Readme
Output is a dictionary with key ‘mostLikelyClass’ giving the most likely class and key ‘allClasses’ giving a dictionary of all class likelihoods.
Zero-shot classifier which classifies text into categories of your choosing. Returns a dictionary of the most likely class and all class likelihoods.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run georgedavila/bart-large-mnli-classifier using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"georgedavila/bart-large-mnli-classifier:d929487cf059f96a17752ebe55ae5a85b2e8be6cd627078e49c6caa2fd4213db",
{
input: {
labels: "Cooking Instructions, Question about Astronomy",
text2classify: "Add salt to boiling water to prevent pasta from sticking together"
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run georgedavila/bart-large-mnli-classifier using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"georgedavila/bart-large-mnli-classifier:d929487cf059f96a17752ebe55ae5a85b2e8be6cd627078e49c6caa2fd4213db",
input={
"labels": "Cooking Instructions, Question about Astronomy",
"text2classify": "Add salt to boiling water to prevent pasta from sticking together"
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run georgedavila/bart-large-mnli-classifier using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "d929487cf059f96a17752ebe55ae5a85b2e8be6cd627078e49c6caa2fd4213db",
"input": {
"labels": "Cooking Instructions, Question about Astronomy",
"text2classify": "Add salt to boiling water to prevent pasta from sticking together"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-01-03T01:30:08.099531Z",
"created_at": "2024-01-03T01:28:02.416962Z",
"data_removed": false,
"error": null,
"id": "wwjcl6rbtjkwtyy43knkb462fm",
"input": {
"labels": "Cooking Instructions, Question about Astronomy",
"text2classify": "Add salt to boiling water to prevent pasta from sticking together"
},
"logs": "config.json: 0%| | 0.00/1.15k [00:00<?, ?B/s]\nconfig.json: 100%|██████████| 1.15k/1.15k [00:00<00:00, 5.85MB/s]\nmodel.safetensors: 0%| | 0.00/1.63G [00:00<?, ?B/s]\nmodel.safetensors: 1%| | 10.5M/1.63G [00:00<00:39, 41.3MB/s]\nmodel.safetensors: 2%|▏ | 31.5M/1.63G [00:00<00:15, 100MB/s] \nmodel.safetensors: 3%|▎ | 52.4M/1.63G [00:00<00:12, 129MB/s]\nmodel.safetensors: 5%|▍ | 73.4M/1.63G [00:00<00:11, 131MB/s]\nmodel.safetensors: 6%|▌ | 94.4M/1.63G [00:00<00:10, 140MB/s]\nmodel.safetensors: 7%|▋ | 115M/1.63G [00:00<00:09, 158MB/s] \nmodel.safetensors: 8%|▊ | 136M/1.63G [00:00<00:08, 169MB/s]\nmodel.safetensors: 10%|▉ | 157M/1.63G [00:01<00:08, 167MB/s]\nmodel.safetensors: 11%|█ | 178M/1.63G [00:01<00:08, 178MB/s]\nmodel.safetensors: 12%|█▏ | 199M/1.63G [00:01<00:08, 177MB/s]\nmodel.safetensors: 14%|█▎ | 220M/1.63G [00:01<00:07, 183MB/s]\nmodel.safetensors: 15%|█▍ | 241M/1.63G [00:01<00:07, 186MB/s]\nmodel.safetensors: 16%|█▌ | 262M/1.63G [00:01<00:07, 189MB/s]\nmodel.safetensors: 17%|█▋ | 283M/1.63G [00:01<00:06, 193MB/s]\nmodel.safetensors: 