, 1.13s/it] 62%|██████▏ | 37/60 [00:41<00:26, 1.13s/it] 63%|██████▎ | 38/60 [00:42<00:25, 1.14s/it] 65%|██████▌ | 39/60 [00:44<00:23, 1.14s/it] 67%|██████▋ | 40/60 [00:45<00:22, 1.14s/it] 68%|██████▊ | 41/60 [00:46<00:21, 1.14s/it] 70%|███████ | 42/60 [00:47<00:20, 1.14s/it] 72%|███████▏ | 43/60 [00:48<00:19, 1.14s/it] 73%|███████▎ | 44/60 [00:49<00:18, 1.14s/it] 75%|███████▌ | 45/60 [00:50<00:17, 1.14s/it] 77%|███████▋ | 46/60 [00:52<00:15, 1.14s/it] 78%|███████▊ | 47/60 [00:53<00:14, 1.14s/it] 80%|████████ | 48/60 [00:54<00:13, 1.14s/it] 82%|████████▏ | 49/60 [00:55<00:12, 1.14s/it] 83%|████████▎ | 50/60 [00:56<00:11, 1.14s/it] 85%|████████▌ | 51/60 [00:57<00:10, 1.14s/it] 87%|████████▋ | 52/60 [00:58<00:09, 1.14s/it] 88%|████████▊ | 53/60 [01:00<00:07, 1.14s/it] 90%|█████████ | 54/60 [01:01<00:06, 1.14s/it] 92%|█████████▏| 55/60 [01:02<00:05, 1.14s/it] 93%|█████████▎| 56/60 [01:03<00:04, 1.14s/it] 95%|█████████▌| 57/60 [01:04<00:03, 1.14s/it] 97%|█████████▋| 58/60 [01:05<00:02, 1.14s/it] 98%|█████████▊| 59/60 [01:06<00:01, 1.14s/it] 100%|██████████| 60/60 [01:07<00:00, 1.14s/it] 100%|██████████| 60/60 [01:07<00:00, 1.13s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:17, 1.10it/s] 10%|█ | 2/20 [00:01<00:16, 1.10it/s] 15%|█▌ | 3/20 [00:02<00:15, 1.10it/s] 20%|██ | 4/20 [00:03<00:14, 1.10it/s] 25%|██▌ | 5/20 [00:04<00:13, 1.10it/s] 30%|███ | 6/20 [00:05<00:12, 1.10it/s] 35%|███▌ | 7/20 [00:06<00:11, 1.10it/s] 40%|████ | 8/20 [00:07<00:10, 1.10it/s] 45%|████▌ | 9/20 [00:08<00:09, 1.10it/s] 50%|█████ | 10/20 [00:09<00:09, 1.10it/s] 55%|█████▌ | 11/20 [00:09<00:08, 1.10it/s] 60%|██████ | 12/20 [00:10<00:07, 1.10it/s] 65%|██████▌ | 13/20 [00:11<00:06, 1.10it/s] 70%|███████ | 14/20 [00:12<00:05, 1.10it/s] 75%|███████▌ | 15/20 [00:13<00:04, 1.10it/s] 80%|████████ | 16/20 [00:14<00:03, 1.10it/s] 85%|████████▌ | 17/20 [00:15<00:02, 1.10it/s] 90%|█████████ | 18/20 [00:16<00:01, 1.10it/s] 95%|█████████▌| 19/20 [00:17<00:00, 1.10it/s] 100%|██████████| 20/20 [00:18<00:00, 1.10it/s] 100%|██████████| 20/20 [00:18<00:00, 1.10it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDuuanpjdbazx5fuuueuwoeftr5mStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JeiaIoqrivtIQfdfEoufWNefREQbljvDeZc2itd3ZNrOgRVq/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 896, "height": 1344, "prompt": "A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JeiaIoqrivtIQfdfEoufWNefREQbljvDeZc2itd3ZNrOgRVq/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", width: 896, height: 1344, prompt: "A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JeiaIoqrivtIQfdfEoufWNefREQbljvDeZc2itd3ZNrOgRVq/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 896, "height": 1344, "prompt": "A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JeiaIoqrivtIQfdfEoufWNefREQbljvDeZc2itd3ZNrOgRVq/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 896, "height": 1344, "prompt": "A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JeiaIoqrivtIQfdfEoufWNefREQbljvDeZc2itd3ZNrOgRVq/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JeiaIoqrivtIQfdfEoufWNefREQbljvDeZc2itd3ZNrOgRVq/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 896, "height": 1344, "prompt": "A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-07T03:19:46.815645Z", "created_at": "2023-10-07T03:18:22.807549Z", "data_removed": false, "error": null, "id": "uuanpjdbazx5fuuueuwoeftr5m", "input": { "image": "https://replicate.delivery/pbxt/JeiaIoqrivtIQfdfEoufWNefREQbljvDeZc2itd3ZNrOgRVq/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 896, "height": 1344, "prompt": "A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 37583\nPrompt: A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<00:59, 1.01s/it]\n 3%|▎ | 2/60 [00:02<00:58, 1.01s/it]\n 5%|▌ | 3/60 [00:03<00:57, 1.01s/it]\n 7%|▋ | 4/60 [00:04<00:56, 1.01s/it]\n 8%|▊ | 5/60 [00:05<00:55, 1.01s/it]\n 10%|█ | 6/60 [00:06<00:54, 1.01s/it]\n 12%|█▏ | 7/60 [00:07<00:53, 1.01s/it]\n 13%|█▎ | 8/60 [00:08<00:52, 1.01s/it]\n 15%|█▌ | 9/60 [00:09<00:51, 1.01s/it]\n 17%|█▋ | 10/60 [00:10<00:50, 1.01s/it]\n 18%|█▊ | 11/60 [00:11<00:49, 1.01s/it]\n 20%|██ | 12/60 [00:12<00:48, 1.01s/it]\n 22%|██▏ | 13/60 [00:13<00:47, 1.01s/it]\n 23%|██▎ | 14/60 [00:14<00:46, 1.01s/it]\n 25%|██▌ | 15/60 [00:15<00:45, 1.01s/it]\n 27%|██▋ | 16/60 [00:16<00:44, 1.01s/it]\n 28%|██▊ | 17/60 [00:17<00:43, 1.01s/it]\n 30%|███ | 18/60 [00:18<00:42, 1.01s/it]\n 32%|███▏ | 19/60 [00:19<00:41, 1.01s/it]\n 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it]\n 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it]\n 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it]\n 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it]\n 40%|████ | 24/60 [00:24<00:36, 1.01s/it]\n 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it]\n 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it]\n 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it]\n 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it]\n 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it]\n 50%|█████ | 30/60 [00:30<00:30, 1.01s/it]\n 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it]\n 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it]\n 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it]\n 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it]\n 58%|█████▊ | 35/60 [00:35<00:25, 1.02s/it]\n 60%|██████ | 36/60 [00:36<00:24, 1.02s/it]\n 62%|██████▏ | 37/60 [00:37<00:23, 1.02s/it]\n 63%|██████▎ | 38/60 [00:38<00:22, 1.02s/it]\n 65%|██████▌ | 39/60 [00:39<00:21, 1.02s/it]\n 67%|██████▋ | 40/60 [00:40<00:20, 1.02s/it]\n 68%|██████▊ | 41/60 [00:41<00:19, 1.02s/it]\n 70%|███████ | 42/60 [00:42<00:18, 1.02s/it]\n 72%|███████▏ | 43/60 [00:43<00:17, 1.02s/it]\n 73%|███████▎ | 44/60 [00:44<00:16, 1.02s/it]\n 75%|███████▌ | 45/60 [00:45<00:15, 1.02s/it]\n 77%|███████▋ | 46/60 [00:46<00:14, 1.02s/it]\n 78%|███████▊ | 47/60 [00:47<00:13, 1.02s/it]\n 80%|████████ | 48/60 [00:48<00:12, 1.02s/it]\n 82%|████████▏ | 49/60 [00:49<00:11, 1.02s/it]\n 83%|████████▎ | 50/60 [00:50<00:10, 1.02s/it]\n 85%|████████▌ | 51/60 [00:51<00:09, 1.02s/it]\n 87%|████████▋ | 52/60 [00:52<00:08, 1.02s/it]\n 88%|████████▊ | 53/60 [00:53<00:07, 1.02s/it]\n 90%|█████████ | 54/60 [00:54<00:06, 1.02s/it]\n 92%|█████████▏| 55/60 [00:55<00:05, 1.02s/it]\n 93%|█████████▎| 56/60 [00:56<00:04, 1.02s/it]\n 95%|█████████▌| 57/60 [00:57<00:03, 1.02s/it]\n 97%|█████████▋| 58/60 [00:58<00:02, 1.02s/it]\n 98%|█████████▊| 59/60 [00:59<00:01, 1.02s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.02s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.22it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.22it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s]\n 20%|██ | 4/20 [00:03<00:13, 1.22it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.21it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.21it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.22it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.22it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.22it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]", "metrics": { "predict_time": 84.046717, "total_time": 84.008096 }, "output": [ "https://pbxt.replicate.delivery/BieJbdvmFbyAM6cs30eBcuhycj8IYZLH6aPUkkVLTwuQBorRA/out-0.png", "https://pbxt.replicate.delivery/2dAxhpF7f42KJ6E17ox6AdCYZhRaMFcwR9lUe2RkH7aRBorRA/out-1.png", "https://pbxt.replicate.delivery/fhwwb3y43vzgQiwhGFc38isD9ovgyT13SansuRb3ibwoA01IA/out-2.png", "https://pbxt.replicate.delivery/7YtAxgWB2RbcL1aMKzetfzroQwS2X0KK8106Z5LHeyPlCQXjA/out-3.png" ], "started_at": "2023-10-07T03:18:22.768928Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/uuanpjdbazx5fuuueuwoeftr5m", "cancel": "https://api.replicate.com/v1/predictions/uuanpjdbazx5fuuueuwoeftr5m/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 37583 Prompt: A Young Mila Kunis with pink and green hair taking a selfie in a Cyberpunk bathroom covered in graffiti, Trainspotting and Fight Club vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<00:59, 1.01s/it] 3%|▎ | 2/60 [00:02<00:58, 1.01s/it] 5%|▌ | 3/60 [00:03<00:57, 1.01s/it] 7%|▋ | 4/60 [00:04<00:56, 1.01s/it] 8%|▊ | 5/60 [00:05<00:55, 1.01s/it] 10%|█ | 6/60 [00:06<00:54, 1.01s/it] 12%|█▏ | 7/60 [00:07<00:53, 1.01s/it] 13%|█▎ | 8/60 [00:08<00:52, 1.01s/it] 15%|█▌ | 9/60 [00:09<00:51, 1.01s/it] 17%|█▋ | 10/60 [00:10<00:50, 1.01s/it] 18%|█▊ | 11/60 [00:11<00:49, 1.01s/it] 20%|██ | 12/60 [00:12<00:48, 1.01s/it] 22%|██▏ | 13/60 [00:13<00:47, 1.01s/it] 23%|██▎ | 14/60 [00:14<00:46, 1.01s/it] 25%|██▌ | 15/60 [00:15<00:45, 1.01s/it] 27%|██▋ | 16/60 [00:16<00:44, 1.01s/it] 28%|██▊ | 17/60 [00:17<00:43, 1.01s/it] 30%|███ | 18/60 [00:18<00:42, 1.01s/it] 32%|███▏ | 19/60 [00:19<00:41, 1.01s/it] 33%|███▎ | 20/60 [00:20<00:40, 1.01s/it] 35%|███▌ | 21/60 [00:21<00:39, 1.01s/it] 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it] 38%|███▊ | 23/60 [00:23<00:37, 1.01s/it] 40%|████ | 24/60 [00:24<00:36, 1.01s/it] 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it] 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it] 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it] 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it] 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it] 50%|█████ | 30/60 [00:30<00:30, 1.01s/it] 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it] 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it] 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it] 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it] 58%|█████▊ | 35/60 [00:35<00:25, 1.02s/it] 60%|██████ | 36/60 [00:36<00:24, 1.02s/it] 62%|██████▏ | 37/60 [00:37<00:23, 1.02s/it] 63%|██████▎ | 38/60 [00:38<00:22, 1.02s/it] 65%|██████▌ | 39/60 [00:39<00:21, 1.02s/it] 67%|██████▋ | 40/60 [00:40<00:20, 1.02s/it] 68%|██████▊ | 41/60 [00:41<00:19, 1.02s/it] 70%|███████ | 42/60 [00:42<00:18, 1.02s/it] 72%|███████▏ | 43/60 [00:43<00:17, 1.02s/it] 73%|███████▎ | 44/60 [00:44<00:16, 1.02s/it] 75%|███████▌ | 45/60 [00:45<00:15, 1.02s/it] 77%|███████▋ | 46/60 [00:46<00:14, 1.02s/it] 78%|███████▊ | 47/60 [00:47<00:13, 1.02s/it] 80%|████████ | 48/60 [00:48<00:12, 1.02s/it] 82%|████████▏ | 49/60 [00:49<00:11, 1.02s/it] 83%|████████▎ | 50/60 [00:50<00:10, 1.02s/it] 85%|████████▌ | 51/60 [00:51<00:09, 1.02s/it] 87%|████████▋ | 52/60 [00:52<00:08, 1.02s/it] 88%|████████▊ | 53/60 [00:53<00:07, 1.02s/it] 90%|█████████ | 54/60 [00:54<00:06, 1.02s/it] 92%|█████████▏| 55/60 [00:55<00:05, 1.02s/it] 93%|█████████▎| 56/60 [00:56<00:04, 1.02s/it] 95%|█████████▌| 57/60 [00:57<00:03, 1.02s/it] 97%|█████████▋| 58/60 [00:58<00:02, 1.02s/it] 98%|█████████▊| 59/60 [00:59<00:01, 1.02s/it] 100%|██████████| 60/60 [01:00<00:00, 1.02s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.22it/s] 10%|█ | 2/20 [00:01<00:14, 1.22it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s] 20%|██ | 4/20 [00:03<00:13, 