19%|█▉ | 315M/1.63G [00:01<00:06, 199MB/s]\nmodel.safetensors: 21%|██ | 336M/1.63G [00:02<00:06, 198MB/s]\nmodel.safetensors: 22%|██▏ | 357M/1.63G [00:02<00:06, 200MB/s]\nmodel.safetensors: 23%|██▎ | 377M/1.63G [00:02<00:06, 197MB/s]\nmodel.safetensors: 24%|██▍ | 398M/1.63G [00:02<00:06, 197MB/s]\nmodel.safetensors: 26%|██▋ | 430M/1.63G [00:02<00:05, 202MB/s]\nmodel.safetensors: 28%|██▊ | 461M/1.63G [00:02<00:05, 206MB/s]\nmodel.safetensors: 30%|███ | 493M/1.63G [00:02<00:05, 209MB/s]\nmodel.safetensors: 32%|███▏ | 524M/1.63G [00:02<00:05, 208MB/s]\nmodel.safetensors: 33%|███▎ | 545M/1.63G [00:03<00:05, 206MB/s]\nmodel.safetensors: 35%|███▍ | 566M/1.63G [00:03<00:05, 203MB/s]\nmodel.safetensors: 36%|███▌ | 587M/1.63G [00:03<00:05, 202MB/s]\nmodel.safetensors: 37%|███▋ | 608M/1.63G [00:03<00:05, 202MB/s]\nmodel.safetensors: 39%|███▊ | 629M/1.63G [00:03<00:04, 203MB/s]\nmodel.safetensors: 41%|████ | 661M/1.63G [00:03<00:04, 206MB/s]\nmodel.safetensors: 42%|████▏ | 682M/1.63G [00:03<00:04, 205MB/s]\nmodel.safetensors: 43%|████▎ | 703M/1.63G [00:03<00:04, 203MB/s]\nmodel.safetensors: 44%|████▍ | 724M/1.63G [00:03<00:05, 178MB/s]\nmodel.safetensors: 46%|████▌ | 744M/1.63G [00:04<00:04, 186MB/s]\nmodel.safetensors: 48%|████▊ | 776M/1.63G [00:04<00:04, 193MB/s]\nmodel.safetensors: 49%|████▉ | 797M/1.63G [00:04<00:04, 195MB/s]\nmodel.safetensors: 50%|█████ | 818M/1.63G [00:04<00:04, 198MB/s]\nmodel.safetensors: 52%|█████▏ | 849M/1.63G [00:04<00:03, 203MB/s]\nmodel.safetensors: 54%|█████▍ | 881M/1.63G [00:04<00:03, 201MB/s]\nmodel.safetensors: 55%|█████▌ | 902M/1.63G [00:04<00:03, 200MB/s]\nmodel.safetensors: 57%|█████▋ | 923M/1.63G [00:04<00:03, 199MB/s]\nmodel.safetensors: 58%|█████▊ | 944M/1.63G [00:05<00:03, 202MB/s]\nmodel.safetensors: 60%|█████▉ | 975M/1.63G [00:05<00:03, 204MB/s]\nmodel.safetensors: 61%|██████ | 996M/1.63G [00:05<00:03, 204MB/s]\nmodel.safetensors: 62%|██████▏ | 1.02G/1.63G [00:05<00:03, 200MB/s]\nmodel.safetensors: 64%|██████▎ | 1.04G/1.63G [00:05<00:02, 200MB/s]\nmodel.safetensors: 66%|██████▌ | 1.07G/1.63G [00:05<00:02, 205MB/s]\nmodel.safetensors: 67%|██████▋ | 1.09G/1.63G [00:05<00:02, 191MB/s]\nmodel.safetensors: 69%|██████▉ | 1.12G/1.63G [00:05<00:02, 199MB/s]\nmodel.safetensors: 70%|███████ | 1.14G/1.63G [00:06<00:02, 200MB/s]\nmodel.safetensors: 71%|███████▏ | 1.16G/1.63G [00:06<00:02, 201MB/s]\nmodel.safetensors: 73%|███████▎ | 1.18G/1.63G [00:06<00:02, 204MB/s]\nmodel.safetensors: 75%|███████▍ | 1.22G/1.63G [00:06<00:01, 207MB/s]\nmodel.safetensors: 77%|███████▋ | 1.25G/1.63G [00:06<00:01, 209MB/s]\nmodel.safetensors: 78%|███████▊ | 1.27G/1.63G [00:06<00:01, 182MB/s]\nmodel.safetensors: 79%|███████▉ | 1.29G/1.63G [00:06<00:01, 185MB/s]\nmodel.safetensors: 80%|████████ | 1.31G/1.63G [00:06<00:01, 172MB/s]\nmodel.safetensors: 82%|████████▏ | 1.33G/1.63G [00:07<00:01, 176MB/s]\nmodel.safetensors: 83%|████████▎ | 1.35G/1.63G [00:07<00:01, 183MB/s]\nmodel.safetensors: 