1.22it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s] 30%|███ | 6/20 [00:04<00:11, 1.21it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.21it/s] 40%|████ | 8/20 [00:06<00:09, 1.22it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s] 50%|█████ | 10/20 [00:08<00:08, 1.22it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s] 60%|██████ | 12/20 [00:09<00:06, 1.22it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s] 70%|███████ | 14/20 [00:11<00:04, 1.22it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s] 80%|████████ | 16/20 [00:13<00:03, 1.22it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDkjytlj3bd26dcrddykbv5htxn4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", width: 928, height: 1232, prompt: "cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-07T03:32:24.411247Z", "created_at": "2023-10-07T03:30:09.903475Z", "data_removed": false, "error": null, "id": "kjytlj3bd26dcrddykbv5htxn4", "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 32536\nPrompt: cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:01<00:59, 1.00s/it]\n 3%|▎ | 2/60 [00:02<00:58, 1.00s/it]\n 5%|▌ | 3/60 [00:03<00:57, 1.00s/it]\n 7%|▋ | 4/60 [00:04<00:56, 1.00s/it]\n 8%|▊ | 5/60 [00:05<00:54, 1.00it/s]\n 10%|█ | 6/60 [00:06<00:53, 1.00it/s]\n 12%|█▏ | 7/60 [00:06<00:52, 1.00it/s]\n 13%|█▎ | 8/60 [00:07<00:51, 1.00it/s]\n 15%|█▌ | 9/60 [00:08<00:50, 1.00it/s]\n 17%|█▋ | 10/60 [00:09<00:49, 1.00it/s]\n 18%|█▊ | 11/60 [00:10<00:48, 1.00it/s]\n 20%|██ | 12/60 [00:11<00:48, 1.00s/it]\n 22%|██▏ | 13/60 [00:12<00:47, 1.00s/it]\n 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it]\n 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it]\n 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it]\n 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it]\n 30%|███ | 18/60 [00:18<00:42, 1.00s/it]\n 32%|███▏ | 19/60 [00:19<00:41, 1.00s/it]\n 33%|███▎ | 20/60 [00:20<00:40, 1.00s/it]\n 35%|███▌ | 21/60 [00:21<00:39, 1.00s/it]\n 37%|███▋ | 22/60 [00:22<00:38, 1.00s/it]\n 38%|███▊ | 23/60 [00:23<00:37, 1.00s/it]\n 40%|████ | 24/60 [00:24<00:36, 1.01s/it]\n 42%|████▏ | 25/60 [00:25<00:35, 1.00s/it]\n 43%|████▎ | 26/60 [00:26<00:34, 1.00s/it]\n 45%|████▌ | 27/60 [00:27<00:33, 1.00s/it]\n 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it]\n 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it]\n 50%|█████ | 30/60 [00:30<00:30, 1.01s/it]\n 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it]\n 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it]\n 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it]\n 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it]\n 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it]\n 60%|██████ | 36/60 [00:36<00:24, 1.01s/it]\n 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it]\n 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it]\n 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it]\n 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it]\n 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it]\n 70%|███████ | 42/60 [00:42<00:18, 1.01s/it]\n 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it]\n 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it]\n 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it]\n 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it]\n 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it]\n 80%|████████ | 48/60 [00:48<00:12, 1.01s/it]\n 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it]\n 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it]\n 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it]\n 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it]\n 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it]\n 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it]\n 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it]\n 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it]\n 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it]\n 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it]\n 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.22it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.22it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s]\n 20%|██ | 4/20 [00:03<00:13, 1.22it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.21it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.22it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.22it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.22it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.22it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]", "metrics": { "predict_time": 85.17045, "total_time": 134.507772 }, "output": [ "https://pbxt.replicate.delivery/RlKz8yEqiwb8IFgHIaHBDSUA9RbxgIKjfe9xXuhjl7cFNorRA/out-0.png", "https://pbxt.replicate.delivery/OubfQcszfzj7bkueqRQ3RKBFlN9PPUoJHe5fVTeGREAhRD6aE/out-1.png", "https://pbxt.replicate.delivery/uVMiHaSy86bvHVwWXmp798r2WyPU2rb1YeFvy2IWuSwjG01IA/out-2.png", "https://pbxt.replicate.delivery/hmAFjrGTOE4NKFMSvDfm2hesNF4ksIU8eIQwYc9icrqRaQXjA/out-3.png" ], "started_at": "2023-10-07T03:30:59.240797Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kjytlj3bd26dcrddykbv5htxn4", "cancel": "https://api.replicate.com/v1/predictions/kjytlj3bd26dcrddykbv5htxn4/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 32536 Prompt: cyberpunk Natalie Portman taking a selfie in a divebar bathroom covered with graffiti in style of Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:01<00:59, 1.00s/it] 3%|▎ | 2/60 [00:02<00:58, 1.00s/it] 5%|▌ | 3/60 [00:03<00:57, 1.00s/it] 7%|▋ | 4/60 [00:04<00:56, 1.00s/it] 8%|▊ | 5/60 [00:05<00:54, 1.00it/s] 10%|█ | 6/60 [00:06<00:53, 1.00it/s] 12%|█▏ | 7/60 [00:06<00:52, 1.00it/s] 13%|█▎ | 8/60 [00:07<00:51, 1.00it/s] 15%|█▌ | 9/60 [00:08<00:50, 1.00it/s] 17%|█▋ | 10/60 [00:09<00:49, 1.00it/s] 18%|█▊ | 11/60 [00:10<00:48, 1.00it/s] 20%|██ | 12/60 [00:11<00:48, 1.00s/it] 22%|██▏ | 13/60 [00:12<00:47, 1.00s/it] 23%|██▎ | 14/60 [00:14<00:46, 1.00s/it] 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it] 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it] 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it] 30%|███ | 18/60 [00:18<00:42, 1.00s/it] 32%|███▏ | 19/60 [00:19<00:41, 1.00s/it] 33%|███▎ | 20/60 [00:20<00:40, 1.00s/it] 35%|███▌ | 21/60 [00:21<00:39, 1.00s/it] 37%|███▋ | 22/60 [00:22<00:38, 1.00s/it] 38%|███▊ | 23/60 [00:23<00:37, 1.00s/it] 40%|████ | 24/60 [00:24<00:36, 1.01s/it] 42%|████▏ | 25/60 [00:25<00:35, 1.00s/it] 43%|████▎ | 26/60 [00:26<00:34, 1.00s/it] 45%|████▌ | 27/60 [00:27<00:33, 1.00s/it] 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it] 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it] 50%|█████ | 30/60 [00:30<00:30, 1.01s/it] 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it] 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it] 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it] 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it] 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it] 60%|██████ | 36/60 [00:36<00:24, 1.01s/it] 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it] 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it] 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it] 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it] 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it] 70%|███████ | 42/60 [00:42<00:18, 1.01s/it] 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it] 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it] 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it] 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it] 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it] 80%|████████ | 48/60 [00:48<00:12, 1.01s/it] 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it] 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it] 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it] 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it] 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it] 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it] 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it] 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it] 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it] 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it] 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.22it/s] 10%|█ | 2/20 [00:01<00:14, 1.22it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s] 20%|██ | 4/20 [00:03<00:13, 1.22it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.21it/s] 30%|███ | 6/20 [00:04<00:11, 1.22it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s] 40%|████ | 8/20 [00:06<00:09, 1.22it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s] 50%|█████ | 10/20 [00:08<00:08, 1.22it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s] 60%|██████ | 12/20 [00:09<00:06, 1.22it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s] 70%|███████ | 14/20 [00:11<00:04, 1.22it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s] 80%|████████ | 16/20 [00:13<00:03, 1.22it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDfzv63n3bgzmlr2rbv5q6ockiqqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1232
- prompt
- cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.91
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.91, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", width: 928, height: 1232, prompt: "cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.91, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.91, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.91, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt="cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.91' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.91, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-07T03:36:09.617809Z", "created_at": "2023-10-07T03:34:46.017745Z", "data_removed": false, "error": null, "id": "fzv63n3bgzmlr2rbv5q6ockiqq", "input": { "image": "https://replicate.delivery/pbxt/JcrSQJY00Nlnhj5hDrJsifwZRCVECDzsus1BZ82k3boSyvFc/marcaaron_cracks_in_the_porcelain_skin_with_neon_light_leaks_pu_65d2fdaa-4494-4acb-926f-46ee59deb3d9.png", "width": 928, "height": 1232, "prompt": "cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.91, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 63827\nPrompt: cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes\nimg2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:58, 1.00it/s]\n 3%|▎ | 2/60 [00:01<00:57, 1.00it/s]\n 5%|▌ | 3/60 [00:03<00:57, 1.00s/it]\n 7%|▋ | 4/60 [00:03<00:55, 1.00it/s]\n 8%|▊ | 5/60 [00:04<00:54, 1.00it/s]\n 10%|█ | 6/60 [00:05<00:53, 1.00it/s]\n 12%|█▏ | 7/60 [00:06<00:52, 1.00it/s]\n 13%|█▎ | 8/60 [00:07<00:51, 1.00it/s]\n 15%|█▌ | 9/60 [00:08<00:50, 1.00it/s]\n 17%|█▋ | 10/60 [00:09<00:49, 1.00it/s]\n 18%|█▊ | 11/60 [00:10<00:48, 1.00it/s]\n 20%|██ | 12/60 [00:11<00:48, 1.00s/it]\n 22%|██▏ | 13/60 [00:12<00:47, 1.00s/it]\n 23%|██▎ | 14/60 [00:13<00:46, 1.00s/it]\n 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it]\n 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it]\n 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it]\n 30%|███ | 18/60 [00:18<00:42, 1.00s/it]\n 32%|███▏ | 19/60 [00:19<00:41, 1.00s/it]\n 33%|███▎ | 20/60 [00:20<00:40, 1.00s/it]\n 35%|███▌ | 21/60 [00:21<00:39, 1.00s/it]\n 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it]\n 38%|███▊ | 23/60 [00:23<00:37, 1.00s/it]\n 40%|████ | 24/60 [00:24<00:36, 1.01s/it]\n 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it]\n 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it]\n 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it]\n 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it]\n 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it]\n 50%|█████ | 30/60 [00:30<00:30, 1.01s/it]\n 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it]\n 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it]\n 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it]\n 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it]\n 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it]\n 60%|██████ | 36/60 [00:36<00:24, 1.01s/it]\n 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it]\n 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it]\n 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it]\n 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it]\n 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it]\n 70%|███████ | 42/60 [00:42<00:18, 1.01s/it]\n 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it]\n 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it]\n 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it]\n 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it]\n 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it]\n 80%|████████ | 48/60 [00:48<00:12, 1.01s/it]\n 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it]\n 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it]\n 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it]\n 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it]\n 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it]\n 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it]\n 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it]\n 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it]\n 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it]\n 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it]\n 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n100%|██████████| 60/60 [01:00<00:00, 1.01s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:15, 1.23it/s]\n 10%|█ | 2/20 [00:01<00:14, 1.22it/s]\n 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s]\n 20%|██ | 4/20 [00:03<00:13, 1.22it/s]\n 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s]\n 30%|███ | 6/20 [00:04<00:11, 1.22it/s]\n 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s]\n 40%|████ | 8/20 [00:06<00:09, 1.22it/s]\n 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s]\n 50%|█████ | 10/20 [00:08<00:08, 1.22it/s]\n 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s]\n 60%|██████ | 12/20 [00:09<00:06, 1.22it/s]\n 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s]\n 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\n 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]\n 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]\n 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]\n 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s]\n 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]\n100%|██████████| 20/20 [00:16<00:00, 1.22it/s]", "metrics": { "predict_time": 83.636477, "total_time": 83.600064 }, "output": [ "https://pbxt.replicate.delivery/VtVEL1hGOLL7BdcBuFeooq2WgdWuSWgmCowAaVZeptLmQorRA/out-0.png", "https://pbxt.replicate.delivery/s5qRfrAbtejUw0NflZ3yfXEumfl7UntgVPeh9yVbIT5FKE6aE/out-1.png", "https://pbxt.replicate.delivery/ds5cMY5C6z6RM5HfWDreBiKXNpsMupRirkKGBlF75IxoQorRA/out-2.png", "https://pbxt.replicate.delivery/pB4XAnvCt6JhKB2ezUuS8jIbq4SkMgFJGMvP3mPUUQgUI01IA/out-3.png" ], "started_at": "2023-10-07T03:34:45.981332Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fzv63n3bgzmlr2rbv5q6ockiqq", "cancel": "https://api.replicate.com/v1/predictions/fzv63n3bgzmlr2rbv5q6ockiqq/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 63827 Prompt: cyberpunk Natalie Portman with pink hair taking a selfie in a cyberpunk divebar covered with graffiti in style of Blade Runner and Trainspotting vibes img2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:58, 1.00it/s] 3%|▎ | 2/60 [00:01<00:57, 1.00it/s] 5%|▌ | 3/60 [00:03<00:57, 1.00s/it] 7%|▋ | 4/60 [00:03<00:55, 1.00it/s] 8%|▊ | 5/60 [00:04<00:54, 1.00it/s] 10%|█ | 6/60 [00:05<00:53, 1.00it/s] 12%|█▏ | 7/60 [00:06<00:52, 1.00it/s] 13%|█▎ | 8/60 [00:07<00:51, 1.00it/s] 15%|█▌ | 9/60 [00:08<00:50, 1.00it/s] 17%|█▋ | 10/60 [00:09<00:49, 1.00it/s] 18%|█▊ | 11/60 [00:10<00:48, 1.00it/s] 20%|██ | 12/60 [00:11<00:48, 1.00s/it] 22%|██▏ | 13/60 [00:12<00:47, 1.00s/it] 23%|██▎ | 14/60 [00:13<00:46, 1.00s/it] 25%|██▌ | 15/60 [00:15<00:45, 1.00s/it] 27%|██▋ | 16/60 [00:16<00:44, 1.00s/it] 28%|██▊ | 17/60 [00:17<00:43, 1.00s/it] 30%|███ | 18/60 [00:18<00:42, 1.00s/it] 32%|███▏ | 19/60 [00:19<00:41, 1.00s/it] 33%|███▎ | 20/60 [00:20<00:40, 1.00s/it] 35%|███▌ | 21/60 [00:21<00:39, 1.00s/it] 37%|███▋ | 22/60 [00:22<00:38, 1.01s/it] 38%|███▊ | 23/60 [00:23<00:37, 1.00s/it] 40%|████ | 24/60 [00:24<00:36, 1.01s/it] 42%|████▏ | 25/60 [00:25<00:35, 1.01s/it] 43%|████▎ | 26/60 [00:26<00:34, 1.01s/it] 45%|████▌ | 27/60 [00:27<00:33, 1.01s/it] 47%|████▋ | 28/60 [00:28<00:32, 1.01s/it] 48%|████▊ | 29/60 [00:29<00:31, 1.01s/it] 50%|█████ | 30/60 [00:30<00:30, 1.01s/it] 52%|█████▏ | 31/60 [00:31<00:29, 1.01s/it] 53%|█████▎ | 32/60 [00:32<00:28, 1.01s/it] 55%|█████▌ | 33/60 [00:33<00:27, 1.01s/it] 57%|█████▋ | 34/60 [00:34<00:26, 1.01s/it] 58%|█████▊ | 35/60 [00:35<00:25, 1.01s/it] 60%|██████ | 36/60 [00:36<00:24, 1.01s/it] 62%|██████▏ | 37/60 [00:37<00:23, 1.01s/it] 63%|██████▎ | 38/60 [00:38<00:22, 1.01s/it] 65%|██████▌ | 39/60 [00:39<00:21, 1.01s/it] 67%|██████▋ | 40/60 [00:40<00:20, 1.01s/it] 68%|██████▊ | 41/60 [00:41<00:19, 1.01s/it] 70%|███████ | 42/60 [00:42<00:18, 1.01s/it] 72%|███████▏ | 43/60 [00:43<00:17, 1.01s/it] 73%|███████▎ | 44/60 [00:44<00:16, 1.01s/it] 75%|███████▌ | 45/60 [00:45<00:15, 1.01s/it] 77%|███████▋ | 46/60 [00:46<00:14, 1.01s/it] 78%|███████▊ | 47/60 [00:47<00:13, 1.01s/it] 80%|████████ | 48/60 [00:48<00:12, 1.01s/it] 82%|████████▏ | 49/60 [00:49<00:11, 1.01s/it] 83%|████████▎ | 50/60 [00:50<00:10, 1.01s/it] 85%|████████▌ | 51/60 [00:51<00:09, 1.01s/it] 87%|████████▋ | 52/60 [00:52<00:08, 1.01s/it] 88%|████████▊ | 53/60 [00:53<00:07, 1.01s/it] 90%|█████████ | 54/60 [00:54<00:06, 1.01s/it] 92%|█████████▏| 55/60 [00:55<00:05, 1.01s/it] 93%|█████████▎| 56/60 [00:56<00:04, 1.01s/it] 95%|█████████▌| 57/60 [00:57<00:03, 1.01s/it] 97%|█████████▋| 58/60 [00:58<00:02, 1.01s/it] 98%|█████████▊| 59/60 [00:59<00:01, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 100%|██████████| 60/60 [01:00<00:00, 1.01s/it] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:15, 1.23it/s] 10%|█ | 2/20 [00:01<00:14, 1.22it/s] 15%|█▌ | 3/20 [00:02<00:13, 1.22it/s] 20%|██ | 4/20 [00:03<00:13, 1.22it/s] 25%|██▌ | 5/20 [00:04<00:12, 1.22it/s] 30%|███ | 6/20 [00:04<00:11, 1.22it/s] 35%|███▌ | 7/20 [00:05<00:10, 1.22it/s] 40%|████ | 8/20 [00:06<00:09, 1.22it/s] 45%|████▌ | 9/20 [00:07<00:09, 1.22it/s] 50%|█████ | 10/20 [00:08<00:08, 1.22it/s] 55%|█████▌ | 11/20 [00:09<00:07, 1.22it/s] 60%|██████ | 12/20 [00:09<00:06, 1.22it/s] 65%|██████▌ | 13/20 [00:10<00:05, 1.22it/s] 70%|███████ | 14/20 [00:11<00:04, 1.22it/s] 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s] 80%|████████ | 16/20 [00:13<00:03, 1.22it/s] 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s] 90%|█████████ | 18/20 [00:14<00:01, 1.22it/s] 95%|█████████▌| 19/20 [00:15<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s] 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDvgj3ujtb2p6t4uokfoby4i5z7qStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JgjJSwpecoaZjfVU46AHNqnHM9uU5dsXxfS1lSt0D5Y5Y6M7/mask.png", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JgjJSwpecoaZjfVU46AHNqnHM9uU5dsXxfS1lSt0D5Y5Y6M7/mask.png", width: 896, height: 1344, prompt: "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JgjJSwpecoaZjfVU46AHNqnHM9uU5dsXxfS1lSt0D5Y5Y6M7/mask.png", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JgjJSwpecoaZjfVU46AHNqnHM9uU5dsXxfS1lSt0D5Y5Y6M7/mask.png", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JgjJSwpecoaZjfVU46AHNqnHM9uU5dsXxfS1lSt0D5Y5Y6M7/mask.png"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JgjJSwpecoaZjfVU46AHNqnHM9uU5dsXxfS1lSt0D5Y5Y6M7/mask.png", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T19:21:33.005575Z", "created_at": "2023-10-12T19:19:44.145315Z", "data_removed": false, "error": null, "id": "vgj3ujtb2p6t4uokfoby4i5z7q", "input": { "image": "https://replicate.delivery/pbxt/JgjJSwpecoaZjfVU46AHNqnHM9uU5dsXxfS1lSt0D5Y5Y6M7/mask.png", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "Nudity, dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": null, "metrics": { "predict_time": 100.350679, "total_time": 108.86026 }, "output": [ "https://pbxt.replicate.delivery/U5uQiB3ts8YHDBQbAQp21pmXLS65oj7G6MaOBAW1k6yO5XbE/out-0.png", "https://pbxt.replicate.delivery/Is65oMtnKKrjFFTNuuVdUfiG8qZqgHNo4OIsVSlne6d8kfajA/out-1.png", "https://pbxt.replicate.delivery/qam4EsvIHv6KNNDm4e8MjBuMrRfVdUZe1UiIhN8pU7O4Jf1GB/out-2.png", "https://pbxt.replicate.delivery/g6q1M497uioxH5Gd759AJ6fK3b0chNjNkLcBjcQ1CyWekfajA/out-3.png" ], "started_at": "2023-10-12T19:19:52.654896Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vgj3ujtb2p6t4uokfoby4i5z7q", "cancel": "https://api.replicate.com/v1/predictions/vgj3ujtb2p6t4uokfoby4i5z7q/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDg2xqhxtbqv7umffxorubneyroyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1312
- prompt
- Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/JgkF4M4WUW9bRfU8nzTEEHFtDK9aht2Lwc5iJHKjXNffLKm9/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JgkF4M4WUW9bRfU8nzTEEHFtDK9aht2Lwc5iJHKjXNffLKm9/mask.png", width: 928, height: 1312, prompt: "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JgkF4M4WUW9bRfU8nzTEEHFtDK9aht2Lwc5iJHKjXNffLKm9/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JgkF4M4WUW9bRfU8nzTEEHFtDK9aht2Lwc5iJHKjXNffLKm9/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JgkF4M4WUW9bRfU8nzTEEHFtDK9aht2Lwc5iJHKjXNffLKm9/mask.png"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JgkF4M4WUW9bRfU8nzTEEHFtDK9aht2Lwc5iJHKjXNffLKm9/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T20:22:38.355124Z", "created_at": "2023-10-12T20:20:30.558399Z", "data_removed": false, "error": null, "id": "g2xqhxtbqv7umffxorubneyroy", "input": { "mask": "https://replicate.delivery/pbxt/JgkF4M4WUW9bRfU8nzTEEHFtDK9aht2Lwc5iJHKjXNffLKm9/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 123.27429, "total_time": 127.796725 }, "output": [ "https://pbxt.replicate.delivery/f27UkcmD0JWLaKodnazg9uUbso7jRENm1SuiGaId6xTGPw2IA/out-0.png", "https://pbxt.replicate.delivery/gevGAXXfGMuofI5CJ6ZFu6fjqFHbejh4cL7X3o3S2IGuxDsNC/out-1.png", "https://pbxt.replicate.delivery/9ITR4LVEkS52HdhXRAWFXDdrUBeSTgBJ8TntwZURSiiGPw2IA/out-2.png", "https://pbxt.replicate.delivery/VI98CjjjB64dANzOeSK0Z9LGJJWhWGxbithjJ2BVtbNHPw2IA/out-3.png" ], "started_at": "2023-10-12T20:20:35.080834Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/g2xqhxtbqv7umffxorubneyroy", "cancel": "https://api.replicate.com/v1/predictions/g2xqhxtbqv7umffxorubneyroy/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDcmuyv6lb7s42iz6dv3cnz5cxuqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1312
- prompt
- Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes
- refine
- base_image_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "mask": "https://replicate.delivery/pbxt/JgjOC8Y9mGtX3RwbxmUz22syQwqywi8zW3S2hBhNpenr0BNQ/mask.png", "image": "https://replicate.delivery/pbxt/JgjOBbFHeuACIEKQdjthg9VnXf5Kxz5W0MQHn25cdW0xNkVP/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JgjOC8Y9mGtX3RwbxmUz22syQwqywi8zW3S2hBhNpenr0BNQ/mask.png", image: "https://replicate.delivery/pbxt/JgjOBbFHeuACIEKQdjthg9VnXf5Kxz5W0MQHn25cdW0xNkVP/mask.png", width: 928, height: 1312, prompt: "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", refine: "base_image_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 25, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JgjOC8Y9mGtX3RwbxmUz22syQwqywi8zW3S2hBhNpenr0BNQ/mask.png", "image": "https://replicate.delivery/pbxt/JgjOBbFHeuACIEKQdjthg9VnXf5Kxz5W0MQHn25cdW0xNkVP/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JgjOC8Y9mGtX3RwbxmUz22syQwqywi8zW3S2hBhNpenr0BNQ/mask.png", "image": "https://replicate.delivery/pbxt/JgjOBbFHeuACIEKQdjthg9VnXf5Kxz5W0MQHn25cdW0xNkVP/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JgjOC8Y9mGtX3RwbxmUz22syQwqywi8zW3S2hBhNpenr0BNQ/mask.png"' \ -i 'image="https://replicate.delivery/pbxt/JgjOBbFHeuACIEKQdjthg9VnXf5Kxz5W0MQHn25cdW0xNkVP/mask.png"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes"' \ -i 'refine="base_image_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=25' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JgjOC8Y9mGtX3RwbxmUz22syQwqywi8zW3S2hBhNpenr0BNQ/mask.png", "image": "https://replicate.delivery/pbxt/JgjOBbFHeuACIEKQdjthg9VnXf5Kxz5W0MQHn25cdW0xNkVP/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T19:26:59.046165Z", "created_at": "2023-10-12T19:24:43.600696Z", "data_removed": false, "error": null, "id": "cmuyv6lb7s42iz6dv3cnz5cxuq", "input": { "mask": "https://replicate.delivery/pbxt/JgjOC8Y9mGtX3RwbxmUz22syQwqywi8zW3S2hBhNpenr0BNQ/mask.png", "image": "https://replicate.delivery/pbxt/JgjOBbFHeuACIEKQdjthg9VnXf5Kxz5W0MQHn25cdW0xNkVP/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair in a Cyberpunk dive bar bathroom covered in graffiti, Blade Runner, Trainspotting, and Fight Club vibes", "refine": "base_image_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 25, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": null, "metrics": { "predict_time": 133.971886, "total_time": 135.445469 }, "output": [ "https://pbxt.replicate.delivery/BMczek6k9t09BKl4df30zh2EUZOf4Y6tkrTjs5Fzz95DUf1GB/out-0.png", "https://pbxt.replicate.delivery/yUVbsHE4aBI7LNnTmNeIxuNnpewEIecm7svCjWskEueEoerNC/out-1.png", "https://pbxt.replicate.delivery/uRemfhzBvZuauEWAay2GwtfDRJodFgY4FOE2rHEJyiOEUf1GB/out-2.png", "https://pbxt.replicate.delivery/c6rMRwHhLP6dH1ZORmJ9z7V2XquRhRSf222qfOVO00PCqfajA/out-3.png" ], "started_at": "2023-10-12T19:24:45.074279Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/cmuyv6lb7s42iz6dv3cnz5cxuq", "cancel": "https://api.replicate.com/v1/predictions/cmuyv6lb7s42iz6dv3cnz5cxuq/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDzvuzkvlb2ggev72o33hr3uh75iStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- mask
- null
- width
- 928
- height
- 1312
- prompt
- Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": null, "image": "https://replicate.delivery/pbxt/JgkKPVcf9I0JIUXmiNp4OT0JdgnxKvZ9wIgEeYv2wqyCjsGa/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JgkKPVcf9I0JIUXmiNp4OT0JdgnxKvZ9wIgEeYv2wqyCjsGa/mask.png", width: 928, height: 1312, prompt: "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JgkKPVcf9I0JIUXmiNp4OT0JdgnxKvZ9wIgEeYv2wqyCjsGa/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JgkKPVcf9I0JIUXmiNp4OT0JdgnxKvZ9wIgEeYv2wqyCjsGa/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JgkKPVcf9I0JIUXmiNp4OT0JdgnxKvZ9wIgEeYv2wqyCjsGa/mask.png"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JgkKPVcf9I0JIUXmiNp4OT0JdgnxKvZ9wIgEeYv2wqyCjsGa/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T20:27:48.939105Z", "created_at": "2023-10-12T20:26:09.420118Z", "data_removed": false, "error": null, "id": "zvuzkvlb2ggev72o33hr3uh75i", "input": { "mask": null, "image": "https://replicate.delivery/pbxt/JgkKPVcf9I0JIUXmiNp4OT0JdgnxKvZ9wIgEeYv2wqyCjsGa/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 98.767829, "total_time": 99.518987 }, "output": [ "https://pbxt.replicate.delivery/eFKCLwhyKH0AXSuRwBQta27rZjsFkk54eZFGneNxy9uHGBbjA/out-0.png", "https://pbxt.replicate.delivery/6ZuV069EuRLLP9LQw4lptdSkWXZ2DQPhBpJi5WMFA8zwIYbE/out-1.png", "https://pbxt.replicate.delivery/3h6VmDluFPqTLNvhdJf98IjFIXe6fubz9offSraYeulJxIYbE/out-2.png", "https://pbxt.replicate.delivery/dhiBUpBP6fwDLq5hupbHtsmYzZUn7GEHqyRxAs9eqFhEjgtRA/out-3.png" ], "started_at": "2023-10-12T20:26:10.171276Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zvuzkvlb2ggev72o33hr3uh75i", "cancel": "https://api.replicate.com/v1/predictions/zvuzkvlb2ggev72o33hr3uh75i/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDzywtuqdbzpo2anieehx73l6qumStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- image
- null
- width
- 928
- height
- 1312
- prompt
- Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/JgkdDTZiZQlAmgNDBVNa7jMiDmqjbWr1aMxBYprG1FgQAeFi/mask.png", "image": null, "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JgkdDTZiZQlAmgNDBVNa7jMiDmqjbWr1aMxBYprG1FgQAeFi/mask.png", width: 928, height: 1312, prompt: "Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JgkdDTZiZQlAmgNDBVNa7jMiDmqjbWr1aMxBYprG1FgQAeFi/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JgkdDTZiZQlAmgNDBVNa7jMiDmqjbWr1aMxBYprG1FgQAeFi/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JgkdDTZiZQlAmgNDBVNa7jMiDmqjbWr1aMxBYprG1FgQAeFi/mask.png"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JgkdDTZiZQlAmgNDBVNa7jMiDmqjbWr1aMxBYprG1FgQAeFi/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T20:48:06.066748Z", "created_at": "2023-10-12T20:45:59.663293Z", "data_removed": false, "error": null, "id": "zywtuqdbzpo2anieehx73l6qum", "input": { "mask": "https://replicate.delivery/pbxt/JgkdDTZiZQlAmgNDBVNa7jMiDmqjbWr1aMxBYprG1FgQAeFi/mask.png", "image": null, "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with pink and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 123.482923, "total_time": 126.403455 }, "output": [ "https://pbxt.replicate.delivery/qr5BWe3UcO3NHKRGsdjGtffpRUX9kqaenRzvsb2oemNjwGsNC/out-0.png", "https://pbxt.replicate.delivery/OFAfFqp49Y0SKiwyLdkYas1hhzrSm4ZvYRyjRnaTexOF2gtRA/out-1.png", "https://pbxt.replicate.delivery/dNHqridTEVoeUKexVXvQ42M9PZrDShLh6eDiBzoxI90LsBbjA/out-2.png", "https://pbxt.replicate.delivery/HU4kOsVyjEabGlVtusKeqzlPkP7P8pzkzcN4KbjsF93Cbw2IA/out-3.png" ], "started_at": "2023-10-12T20:46:02.583825Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zywtuqdbzpo2anieehx73l6qum", "cancel": "https://api.replicate.com/v1/predictions/zywtuqdbzpo2anieehx73l6qum/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID63mehi3ba3cetmn4i7uaim6jn4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1312
- prompt
- Mary Elizabeth Winstead with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/Jgkoo8PlW9kUclIu0nXtxeP6XO5XuhfWFoYYrJlT7C5vavXq/mask.png", "image": "https://replicate.delivery/pbxt/JgkooLrnZPM5InFd5tzg7G3cSprBQtjJwoZkFPeYpl4h9LEc/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/Jgkoo8PlW9kUclIu0nXtxeP6XO5XuhfWFoYYrJlT7C5vavXq/mask.png", image: "https://replicate.delivery/pbxt/JgkooLrnZPM5InFd5tzg7G3cSprBQtjJwoZkFPeYpl4h9LEc/mask.png", width: 928, height: 1312, prompt: "Mary Elizabeth Winstead with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/Jgkoo8PlW9kUclIu0nXtxeP6XO5XuhfWFoYYrJlT7C5vavXq/mask.png", "image": "https://replicate.delivery/pbxt/JgkooLrnZPM5InFd5tzg7G3cSprBQtjJwoZkFPeYpl4h9LEc/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/Jgkoo8PlW9kUclIu0nXtxeP6XO5XuhfWFoYYrJlT7C5vavXq/mask.png", "image": "https://replicate.delivery/pbxt/JgkooLrnZPM5InFd5tzg7G3cSprBQtjJwoZkFPeYpl4h9LEc/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/Jgkoo8PlW9kUclIu0nXtxeP6XO5XuhfWFoYYrJlT7C5vavXq/mask.png"' \ -i 'image="https://replicate.delivery/pbxt/JgkooLrnZPM5InFd5tzg7G3cSprBQtjJwoZkFPeYpl4h9LEc/mask.png"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="Mary Elizabeth Winstead with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/Jgkoo8PlW9kUclIu0nXtxeP6XO5XuhfWFoYYrJlT7C5vavXq/mask.png", "image": "https://replicate.delivery/pbxt/JgkooLrnZPM5InFd5tzg7G3cSprBQtjJwoZkFPeYpl4h9LEc/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T20:59:54.186641Z", "created_at": "2023-10-12T20:58:14.050833Z", "data_removed": false, "error": null, "id": "63mehi3ba3cetmn4i7uaim6jn4", "input": { "mask": "https://replicate.delivery/pbxt/Jgkoo8PlW9kUclIu0nXtxeP6XO5XuhfWFoYYrJlT7C5vavXq/mask.png", "image": "https://replicate.delivery/pbxt/JgkooLrnZPM5InFd5tzg7G3cSprBQtjJwoZkFPeYpl4h9LEc/mask.png", "width": 928, "height": 1312, "prompt": "Mary Elizabeth Winstead with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 98.4445, "total_time": 100.135808 }, "output": [ "https://pbxt.replicate.delivery/IFLJwtZK4sJNPlPtfy4ywxCmsxLamwfT9jm8hpbi0tkIBhtRA/out-0.png", "https://pbxt.replicate.delivery/4VSpidGlCSKmDtsxjTUYuRTcY20JhP8voEsWZJuE9hRSQYbE/out-1.png", "https://pbxt.replicate.delivery/7YFiCsrIdSJtC9fIDxZeDaCcO8sUtdLFX2qbi3NazBLJBhtRA/out-2.png", "https://pbxt.replicate.delivery/vwBnbRVlGdKTGhjwKe1qmJhcj8fV810fxvnPVXmNnWRSCCbjA/out-3.png" ], "started_at": "2023-10-12T20:58:15.742141Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/63mehi3ba3cetmn4i7uaim6jn4", "cancel": "https://api.replicate.com/v1/predictions/63mehi3ba3cetmn4i7uaim6jn4/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDexleh23b4xuszclg73jqs6q3rmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- mask
- null
- width
- 928
- height
- 1312
- prompt