84%|████████▍ | 1.37G/1.63G [00:07<00:01, 189MB/s]\nmodel.safetensors: 86%|████████▌ | 1.41G/1.63G [00:07<00:01, 198MB/s]\nmodel.safetensors: 88%|████████▊ | 1.44G/1.63G [00:07<00:01, 192MB/s]\nmodel.safetensors: 90%|█████████ | 1.47G/1.63G [00:07<00:00, 197MB/s]\nmodel.safetensors: 91%|█████████▏| 1.49G/1.63G [00:07<00:00, 199MB/s]\nmodel.safetensors: 93%|█████████▎| 1.51G/1.63G [00:07<00:00, 189MB/s]\nmodel.safetensors: 94%|█████████▍| 1.53G/1.63G [00:08<00:00, 189MB/s]\nmodel.safetensors: 95%|█████████▌| 1.55G/1.63G [00:08<00:00, 193MB/s]\nmodel.safetensors: 97%|█████████▋| 1.57G/1.63G [00:08<00:00, 178MB/s]\nmodel.safetensors: 98%|█████████▊| 1.59G/1.63G [00:08<00:00, 185MB/s]\nmodel.safetensors: 99%|█████████▉| 1.61G/1.63G [00:08<00:00, 170MB/s]\nmodel.safetensors: 100%|██████████| 1.63G/1.63G [00:08<00:00, 186MB/s]\ntokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]\ntokenizer_config.json: 100%|██████████| 26.0/26.0 [00:00<00:00, 78.8kB/s]\nvocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]\nvocab.json: 100%|██████████| 899k/899k [00:00<00:00, 9.29MB/s]\nmerges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]\nmerges.txt: 100%|██████████| 456k/456k [00:00<00:00, 61.4MB/s]\ntokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]\ntokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.29MB/s]\ntokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.17MB/s]",
"metrics": {
"predict_time": 12.641566,
"total_time": 125.682569
},
"output": {
"allClasses": {
"Cooking Instructions": 0.9597448110580444,
"Question about Astronomy": 0.04025513678789139
},
"mostLikelyClass": "Cooking Instructions"
},
"started_at": "2024-01-03T01:29:55.457965Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/wwjcl6rbtjkwtyy43knkb462fm",
"cancel": "https://api.replicate.com/v1/predictions/wwjcl6rbtjkwtyy43knkb462fm/cancel"
},
"version": "d929487cf059f96a17752ebe55ae5a85b2e8be6cd627078e49c6caa2fd4213db"
}
config.json: 0%| | 0.00/1.15k [00:00<?, ?B/s]
config.json: 100%|██████████| 1.15k/1.15k [00:00<00:00, 5.85MB/s]
model.safetensors: 0%| | 0.00/1.63G [00:00<?, ?B/s]
model.safetensors: 1%| | 10.5M/1.63G [00:00<00:39, 41.3MB/s]
model.safetensors: 2%|▏ | 31.5M/1.63G [00:00<00:15, 100MB/s]
model.safetensors: 3%|▎ | 52.4M/1.63G [00:00<00:12, 129MB/s]
model.safetensors: 5%|▍ | 73.4M/1.63G [00:00<00:11, 131MB/s]
model.safetensors: 6%|▌ | 94.4M/1.63G [00:00<00:10, 140MB/s]
model.safetensors: 7%|▋ | 115M/1.63G [00:00<00:09, 158MB/s]
model.safetensors: 8%|▊ | 136M/1.63G [00:00<00:08, 169MB/s]
model.safetensors: 10%|▉ | 157M/1.63G [00:01<00:08, 167MB/s]
model.safetensors: 11%|█ | 178M/1.63G [00:01<00:08, 178MB/s]
model.safetensors: 12%|█▏ | 199M/1.63G [00:01<00:08, 177MB/s]
model.safetensors: 14%|█▎ | 220M/1.63G [00:01<00:07, 183MB/s]
model.safetensors: 15%|█▍ | 241M/1.63G [00:01<00:07, 186MB/s]
model.safetensors: 16%|█▌ | 262M/1.63G [00:01<00:07, 189MB/s]