- Jenna Ortega with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": null, "image": "https://replicate.delivery/pbxt/Jgkt2oTs74Ixw5ynZyGTP0pAlb9Wr1B0oLcUj1VsXk85ozJh/mask.png", "width": 928, "height": 1312, "prompt": "Jenna Ortega with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/Jgkt2oTs74Ixw5ynZyGTP0pAlb9Wr1B0oLcUj1VsXk85ozJh/mask.png", width: 928, height: 1312, prompt: "Jenna Ortega with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/Jgkt2oTs74Ixw5ynZyGTP0pAlb9Wr1B0oLcUj1VsXk85ozJh/mask.png", "width": 928, "height": 1312, "prompt": "Jenna Ortega with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/Jgkt2oTs74Ixw5ynZyGTP0pAlb9Wr1B0oLcUj1VsXk85ozJh/mask.png", "width": 928, "height": 1312, "prompt": "Jenna Ortega with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/Jgkt2oTs74Ixw5ynZyGTP0pAlb9Wr1B0oLcUj1VsXk85ozJh/mask.png"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="Jenna Ortega with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/Jgkt2oTs74Ixw5ynZyGTP0pAlb9Wr1B0oLcUj1VsXk85ozJh/mask.png", "width": 928, "height": 1312, "prompt": "Jenna Ortega with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T21:04:52.508400Z", "created_at": "2023-10-12T21:02:42.473834Z", "data_removed": false, "error": null, "id": "exleh23b4xuszclg73jqs6q3rm", "input": { "mask": null, "image": "https://replicate.delivery/pbxt/Jgkt2oTs74Ixw5ynZyGTP0pAlb9Wr1B0oLcUj1VsXk85ozJh/mask.png", "width": 928, "height": 1312, "prompt": "Jenna Ortega with magenta and green hair taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, b&w, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 96.470975, "total_time": 130.034566 }, "output": [ "https://pbxt.replicate.delivery/5DWpvvmCHW46MpH2KJRGEUWGsekfhAURoakHbUmqhExzFhtRA/out-0.png", "https://pbxt.replicate.delivery/dhOTJ7rGfGzfE0F006g0BjgKWJBBCbvxwTPp3h9w5sPzFhtRA/out-1.png", "https://pbxt.replicate.delivery/BOhyUwYzjsq0Ax1wAX14kJE4wrB2EQmVf04BvN1D4qz5iw2IA/out-2.png", "https://pbxt.replicate.delivery/xdRL4vV0k1a3DRDkd9X1k8dfwcRKfk2lscb90ZwtGCG0FhtRA/out-3.png" ], "started_at": "2023-10-12T21:03:16.037425Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/exleh23b4xuszclg73jqs6q3rm", "cancel": "https://api.replicate.com/v1/predictions/exleh23b4xuszclg73jqs6q3rm/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDdmfenwlb4lejr73ayvhozwcnsiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- mask
- null
- width
- 896
- height
- 1344
- prompt
- Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": null, "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", width: 896, height: 1344, prompt: "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes"' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T21:11:18.589074Z", "created_at": "2023-10-12T21:10:06.607082Z", "data_removed": false, "error": null, "id": "dmfenwlb4lejr73ayvhozwcnsi", "input": { "mask": null, "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 65.787069, "total_time": 71.981992 }, "output": [ "https://pbxt.replicate.delivery/DHDwibDjLCbmN97ETGP28Co90AcIvfcB0Kpnk97f9O00LhtRA/out-0.png", "https://pbxt.replicate.delivery/hVpNcYkNCIqfPiGKDYTlfNeQhI0CXegjVSd3wOyhhqjXvE2GB/out-1.png", "https://pbxt.replicate.delivery/tMx9ArTY6M5TBlYhALHjWw3Qn0zpn1arWGyhKEcxJ2Z9SYbE/out-2.png", "https://pbxt.replicate.delivery/fh6joVexeEQHgon6QIMf4cQxq0x4k1vzfrPIxiftTPVv9SYbE/out-3.png" ], "started_at": "2023-10-12T21:10:12.802005Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/dmfenwlb4lejr73ayvhozwcnsi", "cancel": "https://api.replicate.com/v1/predictions/dmfenwlb4lejr73ayvhozwcnsi/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDkjnkfb3bxzrug3n26llrxhnbf4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- mask
- null
- width
- 896
- height
- 1344
- prompt
- Mary Elizabeth Winstead in a Cyberpunk bar covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": null, "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk bar covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", width: 896, height: 1344, prompt: "Mary Elizabeth Winstead in a Cyberpunk bar covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk bar covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk bar covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Mary Elizabeth Winstead in a Cyberpunk bar covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes"' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk bar covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T21:13:18.851480Z", "created_at": "2023-10-12T21:12:09.804105Z", "data_removed": false, "error": null, "id": "kjnkfb3bxzrug3n26llrxhnbf4", "input": { "mask": null, "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead in a Cyberpunk bar covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 65.164072, "total_time": 69.047375 }, "output": [ "https://pbxt.replicate.delivery/FAPVG8jp44biF51B3BPGWtIf2k2znlsTnesMkf4ZunKbbCbjA/out-0.png", "https://pbxt.replicate.delivery/gBQDKg7uKOZTNRZ7TIWjxKnD8yMWm6p68SDpLVW1Y6cbTYbE/out-1.png", "https://pbxt.replicate.delivery/85TrALiX4FqsJFo3409fapUCOBJmlKYeNndVZu4iw6suNhtRA/out-2.png", "https://pbxt.replicate.delivery/648JCkUoh14PFtPNfW0tvhgSoYhX8Z0jDd3GN5f1pJQuNhtRA/out-3.png" ], "started_at": "2023-10-12T21:12:13.687408Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kjnkfb3bxzrug3n26llrxhnbf4", "cancel": "https://api.replicate.com/v1/predictions/kjnkfb3bxzrug3n26llrxhnbf4/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDhkmt6kdba6l54r2yah5jr4s7uuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 896
- height
- 1344
- prompt
- Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/Jgl8JUsWzhVYl6f4BDlXxgnUg2a6ln9E8rVhDCOmrADTY2CI/mask.png", "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/Jgl8JUsWzhVYl6f4BDlXxgnUg2a6ln9E8rVhDCOmrADTY2CI/mask.png", image: "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", width: 896, height: 1344, prompt: "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/Jgl8JUsWzhVYl6f4BDlXxgnUg2a6ln9E8rVhDCOmrADTY2CI/mask.png", "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/Jgl8JUsWzhVYl6f4BDlXxgnUg2a6ln9E8rVhDCOmrADTY2CI/mask.png", "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/Jgl8JUsWzhVYl6f4BDlXxgnUg2a6ln9E8rVhDCOmrADTY2CI/mask.png"' \ -i 'image="https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg"' \ -i 'width=896' \ -i 'height=1344' \ -i 'prompt="Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/Jgl8JUsWzhVYl6f4BDlXxgnUg2a6ln9E8rVhDCOmrADTY2CI/mask.png", "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T21:20:34.043136Z", "created_at": "2023-10-12T21:18:49.082254Z", "data_removed": false, "error": null, "id": "hkmt6kdba6l54r2yah5jr4s7uu", "input": { "mask": "https://replicate.delivery/pbxt/Jgl8JUsWzhVYl6f4BDlXxgnUg2a6ln9E8rVhDCOmrADTY2CI/mask.png", "image": "https://replicate.delivery/pbxt/JcVjD0koWAdkXyW7URZtzs1yOSsJwyDFr3Esz2KV63gUmGpo/28C78391-7B9D-40C9-9BAD-03F3FE557DD5_1_105_c.jpeg", "width": 896, "height": 1344, "prompt": "Mary Elizabeth Winstead taking a selfie in a Cyberpunk dive bar bathroom covered with graffiti, Fight Club, Trainspotting, Blade Runner vibes", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 102.858538, "total_time": 104.960882 }, "output": [ "https://pbxt.replicate.delivery/qopDByboZQ6uGJmzzYRVKB3YudIVJbovic0fI4V5QWbQqw2IA/out-0.png", "https://pbxt.replicate.delivery/lZmXRCBq6gIyCV5KWRoQGK6xxnyJmV7yo9nSUelFHgaQqw2IA/out-1.png", "https://pbxt.replicate.delivery/G4R9V2mosf22XKM3efUCo23fK8q8MMdpocPIkWsaLHCHSF2GB/out-2.png", "https://pbxt.replicate.delivery/o62CHSRRWMY9Ld3op2ItBTMNYhRvD1Wc32bRm35Q6fnQqw2IA/out-3.png" ], "started_at": "2023-10-12T21:18:51.184598Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/hkmt6kdba6l54r2yah5jr4s7uu", "cancel": "https://api.replicate.com/v1/predictions/hkmt6kdba6l54r2yah5jr4s7uu/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDo6pvgudbjxmatqxqcz22pheaoiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- image
- null
- width
- 928
- height
- 1312
- prompt
- in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic,
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", width: 928, height: 1312, prompt: "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, "' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T21:25:49.665177Z", "created_at": "2023-10-12T21:23:36.497133Z", "data_removed": false, "error": null, "id": "o6pvgudbjxmatqxqcz22pheaoi", "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead in Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 127.788786, "total_time": 133.168044 }, "output": [ "https://pbxt.replicate.delivery/fXtZ2IhWLhz6W6StIeD3v8ca3oS0eG7jXuSuxj5knO43yCbjA/out-0.png", "https://pbxt.replicate.delivery/AMnkSe1wo9RRTiqZFAbjKBDf7NCHMgRrGauluSXdQ3ccZhtRA/out-1.png", "https://pbxt.replicate.delivery/5gYZa5W6gq7BIFh3ZZ39pLUb2mVTO7OWbFt7o0emBwXusw2IA/out-2.png", "https://pbxt.replicate.delivery/HFBQYlCwlpakOV27YyGYlmCrojulRN2aagf1yHQ5eaOdZhtRA/out-3.png" ], "started_at": "2023-10-12T21:23:41.876391Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/o6pvgudbjxmatqxqcz22pheaoi", "cancel": "https://api.replicate.com/v1/predictions/o6pvgudbjxmatqxqcz22pheaoi/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDg53agclb4ov4ijr2ynpbgfdu54StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- image
- null
- width
- 928
- height
- 1312
- prompt
- in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead with pink and green hairin Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic,
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead with pink and green hairin Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", width: 928, height: 1312, prompt: "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead with pink and green hairin Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead with pink and green hairin Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead with pink and green hairin Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead with pink and green hairin Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, "' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead with pink and green hairin Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T21:31:33.488830Z", "created_at": "2023-10-12T21:29:24.978887Z", "data_removed": false, "error": null, "id": "g53agclb4ov4ijr2ynpbgfdu54", "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 928, "height": 1312, "prompt": "in total darkness iPhone is the only source of illumination of cyberpunk Mary Elizabeth Winstead with pink and green hairin Cracked smashed mirrors and mirror fragments of a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 127.478349, "total_time": 128.509943 }, "output": [ "https://pbxt.replicate.delivery/e3npFionfWqiLUfsFDJUr1LoCw80wCjebLUjt2Nvetxc2LsNC/out-0.png", "https://pbxt.replicate.delivery/xXLCPGCgG646OlpDZgC5l8bcoJmyrak41EYoCmVdaqDtXYbE/out-1.png", "https://pbxt.replicate.delivery/5PztMbyr4lKnJlU3j5J3R05yPVhS906qCBfVv6INVJIavw2IA/out-2.png", "https://pbxt.replicate.delivery/3e1jtBlPeXgBAkljt5L7f0qqE8WjRVQn6bqMnf8RCIcU7F2GB/out-3.png" ], "started_at": "2023-10-12T21:29:26.010481Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/g53agclb4ov4ijr2ynpbgfdu54", "cancel": "https://api.replicate.com/v1/predictions/g53agclb4ov4ijr2ynpbgfdu54/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDbwnhdrtbka4lsdmbnifyjexwm4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- image