model.safetensors: 17%|█▋ | 283M/1.63G [00:01<00:06, 193MB/s]
model.safetensors: 19%|█▉ | 315M/1.63G [00:01<00:06, 199MB/s]
model.safetensors: 21%|██ | 336M/1.63G [00:02<00:06, 198MB/s]
model.safetensors: 22%|██▏ | 357M/1.63G [00:02<00:06, 200MB/s]
model.safetensors: 23%|██▎ | 377M/1.63G [00:02<00:06, 197MB/s]
model.safetensors: 24%|██▍ | 398M/1.63G [00:02<00:06, 197MB/s]
model.safetensors: 26%|██▋ | 430M/1.63G [00:02<00:05, 202MB/s]
model.safetensors: 28%|██▊ | 461M/1.63G [00:02<00:05, 206MB/s]
model.safetensors: 30%|███ | 493M/1.63G [00:02<00:05, 209MB/s]
model.safetensors: 32%|███▏ | 524M/1.63G [00:02<00:05, 208MB/s]
model.safetensors: 33%|███▎ | 545M/1.63G [00:03<00:05, 206MB/s]
model.safetensors: 35%|███▍ | 566M/1.63G [00:03<00:05, 203MB/s]
model.safetensors: 36%|███▌ | 587M/1.63G [00:03<00:05, 202MB/s]
model.safetensors: 37%|███▋ | 608M/1.63G [00:03<00:05, 202MB/s]
model.safetensors: 39%|███▊ | 629M/1.63G [00:03<00:04, 203MB/s]
model.safetensors: 41%|████ | 661M/1.63G [00:03<00:04, 206MB/s]
model.safetensors: 42%|████▏ | 682M/1.63G [00:03<00:04, 205MB/s]
model.safetensors: 43%|████▎ | 703M/1.63G [00:03<00:04, 203MB/s]
model.safetensors: 44%|████▍ | 724M/1.63G [00:03<00:05, 178MB/s]
model.safetensors: 46%|████▌ | 744M/1.63G [00:04<00:04, 186MB/s]
model.safetensors: 48%|████▊ | 776M/1.63G [00:04<00:04, 193MB/s]
model.safetensors: 49%|████▉ | 797M/1.63G [00:04<00:04, 195MB/s]
model.safetensors: 50%|█████ | 818M/1.63G [00:04<00:04, 198MB/s]
model.safetensors: 52%|█████▏ | 849M/1.63G [00:04<00:03, 203MB/s]
model.safetensors: 54%|█████▍ | 881M/1.63G [00:04<00:03, 201MB/s]
model.safetensors: 55%|█████▌ | 902M/1.63G [00:04<00:03, 200MB/s]
model.safetensors: 57%|█████▋ | 923M/1.63G [00:04<00:03, 199MB/s]
model.safetensors: 58%|█████▊ | 944M/1.63G [00:05<00:03, 202MB/s]
model.safetensors: 60%|█████▉ | 975M/1.63G [00:05<00:03, 204MB/s]
model.safetensors: 61%|██████ | 996M/1.63G [00:05<00:03, 204MB/s]
model.safetensors: 62%|██████▏ | 1.02G/1.63G [00:05<00:03, 200MB/s]
model.safetensors: 64%|██████▎ | 1.04G/1.63G [00:05<00:02, 200MB/s]
model.safetensors: 66%|██████▌ | 1.07G/1.63G [00:05<00:02, 205MB/s]
model.safetensors: 67%|██████▋ | 1.09G/1.63G [00:05<00:02, 191MB/s]
model.safetensors: 69%|██████▉ | 1.12G/1.63G [00:05<00:02, 199MB/s]
model.safetensors: 70%|███████ | 1.14G/1.63G [00:06<00:02, 200MB/s]
model.safetensors: 71%|███████▏ | 1.16G/1.63G [00:06<00:02, 201MB/s]
model.safetensors: 73%|███████▎ | 1.18G/1.63G [00:06<00:02, 204MB/s]
model.safetensors: 75%|███████▍ | 1.22G/1.63G [00:06<00:01, 207MB/s]
model.safetensors: 77%|███████▋ | 1.25G/1.63G [00:06<00:01, 209MB/s]
model.safetensors: 78%|███████▊ | 1.27G/1.63G [00:06<00:01, 182MB/s]
model.safetensors: 79%|███████▉ | 1.29G/1.63G [00:06<00:01, 185MB/s]
model.safetensors: 80%|████████ | 1.31G/1.63G [00:06<00:01, 172MB/s]
model.safetensors: 82%|████████▏ | 1.33G/1.63G [00:07<00:01, 176MB/s]
model.safetensors: 83%|████████▎ | 1.35G/1.63G [00:07<00:01, 183MB/s]