- null
- width
- 928
- height
- 1312
- prompt
- cyberpunk Mary Elizabeth Winstead with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic,
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 928, "height": 1312, "prompt": "cyberpunk Mary Elizabeth Winstead with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", width: 928, height: 1312, prompt: "cyberpunk Mary Elizabeth Winstead with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "cyberpunk Mary Elizabeth Winstead with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "cyberpunk Mary Elizabeth Winstead with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="cyberpunk Mary Elizabeth Winstead with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, "' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "cyberpunk Mary Elizabeth Winstead with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T21:36:40.068265Z", "created_at": "2023-10-12T21:34:20.649914Z", "data_removed": false, "error": null, "id": "bwnhdrtbka4lsdmbnifyjexwm4", "input": { "mask": "https://replicate.delivery/pbxt/JcV2nlc4fJYVEFOPz5XjMsMZzG6Cj8Ee2cWi1Vz30addzNqu/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 928, "height": 1312, "prompt": "cyberpunk Mary Elizabeth Winstead with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti, dazed, distressed, photorealistic, ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": null, "metrics": { "predict_time": 128.258706, "total_time": 139.418351 }, "output": [ "https://pbxt.replicate.delivery/P2xY24JefVkvjU4He1asbbsluZdW8rfL9ZxZ1hlYfRV0cMsNC/out-0.png", "https://pbxt.replicate.delivery/FLHfePxOkeFZqJvsgzSaZH1V2jLHh9XBhfPAqIxK6IIecMsNC/out-1.png", "https://pbxt.replicate.delivery/DIg48pJXf1RDFyvAqaOAp9xck54X5MgqUjoGh61aseknjhtRA/out-2.png", "https://pbxt.replicate.delivery/l8WdFsH4keUOf0W9S7pNUXVDbMzGYMDjyJLvyLOHb6WnjhtRA/out-3.png" ], "started_at": "2023-10-12T21:34:31.809559Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bwnhdrtbka4lsdmbnifyjexwm4", "cancel": "https://api.replicate.com/v1/predictions/bwnhdrtbka4lsdmbnifyjexwm4/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10ID3j47bvdbshldvpaym3pzqf7sxuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- image
- null
- width
- 928
- height
- 1232
- prompt
- cyberpunk Natalie Portman with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti in the style of Blade Runner
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 15
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "mask": "https://replicate.delivery/pbxt/JglTlHxIie7d4fyOYmM7SRVQjyJ6JOzV0wHPLcgvWWxitriQ/mask.png", "image": null, "width": 928, "height": 1232, "prompt": " cyberpunk Natalie Portman with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti in the style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JglTlHxIie7d4fyOYmM7SRVQjyJ6JOzV0wHPLcgvWWxitriQ/mask.png", width: 928, height: 1232, prompt: " cyberpunk Natalie Portman with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti in the style of Blade Runner", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 15, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JglTlHxIie7d4fyOYmM7SRVQjyJ6JOzV0wHPLcgvWWxitriQ/mask.png", "width": 928, "height": 1232, "prompt": " cyberpunk Natalie Portman with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti in the style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JglTlHxIie7d4fyOYmM7SRVQjyJ6JOzV0wHPLcgvWWxitriQ/mask.png", "width": 928, "height": 1232, "prompt": " cyberpunk Natalie Portman with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti in the style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JglTlHxIie7d4fyOYmM7SRVQjyJ6JOzV0wHPLcgvWWxitriQ/mask.png"' \ -i 'width=928' \ -i 'height=1232' \ -i 'prompt=" cyberpunk Natalie Portman with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti in the style of Blade Runner"' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=15' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JglTlHxIie7d4fyOYmM7SRVQjyJ6JOzV0wHPLcgvWWxitriQ/mask.png", "width": 928, "height": 1232, "prompt": " cyberpunk Natalie Portman with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti in the style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-10-12T21:43:24.405705Z", "created_at": "2023-10-12T21:41:27.950177Z", "data_removed": false, "error": null, "id": "3j47bvdbshldvpaym3pzqf7sxu", "input": { "mask": "https://replicate.delivery/pbxt/JglTlHxIie7d4fyOYmM7SRVQjyJ6JOzV0wHPLcgvWWxitriQ/mask.png", "image": null, "width": 928, "height": 1232, "prompt": " cyberpunk Natalie Portman with pink and green hair taking a selfie in a dive bar bathroom covered with graffiti in the style of Blade Runner", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 15, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "dull, deformed, Black and White, black&white, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": null, "metrics": { "predict_time": 115.124315, "total_time": 116.455528 }, "output": [ "https://pbxt.replicate.delivery/b6tkefSRl9s2L0Lp1QRCo1nozhvDgTchfNhk4PoqBVfpnG2GB/out-0.png", "https://pbxt.replicate.delivery/56pp8buWUaYGJlE4DaLUrrV2un259vUhpYhiMCB6Unye0w2IA/out-1.png", "https://pbxt.replicate.delivery/vX0YgYULgwaxHJbMsyeECr1dN6UZjLQej8Uz4j4BM6h7phtRA/out-2.png", "https://pbxt.replicate.delivery/hKV35LEqjpqoNdyDqCplp6VolHlF8eQmVJ6hfvLppTk8phtRA/out-3.png" ], "started_at": "2023-10-12T21:41:29.281390Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3j47bvdbshldvpaym3pzqf7sxu", "cancel": "https://api.replicate.com/v1/predictions/3j47bvdbshldvpaym3pzqf7sxu/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDjz4ab33bpojbwp7j5k3x3vng6uStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 928
- height
- 1312
- prompt
- cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.7
- num_outputs
- 4
- guidance_scale
- 12
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 1
- num_inference_steps
- 100
{ "image": "https://replicate.delivery/pbxt/JcU38Yo5cs4bGxYoiAltB3AIgEpOjMvz2otQerpqWz48wDJp/8673067A-F98E-41EE-B22D-DD699306D03F_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { image: "https://replicate.delivery/pbxt/JcU38Yo5cs4bGxYoiAltB3AIgEpOjMvz2otQerpqWz48wDJp/8673067A-F98E-41EE-B22D-DD699306D03F_1_105_c.jpeg", width: 928, height: 1312, prompt: "cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", refine: "expert_ensemble_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.7, num_outputs: 4, guidance_scale: 12, apply_watermark: false, high_noise_frac: 0.8, negative_prompt: "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 1, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "image": "https://replicate.delivery/pbxt/JcU38Yo5cs4bGxYoiAltB3AIgEpOjMvz2otQerpqWz48wDJp/8673067A-F98E-41EE-B22D-DD699306D03F_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": False, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "image": "https://replicate.delivery/pbxt/JcU38Yo5cs4bGxYoiAltB3AIgEpOjMvz2otQerpqWz48wDJp/8673067A-F98E-41EE-B22D-DD699306D03F_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'image="https://replicate.delivery/pbxt/JcU38Yo5cs4bGxYoiAltB3AIgEpOjMvz2otQerpqWz48wDJp/8673067A-F98E-41EE-B22D-DD699306D03F_1_105_c.jpeg"' \ -i 'width=928' \ -i 'height=1312' \ -i 'prompt="cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic "' \ -i 'refine="expert_ensemble_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.7' \ -i 'num_outputs=4' \ -i 'guidance_scale=12' \ -i 'apply_watermark=false' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=1' \ -i 'num_inference_steps=100'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/JcU38Yo5cs4bGxYoiAltB3AIgEpOjMvz2otQerpqWz48wDJp/8673067A-F98E-41EE-B22D-DD699306D03F_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T20:15:43.647401Z", "created_at": "2023-09-30T20:13:38.778845Z", "data_removed": false, "error": null, "id": "jz4ab33bpojbwp7j5k3x3vng6u", "input": { "image": "https://replicate.delivery/pbxt/JcU38Yo5cs4bGxYoiAltB3AIgEpOjMvz2otQerpqWz48wDJp/8673067A-F98E-41EE-B22D-DD699306D03F_1_105_c.jpeg", "width": 928, "height": 1312, "prompt": "cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.7, "num_outputs": 4, "guidance_scale": 12, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 1, "num_inference_steps": 100 }, "logs": "Using seed: 21743\nPrompt: cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic\nimg2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:00<00:59, 1.33it/s]\n 2%|▎ | 2/80 [00:01<00:58, 1.33it/s]\n 4%|▍ | 3/80 [00:02<00:57, 1.33it/s]\n 5%|▌ | 4/80 [00:03<00:57, 1.33it/s]\n 6%|▋ | 5/80 [00:03<00:56, 1.33it/s]\n 8%|▊ | 6/80 [00:04<00:55, 1.33it/s]\n 9%|▉ | 7/80 [00:05<00:54, 1.33it/s]\n 10%|█ | 8/80 [00:06<00:54, 1.33it/s]\n 11%|█▏ | 9/80 [00:06<00:53, 1.33it/s]\n 12%|█▎ | 10/80 [00:07<00:52, 1.33it/s]\n 14%|█▍ | 11/80 [00:08<00:52, 1.33it/s]\n 15%|█▌ | 12/80 [00:09<00:51, 1.33it/s]\n 16%|█▋ | 13/80 [00:09<00:50, 1.32it/s]\n 18%|█▊ | 14/80 [00:10<00:49, 1.32it/s]\n 19%|█▉ | 15/80 [00:11<00:48, 1.33it/s]\n 20%|██ | 16/80 [00:12<00:48, 1.33it/s]\n 21%|██▏ | 17/80 [00:12<00:47, 1.33it/s]\n 22%|██▎ | 18/80 [00:13<00:46, 1.33it/s]\n 24%|██▍ | 19/80 [00:14<00:45, 1.33it/s]\n 25%|██▌ | 20/80 [00:15<00:45, 1.33it/s]\n 26%|██▋ | 21/80 [00:15<00:44, 1.33it/s]\n 28%|██▊ | 22/80 [00:16<00:43, 1.33it/s]\n 29%|██▉ | 23/80 [00:17<00:42, 1.33it/s]\n 30%|███ | 24/80 [00:18<00:42, 1.33it/s]\n 31%|███▏ | 25/80 [00:18<00:41, 1.33it/s]\n 32%|███▎ | 26/80 [00:19<00:40, 1.33it/s]\n 34%|███▍ | 27/80 [00:20<00:39, 1.33it/s]\n 35%|███▌ | 28/80 [00:21<00:39, 1.33it/s]\n 36%|███▋ | 29/80 [00:21<00:38, 1.33it/s]\n 38%|███▊ | 30/80 [00:22<00:37, 1.33it/s]\n 39%|███▉ | 31/80 [00:23<00:37, 1.32it/s]\n 40%|████ | 32/80 [00:24<00:36, 1.33it/s]\n 41%|████▏ | 33/80 [00:24<00:35, 1.33it/s]\n 42%|████▎ | 34/80 [00:25<00:34, 1.33it/s]\n 44%|████▍ | 35/80 [00:26<00:33, 1.32it/s]\n 45%|████▌ | 36/80 [00:27<00:33, 1.32it/s]\n 46%|████▋ | 37/80 [00:27<00:32, 1.32it/s]\n 48%|████▊ | 38/80 [00:28<00:31, 1.32it/s]\n 49%|████▉ | 39/80 [00:29<00:30, 1.32it/s]\n 50%|█████ | 40/80 [00:30<00:30, 1.32it/s]\n 51%|█████▏ | 41/80 [00:30<00:29, 1.32it/s]\n 52%|█████▎ | 42/80 [00:31<00:28, 1.32it/s]\n 54%|█████▍ | 43/80 [00:32<00:28, 1.32it/s]\n 55%|█████▌ | 44/80 [00:33<00:27, 1.32it/s]\n 56%|█████▋ | 45/80 [00:33<00:26, 1.32it/s]\n 57%|█████▊ | 46/80 [00:34<00:25, 1.32it/s]\n 59%|█████▉ | 47/80 [00:35<00:24, 1.32it/s]\n 60%|██████ | 48/80 [00:36<00:24, 1.32it/s]\n 61%|██████▏ | 49/80 [00:36<00:23, 1.32it/s]\n 62%|██████▎ | 50/80 [00:37<00:22, 1.32it/s]\n 64%|██████▍ | 51/80 [00:38<00:21, 1.32it/s]\n 65%|██████▌ | 52/80 [00:39<00:21, 1.32it/s]\n 66%|██████▋ | 53/80 [00:40<00:20, 1.32it/s]\n 68%|██████▊ | 54/80 [00:40<00:19, 1.32it/s]\n 69%|██████▉ | 55/80 [00:41<00:18, 1.32it/s]\n 70%|███████ | 56/80 [00:42<00:18, 1.32it/s]\n 71%|███████▏ | 57/80 [00:43<00:17, 1.32it/s]\n 72%|███████▎ | 58/80 [00:43<00:16, 1.32it/s]\n 74%|███████▍ | 59/80 [00:44<00:16, 1.31it/s]\n 75%|███████▌ | 60/80 [00:45<00:15, 1.31it/s]\n 76%|███████▋ | 61/80 [00:46<00:14, 1.31it/s]\n 78%|███████▊ | 62/80 [00:46<00:13, 1.31it/s]\n 79%|███████▉ | 63/80 [00:47<00:12, 1.32it/s]\n 80%|████████ | 64/80 [00:48<00:12, 1.32it/s]\n 81%|████████▏ | 65/80 [00:49<00:11, 1.32it/s]\n 82%|████████▎ | 66/80 [00:49<00:10, 1.32it/s]\n 84%|████████▍ | 67/80 [00:50<00:09, 1.31it/s]\n 85%|████████▌ | 68/80 [00:51<00:09, 1.31it/s]\n 86%|████████▋ | 69/80 [00:52<00:08, 1.31it/s]\n 88%|████████▊ | 70/80 [00:52<00:07, 1.32it/s]\n 89%|████████▉ | 71/80 [00:53<00:06, 1.31it/s]\n 90%|█████████ | 72/80 [00:54<00:06, 1.31it/s]\n 91%|█████████▏| 73/80 [00:55<00:05, 1.32it/s]\n 92%|█████████▎| 74/80 [00:55<00:04, 1.32it/s]\n 94%|█████████▍| 75/80 [00:56<00:03, 1.31it/s]\n 95%|█████████▌| 76/80 [00:57<00:03, 1.31it/s]\n 96%|█████████▋| 77/80 [00:58<00:02, 1.31it/s]\n 98%|█████████▊| 78/80 [00:59<00:01, 1.31it/s]\n 99%|█████████▉| 79/80 [00:59<00:00, 1.31it/s]\n100%|██████████| 80/80 [01:00<00:00, 1.31it/s]\n100%|██████████| 80/80 [01:00<00:00, 1.32it/s]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:11, 1.67it/s]\n 10%|█ | 2/20 [00:01<00:10, 1.67it/s]\n 15%|█▌ | 3/20 [00:01<00:10, 1.67it/s]\n 20%|██ | 4/20 [00:02<00:09, 1.66it/s]\n 25%|██▌ | 5/20 [00:03<00:09, 1.67it/s]\n 30%|███ | 6/20 [00:03<00:08, 1.67it/s]\n 35%|███▌ | 7/20 [00:04<00:07, 1.67it/s]\n 40%|████ | 8/20 [00:04<00:07, 1.67it/s]\n 45%|████▌ | 9/20 [00:05<00:06, 1.67it/s]\n 50%|█████ | 10/20 [00:05<00:05, 1.67it/s]\n 55%|█████▌ | 11/20 [00:06<00:05, 1.67it/s]\n 60%|██████ | 12/20 [00:07<00:04, 1.67it/s]\n 65%|██████▌ | 13/20 [00:07<00:04, 1.67it/s]\n 70%|███████ | 14/20 [00:08<00:03, 1.67it/s]\n 75%|███████▌ | 15/20 [00:09<00:03, 1.67it/s]\n 80%|████████ | 16/20 [00:09<00:02, 1.66it/s]\n 85%|████████▌ | 17/20 [00:10<00:01, 1.66it/s]\n 90%|█████████ | 18/20 [00:10<00:01, 1.67it/s]\n 95%|█████████▌| 19/20 [00:11<00:00, 1.67it/s]\n100%|██████████| 20/20 [00:11<00:00, 1.67it/s]\n100%|██████████| 20/20 [00:11<00:00, 1.67it/s]", "metrics": { "predict_time": 77.892292, "total_time": 124.868556 }, "output": [ "https://pbxt.replicate.delivery/sOQPTYD92k6ICNiY0SxOsFau3PMhlX2OSq5A26CofDO3nx0IA/out-0.png", "https://pbxt.replicate.delivery/OPs29DLX5QazNR8dgQnL6MZlGa52pyTzIrutqfvIfnsuPjpRA/out-1.png", "https://pbxt.replicate.delivery/mo3XaGBSuILaPt3yjC0A3U8iLAyQb8WX9qj0YiUbdc77zYaE/out-2.png", "https://pbxt.replicate.delivery/6jGKnzFCGt7PFNMrImdjQOYQjGaIdxiya1c0xKgL3k77zYaE/out-3.png" ], "started_at": "2023-09-30T20:14:25.755109Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jz4ab33bpojbwp7j5k3x3vng6u", "cancel": "https://api.replicate.com/v1/predictions/jz4ab33bpojbwp7j5k3x3vng6u/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 21743 Prompt: cyberpunk twin girls in the mirror of a dive bar bathroom covered with graffiti, I-d dazed editorial, distressed, photorealistic img2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:00<00:59, 1.33it/s] 2%|▎ | 2/80 [00:01<00:58, 1.33it/s] 4%|▍ | 3/80 [00:02<00:57, 1.33it/s] 5%|▌ | 4/80 [00:03<00:57, 1.33it/s] 6%|▋ | 5/80 [00:03<00:56, 1.33it/s] 8%|▊ | 6/80 [00:04<00:55, 1.33it/s] 9%|▉ | 7/80 [00:05<00:54, 1.33it/s] 10%|█ | 8/80 [00:06<00:54, 1.33it/s] 11%|█▏ | 9/80 [00:06<00:53, 1.33it/s] 12%|█▎ | 10/80 [00:07<00:52, 1.33it/s] 14%|█▍ | 11/80 [00:08<00:52, 1.33it/s] 15%|█▌ | 12/80 [00:09<00:51, 1.33it/s] 16%|█▋ | 13/80 [00:09<00:50, 1.32it/s] 18%|█▊ | 14/80 [00:10<00:49, 1.32it/s] 19%|█▉ | 15/80 [00:11<00:48, 1.33it/s] 20%|██ | 16/80 [00:12<00:48, 1.33it/s] 21%|██▏ | 17/80 [00:12<00:47, 1.33it/s] 22%|██▎ | 18/80 [00:13<00:46, 1.33it/s] 24%|██▍ | 19/80 [00:14<00:45, 1.33it/s] 25%|██▌ | 20/80 [00:15<00:45, 1.33it/s] 26%|██▋ | 21/80 [00:15<00:44, 1.33it/s] 28%|██▊ | 22/80 [00:16<00:43, 1.33it/s] 29%|██▉ | 23/80 [00:17<00:42, 1.33it/s] 30%|███ | 24/80 [00:18<00:42, 1.33it/s] 31%|███▏ | 25/80 [00:18<00:41, 1.33it/s] 32%|███▎ | 26/80 [00:19<00:40, 1.33it/s] 34%|███▍ | 27/80 [00:20<00:39, 1.33it/s] 35%|███▌ | 28/80 [00:21<00:39, 1.33it/s] 36%|███▋ | 29/80 [00:21<00:38, 1.33it/s] 38%|███▊ | 30/80 [00:22<00:37, 1.33it/s] 39%|███▉ | 31/80 [00:23<00:37, 1.32it/s] 40%|████ | 32/80 [00:24<00:36, 1.33it/s] 41%|████▏ | 33/80 [00:24<00:35, 1.33it/s] 42%|████▎ | 34/80 [00:25<00:34, 1.33it/s] 44%|████▍ | 35/80 [00:26<00:33, 1.32it/s] 45%|████▌ | 36/80 [00:27<00:33, 1.32it/s] 46%|████▋ | 37/80 [00:27<00:32, 1.32it/s] 48%|████▊ | 38/80 [00:28<00:31, 1.32it/s] 49%|████▉ | 39/80 [00:29<00:30, 1.32it/s] 50%|█████ | 40/80 [00:30<00:30, 1.32it/s] 51%|█████▏ | 41/80 [00:30<00:29, 1.32it/s] 52%|█████▎ | 42/80 [00:31<00:28, 1.32it/s] 54%|█████▍ | 43/80 [00:32<00:28, 1.32it/s] 55%|█████▌ | 44/80 [00:33<00:27, 1.32it/s] 56%|█████▋ | 45/80 [00:33<00:26, 1.32it/s] 57%|█████▊ | 46/80 [00:34<00:25, 1.32it/s] 59%|█████▉ | 47/80 [00:35<00:24, 1.32it/s] 60%|██████ | 48/80 [00:36<00:24, 1.32it/s] 61%|██████▏ | 49/80 [00:36<00:23, 1.32it/s] 62%|██████▎ | 50/80 [00:37<00:22, 1.32it/s] 64%|██████▍ | 51/80 [00:38<00:21, 1.32it/s] 65%|██████▌ | 52/80 [00:39<00:21, 1.32it/s] 66%|██████▋ | 53/80 [00:40<00:20, 1.32it/s] 68%|██████▊ | 54/80 [00:40<00:19, 1.32it/s] 69%|██████▉ | 55/80 [00:41<00:18, 1.32it/s] 70%|███████ | 56/80 [00:42<00:18, 1.32it/s] 71%|███████▏ | 57/80 [00:43<00:17, 1.32it/s] 72%|███████▎ | 58/80 [00:43<00:16, 1.32it/s] 74%|███████▍ | 59/80 [00:44<00:16, 1.31it/s] 75%|███████▌ | 60/80 [00:45<00:15, 1.31it/s] 76%|███████▋ | 61/80 [00:46<00:14, 1.31it/s] 78%|███████▊ | 62/80 [00:46<00:13, 1.31it/s] 79%|███████▉ | 63/80 [00:47<00:12, 1.32it/s] 80%|████████ | 64/80 [00:48<00:12, 1.32it/s] 81%|████████▏ | 65/80 [00:49<00:11, 1.32it/s] 82%|████████▎ | 66/80 [00:49<00:10, 1.32it/s] 84%|████████▍ | 67/80 [00:50<00:09, 1.31it/s] 85%|████████▌ | 68/80 [00:51<00:09, 1.31it/s] 86%|████████▋ | 69/80 [00:52<00:08, 1.31it/s] 88%|████████▊ | 70/80 [00:52<00:07, 1.32it/s] 89%|████████▉ | 71/80 [00:53<00:06, 1.31it/s] 90%|█████████ | 72/80 [00:54<00:06, 1.31it/s] 91%|█████████▏| 73/80 [00:55<00:05, 1.32it/s] 92%|█████████▎| 74/80 [00:55<00:04, 1.32it/s] 94%|█████████▍| 75/80 [00:56<00:03, 1.31it/s] 95%|█████████▌| 76/80 [00:57<00:03, 1.31it/s] 96%|█████████▋| 77/80 [00:58<00:02, 1.31it/s] 98%|█████████▊| 78/80 [00:59<00:01, 1.31it/s] 99%|█████████▉| 79/80 [00:59<00:00, 1.31it/s] 100%|██████████| 80/80 [01:00<00:00, 1.31it/s] 100%|██████████| 80/80 [01:00<00:00, 1.32it/s] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:11, 1.67it/s] 10%|█ | 2/20 [00:01<00:10, 1.67it/s] 15%|█▌ | 3/20 [00:01<00:10, 1.67it/s] 20%|██ | 4/20 [00:02<00:09, 1.66it/s] 25%|██▌ | 5/20 [00:03<00:09, 1.67it/s] 30%|███ | 6/20 [00:03<00:08, 1.67it/s] 35%|███▌ | 7/20 [00:04<00:07, 1.67it/s] 40%|████ | 8/20 [00:04<00:07, 1.67it/s] 45%|████▌ | 9/20 [00:05<00:06, 1.67it/s] 50%|█████ | 10/20 [00:05<00:05, 1.67it/s] 55%|█████▌ | 11/20 [00:06<00:05, 1.67it/s] 60%|██████ | 12/20 [00:07<00:04, 1.67it/s] 65%|██████▌ | 13/20 [00:07<00:04, 1.67it/s] 70%|███████ | 14/20 [00:08<00:03, 1.67it/s] 75%|███████▌ | 15/20 [00:09<00:03, 1.67it/s] 80%|████████ | 16/20 [00:09<00:02, 1.66it/s] 85%|████████▌ | 17/20 [00:10<00:01, 1.66it/s] 90%|█████████ | 18/20 [00:10<00:01, 1.67it/s] 95%|█████████▌| 19/20 [00:11<00:00, 1.67it/s] 100%|██████████| 20/20 [00:11<00:00, 1.67it/s] 100%|██████████| 20/20 [00:11<00:00, 1.67it/s]
Prediction
diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10IDxicm7y3bsoswzzl33f2tfirq7yStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- image
- null
- width
- 1024
- height
- 1024
- prompt
- cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial
- refine
- no_refiner
- scheduler
- K_EULER_ANCESTRAL
- lora_scale
- 0.6
- num_outputs
- 4
- guidance_scale
- 12.25
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering
- prompt_strength
- 0.8
- num_inference_steps
- 101
{ "mask": "https://replicate.delivery/pbxt/JcUoKJJKWoUZYHMuA6VvUWhNGg3C01cgp8ubs2zga9MwVf7u/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 1024, "height": 1024, "prompt": "cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", { input: { mask: "https://replicate.delivery/pbxt/JcUoKJJKWoUZYHMuA6VvUWhNGg3C01cgp8ubs2zga9MwVf7u/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", width: 1024, height: 1024, prompt: "cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial ", refine: "no_refiner", scheduler: "K_EULER_ANCESTRAL", lora_scale: 0.6, num_outputs: 4, guidance_scale: 12.25, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", prompt_strength: 0.8, num_inference_steps: 101 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", input={ "mask": "https://replicate.delivery/pbxt/JcUoKJJKWoUZYHMuA6VvUWhNGg3C01cgp8ubs2zga9MwVf7u/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 1024, "height": 1024, "prompt": "cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run diaphinus/divebar using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "diaphinus/divebar:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10", "input": { "mask": "https://replicate.delivery/pbxt/JcUoKJJKWoUZYHMuA6VvUWhNGg3C01cgp8ubs2zga9MwVf7u/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 1024, "height": 1024, "prompt": "cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10 \ -i 'mask="https://replicate.delivery/pbxt/JcUoKJJKWoUZYHMuA6VvUWhNGg3C01cgp8ubs2zga9MwVf7u/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg"' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial "' \ -i 'refine="no_refiner"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scale=0.6' \ -i 'num_outputs=4' \ -i 'guidance_scale=12.25' \ -i 'apply_watermark=true' \ -i 'high_noise_frac=0.8' \ -i 'negative_prompt="deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering"' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=101'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/diaphinus/divebar@sha256:65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/JcUoKJJKWoUZYHMuA6VvUWhNGg3C01cgp8ubs2zga9MwVf7u/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "width": 1024, "height": 1024, "prompt": "cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-30T21:05:14.954672Z", "created_at": "2023-09-30T21:03:26.355004Z", "data_removed": false, "error": null, "id": "xicm7y3bsoswzzl33f2tfirq7y", "input": { "mask": "https://replicate.delivery/pbxt/JcUoKJJKWoUZYHMuA6VvUWhNGg3C01cgp8ubs2zga9MwVf7u/B7C62ECF-3225-458E-AAAC-0DE269D9CE66_1_105_c.jpeg", "image": null, "width": 1024, "height": 1024, "prompt": "cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial ", "refine": "no_refiner", "scheduler": "K_EULER_ANCESTRAL", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 12.25, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "deformed, noisy, low-poly, blurry, doubles, painting, scribbles, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, low contrast, cartoon rendering", "prompt_strength": 0.8, "num_inference_steps": 101 }, "logs": "Using seed: 9218\nPrompt: cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial\ntxt2img mode\n 0%| | 0/101 [00:00<?, ?it/s]\n 1%| | 1/101 [00:00<01:39, 1.00it/s]\n 2%|▏ | 2/101 [00:02<01:39, 1.00s/it]\n 3%|▎ | 3/101 [00:03<01:38, 1.00s/it]\n 4%|▍ | 4/101 [00:04<01:37, 1.00s/it]\n 5%|▍ | 5/101 [00:05<01:36, 1.00s/it]\n 6%|▌ | 6/101 [00:06<01:35, 1.00s/it]\n 7%|▋ | 7/101 [00:07<01:34, 1.00s/it]\n 8%|▊ | 8/101 [00:08<01:33, 1.01s/it]\n 9%|▉ | 9/101 [00:09<01:32, 1.00s/it]\n 10%|▉ | 10/101 [00:10<01:31, 1.00s/it]\n 11%|█ | 11/101 [00:11<01:30, 1.00s/it]\n 12%|█▏ | 12/101 [00:12<01:29, 1.00s/it]\n 13%|█▎ | 13/101 [00:13<01:28, 1.00s/it]\n 14%|█▍ | 14/101 [00:14<01:27, 1.01s/it]\n 15%|█▍ | 15/101 [00:15<01:26, 1.00s/it]\n 16%|█▌ | 16/101 [00:16<01:25, 1.00s/it]\n 17%|█▋ | 17/101 [00:17<01:24, 1.00s/it]\n 18%|█▊ | 18/101 [00:18<01:23, 1.00s/it]\n 19%|█▉ | 19/101 [00:19<01:22, 1.00s/it]\n 20%|█▉ | 20/101 [00:20<01:21, 1.00s/it]\n 21%|██ | 21/101 [00:21<01:20, 1.00s/it]\n 22%|██▏ | 22/101 [00:22<01:19, 1.00s/it]\n 23%|██▎ | 23/101 [00:23<01:18, 1.00s/it]\n 24%|██▍ | 24/101 [00:24<01:17, 1.00s/it]\n 25%|██▍ | 25/101 [00:25<01:16, 1.00s/it]\n 26%|██▌ | 26/101 [00:26<01:15, 1.00s/it]\n 27%|██▋ | 27/101 [00:27<01:14, 1.00s/it]\n 28%|██▊ | 28/101 [00:28<01:13, 1.00s/it]\n 29%|██▊ | 29/101 [00:29<01:12, 1.00s/it]\n 30%|██▉ | 30/101 [00:30<01:11, 1.01s/it]\n 31%|███ | 31/101 [00:31<01:10, 1.01s/it]\n 32%|███▏ | 32/101 [00:32<01:09, 1.01s/it]\n 33%|███▎ | 33/101 [00:33<01:08, 1.01s/it]\n 34%|███▎ | 34/101 [00:34<01:07, 1.01s/it]\n 35%|███▍ | 35/101 [00:35<01:06, 1.01s/it]\n 36%|███▌ | 36/101 [00:36<01:05, 1.01s/it]\n 37%|███▋ | 37/101 [00:37<01:04, 1.01s/it]\n 38%|███▊ | 38/101 [00:38<01:03, 1.01s/it]\n 39%|███▊ | 39/101 [00:39<01:02, 1.01s/it]\n 40%|███▉ | 40/101 [00:40<01:01, 1.01s/it]\n 41%|████ | 41/101 [00:41<01:00, 1.01s/it]\n 42%|████▏ | 42/101 [00:42<00:59, 1.01s/it]\n 43%|████▎ | 43/101 [00:43<00:58, 1.01s/it]\n 44%|████▎ | 44/101 [00:44<00:57, 1.01s/it]\n 45%|████▍ | 45/101 [00:45<00:56, 1.01s/it]\n 46%|████▌ | 46/101 [00:46<00:55, 1.01s/it]\n 47%|████▋ | 47/101 [00:47<00:54, 1.01s/it]\n 48%|████▊ | 48/101 [00:48<00:53, 1.01s/it]\n 49%|████▊ | 49/101 [00:49<00:52, 1.01s/it]\n 50%|████▉ | 50/101 [00:50<00:51, 1.01s/it]\n 50%|█████ | 51/101 [00:51<00:50, 1.01s/it]\n 51%|█████▏ | 52/101 [00:52<00:49, 1.01s/it]\n 52%|█████▏ | 53/101 [00:53<00:48, 1.01s/it]\n 53%|█████▎ | 54/101 [00:54<00:47, 1.01s/it]\n 54%|█████▍ | 55/101 [00:55<00:46, 1.01s/it]\n 55%|█████▌ | 56/101 [00:56<00:45, 1.01s/it]\n 56%|█████▋ | 57/101 [00:57<00:44, 1.01s/it]\n 57%|█████▋ | 58/101 [00:58<00:43, 1.01s/it]\n 58%|█████▊ | 59/101 [00:59<00:42, 1.01s/it]\n 59%|█████▉ | 60/101 [01:00<00:41, 1.01s/it]\n 60%|██████ | 61/101 [01:01<00:40, 1.01s/it]\n 61%|██████▏ | 62/101 [01:02<00:39, 1.01s/it]\n 62%|██████▏ | 63/101 [01:03<00:38, 1.01s/it]\n 63%|██████▎ | 64/101 [01:04<00:37, 1.01s/it]\n 64%|██████▍ | 65/101 [01:05<00:36, 1.01s/it]\n 65%|██████▌ | 66/101 [01:06<00:35, 1.01s/it]\n 66%|██████▋ | 67/101 [01:07<00:34, 1.01s/it]\n 67%|██████▋ | 68/101 [01:08<00:33, 1.01s/it]\n 68%|██████▊ | 69/101 [01:09<00:32, 1.01s/it]\n 69%|██████▉ | 70/101 [01:10<00:31, 1.01s/it]\n 70%|███████ | 71/101 [01:11<00:30, 1.01s/it]\n 71%|███████▏ | 72/101 [01:12<00:29, 1.01s/it]\n 72%|███████▏ | 73/101 [01:13<00:28, 1.01s/it]\n 73%|███████▎ | 74/101 [01:14<00:27, 1.01s/it]\n 74%|███████▍ | 75/101 [01:15<00:26, 1.01s/it]\n 75%|███████▌ | 76/101 [01:16<00:25, 1.01s/it]\n 76%|███████▌ | 77/101 [01:17<00:24, 1.01s/it]\n 77%|███████▋ | 78/101 [01:18<00:23, 1.01s/it]\n 78%|███████▊ | 79/101 [01:19<00:22, 1.01s/it]\n 79%|███████▉ | 80/101 [01:20<00:21, 1.01s/it]\n 80%|████████ | 81/101 [01:21<00:20, 1.01s/it]\n 81%|████████ | 82/101 [01:22<00:19, 1.01s/it]\n 82%|████████▏ | 83/101 [01:23<00:18, 1.01s/it]\n 83%|████████▎ | 84/101 [01:24<00:17, 1.01s/it]\n 84%|████████▍ | 85/101 [01:25<00:16, 1.01s/it]\n 85%|████████▌ | 86/101 [01:26<00:15, 1.01s/it]\n 86%|████████▌ | 87/101 [01:27<00:14, 1.01s/it]\n 87%|████████▋ | 88/101 [01:28<00:13, 1.01s/it]\n 88%|████████▊ | 89/101 [01:29<00:12, 1.01s/it]\n 89%|████████▉ | 90/101 [01:30<00:11, 1.01s/it]\n 90%|█████████ | 91/101 [01:31<00:10, 1.01s/it]\n 91%|█████████ | 92/101 [01:32<00:09, 1.01s/it]\n 92%|█████████▏| 93/101 [01:33<00:08, 1.01s/it]\n 93%|█████████▎| 94/101 [01:34<00:07, 1.01s/it]\n 94%|█████████▍| 95/101 [01:35<00:06, 1.01s/it]\n 95%|█████████▌| 96/101 [01:36<00:05, 1.01s/it]\n 96%|█████████▌| 97/101 [01:37<00:04, 1.01s/it]\n 97%|█████████▋| 98/101 [01:38<00:03, 1.01s/it]\n 98%|█████████▊| 99/101 [01:39<00:02, 1.01s/it]\n 99%|█████████▉| 100/101 [01:40<00:01, 1.01s/it]\n100%|██████████| 101/101 [01:41<00:00, 1.01s/it]\n100%|██████████| 101/101 [01:41<00:00, 1.01s/it]", "metrics": { "predict_time": 108.659441, "total_time": 108.599668 }, "output": [ "https://pbxt.replicate.delivery/VIjqIilhhYLSDVdeEeKwCetm8FtuGD1LKyDSUavH53GR8HTjA/out-0.png", "https://pbxt.replicate.delivery/jehtfOzQvNtUz00hOONo87Ont6rfvOicuHfPnID66rLm4PmGB/out-1.png", "https://pbxt.replicate.delivery/fcXIJ37nG5wsFSAFAWRKcRlDMaNBI2CeAXWIC9dH0sKKeHTjA/out-2.png", "https://pbxt.replicate.delivery/j8qwFtoyOB59NV3QuEtXV4CJv9dklHIycrl556HzfpDFfjpRA/out-3.png" ], "started_at": "2023-09-30T21:03:26.295231Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xicm7y3bsoswzzl33f2tfirq7y", "cancel": "https://api.replicate.com/v1/predictions/xicm7y3bsoswzzl33f2tfirq7y/cancel" }, "version": "65feb91b9b1698fbba92ae93d0ab65e49490b15d0f86b92260e0d7c8c1bc7f10" }
Generated inUsing seed: 9218 Prompt: cyberpunk twin girls in Cracked smashed mirror and mirror fragments of a dive bar bathroom covered with graffiti, in total darkness, phone illuminates her face, photographed by Diane Arbus and Sylvia Plachy dimly lit, distressed, photorealistic, i-d dazed editorial txt2img mode 0%| | 0/101 [00:00<?, ?it/s] 1%| | 1/101 [00:00<01:39, 1.00it/s] 2%|▏ | 2/101 [00:02<01:39, 1.00s/it] 3%|▎ | 3/101 [00:03<01:38, 1.00s/it] 4%|▍ | 4/101 [00:04<01:37, 1.00s/it] 5%|▍ | 5/101 [00:05<01:36, 1.00s/it] 6%|▌ | 6/101 [00:06<01:35, 1.00s/it] 7%|▋ | 7/101 [00:07<01:34, 1.00s/it] 8%|▊ | 8/101 [00:08<01:33, 1.01s/it] 9%|▉ | 9/101 [00:09<01:32, 1.00s/it] 10%|▉ | 10/101 [00:10<01:31, 1.00s/it] 11%|█ | 11/101 [00:11<01:30, 1.00s/it] 12%|█▏ | 12/101 [00:12<01:29, 1.00s/it] 13%|█▎ | 13/101 [00:13<01:28, 1.00s/it] 14%|█▍ | 14/101 [00:14<01:27, 1.01s/it] 15%|█▍ | 15/101 [00:15<01:26, 1.00s/it] 16%|█▌ | 16/101 [00:16<01:25, 1.00s/it] 17%|█▋ | 17/101 [00:17<01:24, 1.00s/it] 18%|█▊ | 18/101 [00:18<01:23, 1.00s/it] 19%|█▉ | 19/101 [00:19<01:22, 1.00s/it] 20%|█▉ | 20/101 [00:20<01:21, 1.00s/it] 21%|██ | 21/101 [00:21<01:20, 1.00s/it] 22%|██▏ | 22/101 [00:22<01:19, 1.00s/it] 23%|██▎ | 23/101 [00:23<01:18, 1.00s/it] 24%|██▍ | 24/101 [00:24<01:17, 1.00s/it] 25%|██▍ | 25/101 [00:25<01:16, 1.00s/it] 26%|██▌ | 26/101 [00:26<01:15, 1.00s/it] 27%|██▋ | 27/101 [00:27<01:14, 1.00s/it] 28%|██▊ | 28/101 [00:28<01:13, 1.00s/it] 29%|██▊ | 29/101 [00:29<01:12, 1.00s/it] 30%|██▉ | 30/101 [00:30<01:11, 1.01s/it] 31%|███ | 31/101 [00:31<01:10, 1.01s/it] 32%|███▏ | 32/101 [00:32<01:09, 1.01s/it] 33%|███▎ | 33/101 [00:33<01:08, 1.01s/it] 34%|███▎ | 34/101 [00:34<01:07, 1.01s/it] 35%|███▍ | 35/101 [00:35<01:06, 1.01s/it] 36%|███▌ | 36/101 [00:36<01:05, 1.01s/it] 37%|███▋ | 37/101 [00:37<01:04, 1.01s/it] 38%|███▊ | 38/101 [00:38<01:03, 1.01s/it] 39%|███▊ | 39/101 [00:39<01:02, 1.01s/it] 40%|███▉ | 40/101 [00:40<01:01, 1.01s/it] 41%|████ | 41/101 [00:41<01:00, 1.01s/it] 42%|████▏ | 42/101 [00:42<00:59, 1.01s/it] 43%|████▎ | 43/101 [00:43<00:58, 1.01s/it] 44%|████▎ | 44/101 [00:44<00:57, 1.01s/it] 45%|████▍ | 45/101 [00:45<00:56, 1.01s/it] 46%|████▌ | 46/101 [00:46<00:55, 1.01s/it] 47%|████▋ | 47/101 [00:47<00:54, 1.01s/it] 48%|████▊ | 48/101 [00:48<00:53, 1.01s/it] 49%|████▊ | 49/101 [00:49<00:52, 1.01s/it] 50%|████▉ | 50/101 [00:50<00:51, 1.01s/it] 50%|█████ | 51/101 [00:51<00:50, 1.01s/it] 51%|█████▏ | 52/101 [00:52<00:49, 1.01s/it] 52%|█████▏ | 53/101 [00:53<00:48, 1.01s/it] 53%|█████▎ | 54/101 [00:54<00:47, 1.01s/it] 54%|█████▍ | 55/101 [00:55<00:46, 1.01s/it] 55%|█████▌ | 56/101 [00:56<00:45, 1.01s/it] 56%|█████▋ | 57/101 [00:57<00:44, 1.01s/it] 57%|█████▋ | 58/101 [00:58<00:43, 1.01s/it] 58%|█████▊ | 59/101 [00:59<00:42, 1.01s/it] 59%|█████▉ | 60/101 [01:00<00:41, 1.01s/it] 60%|██████ | 61/101 [01:01<00:40, 1.01s/it] 61%|██████▏ | 62/101 [01:02<00:39, 1.01s/it] 62%|██████▏ | 63/101 [01:03<00:38, 1.01s/it] 63%|██████▎ | 64/101 [01:04<00:37, 1.01s/it] 64%|██████▍ | 65/101 [01:05<00:36, 1.01s/it] 65%|██████▌ | 66/101 [01:06<00:35, 1.01s/it] 66%|██████▋ | 67/101 [01:07<00:34, 1.01s/it] 67%|██████▋ | 68/101 [01:08<00:33, 1.01s/it] 68%|██████▊ | 69/101 [01:09<00:32, 1.01s/it] 69%|██████▉ | 70/101 [01:10<00:31, 1.01s/it] 70%|███████ | 71/101 [01:11<00:30, 1.01s/it] 71%|███████▏ | 72/101 [01:12<00:29, 1.01s/it] 72%|███████▏ | 73/101 [01:13<00:28, 1.01s/it] 73%|███████▎ | 74/101 [01:14<00:27, 1.01s/it] 74%|███████▍ | 75/101 [01:15<00:26, 1.01s/it] 75%|███████▌ | 76/101 [01:16<00:25, 1.01s/it] 76%|███████▌ | 77/101 [01:17<00:24, 1.01s/it] 77%|███████▋ | 78/101 [01:18<00:23, 1.01s/it] 78%|███████▊ | 79/101 [01:19<00:22, 1.01s/it] 79%|███████▉ | 80/101 [01:20<00:21, 1.01s/it] 80%|████████ | 81/101 [01:21<00:20, 1.01s/it] 81%|████████ | 82/101 [01:22<00:19, 1.01s/it] 82%|████████▏ | 83/101 [01:23<00:18, 1.01s/it] 83%|████████▎ | 84/101 [01:24<00:17, 1.01s/it] 84%|████████▍ | 85/101 [01:25<00:16, 1.01s/it] 85%|████████▌ | 86/101 [01:26<00:15, 1.01s/it] 86%|████████▌ | 87/101 [01:27<00:14, 1.01s/it] 87%|████████▋ | 88/101 [01:28<00:13, 1.01s/it] 88%|████████▊ | 89/101 [01:29<00:12, 1.01s/it] 89%|████████▉ | 90/101 [01:30<00:11, 1.01s/it] 90%|█████████ | 91/101 [01:31<00:10, 1.01s/it] 91%|█████████ | 92/101 [01:32<00:09, 1.01s/it] 92%|█████████▏| 93/101 [01:33<00:08, 1.01s/it] 93%|█████████▎| 94/101 [01:34<00:07, 1.01s/it] 94%|█████████▍| 95/101 [01:35<00:06, 1.01s/it] 95%|█████████▌| 96/101 [01:36<00:05, 1.01s/it] 96%|█████████▌| 97/101 [01:37<00:04, 1.01s/it] 97%|█████████▋| 98/101 [01:38<00:03, 1.01s/it] 98%|█████████▊| 99/101 [01:39<00:02, 1.01s/it] 99%|█████████▉| 100/101 [01:40<00:01, 1.01s/it] 100%|██████████| 101/101 [01:41<00:00, 1.01s/it] 100%|██████████| 101/101 [01:41<00:00, 1.01s/it]
Want to make some of these yourself?
Run this model