model.safetensors: 84%|████████▍ | 1.37G/1.63G [00:07<00:01, 189MB/s]
model.safetensors: 86%|████████▌ | 1.41G/1.63G [00:07<00:01, 198MB/s]
model.safetensors: 88%|████████▊ | 1.44G/1.63G [00:07<00:01, 192MB/s]
model.safetensors: 90%|█████████ | 1.47G/1.63G [00:07<00:00, 197MB/s]
model.safetensors: 91%|█████████▏| 1.49G/1.63G [00:07<00:00, 199MB/s]
model.safetensors: 93%|█████████▎| 1.51G/1.63G [00:07<00:00, 189MB/s]
model.safetensors: 94%|█████████▍| 1.53G/1.63G [00:08<00:00, 189MB/s]
model.safetensors: 95%|█████████▌| 1.55G/1.63G [00:08<00:00, 193MB/s]
model.safetensors: 97%|█████████▋| 1.57G/1.63G [00:08<00:00, 178MB/s]
model.safetensors: 98%|█████████▊| 1.59G/1.63G [00:08<00:00, 185MB/s]
model.safetensors: 99%|█████████▉| 1.61G/1.63G [00:08<00:00, 170MB/s]
model.safetensors: 100%|██████████| 1.63G/1.63G [00:08<00:00, 186MB/s]
tokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 26.0/26.0 [00:00<00:00, 78.8kB/s]
vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]
vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 9.29MB/s]
merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]
merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 61.4MB/s]
tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.29MB/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.17MB/s]
This model costs approximately $0.00058 to run on Replicate, or 1724 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia T4 GPU hardware. Predictions typically complete within 3 seconds.
Output is a dictionary with key ‘mostLikelyClass’ giving the most likely class and key ‘allClasses’ giving a dictionary of all class likelihoods.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
config.json: 0%| | 0.00/1.15k [00:00<?, ?B/s]
config.json: 100%|██████████| 1.15k/1.15k [00:00<00:00, 5.85MB/s]
model.safetensors: 0%| | 0.00/1.63G [00:00<?, ?B/s]
model.safetensors: 1%| | 10.5M/1.63G [00:00<00:39, 41.3MB/s]
model.safetensors: 2%|▏ | 31.5M/1.63G [00:00<00:15, 100MB/s]
model.safetensors: 3%|▎ | 52.4M/1.63G [00:00<00:12, 129MB/s]
model.safetensors: 5%|▍ | 73.4M/1.63G [00:00<00:11, 131MB/s]
model.safetensors: 6%|▌ | 94.4M/1.63G [00:00<00:10, 140MB/s]
model.safetensors: 7%|▋ | 115M/1.63G [00:00<00:09, 158MB/s]
model.safetensors: 8%|▊ | 136M/1.63G [00:00<00:08, 169MB/s]
model.safetensors: 10%|▉ | 157M/1.63G [00:01<00:08, 167MB/s]
model.safetensors: 11%|█ | 178M/1.63G [00:01<00:08, 178MB/s]
model.safetensors: 12%|█▏ | 199M/1.63G [00:01<00:08, 177MB/s]
model.safetensors: 14%|█▎ | 220M/1.63G [00:01<00:07, 183MB/s]
model.safetensors: 15%|█▍ | 241M/1.63G [00:01<00:07, 186MB/s]
model.safetensors: 16%|█▌ | 262M/1.63G [00:01<00:07, 189MB/s]
model.safetensors: 17%|█▋ | 283M/1.63G [00:01<00:06, 193MB/s]
model.safetensors: 19%|█▉ | 315M/1.63G [00:01<00:06, 199MB/s]
model.safetensors: 21%|██ | 336M/1.63G [00:02<00:06, 198MB/s]
model.safetensors: 22%|██▏ | 357M/1.63G [00:02<00:06, 200MB/s]
model.safetensors: 23%|██▎ | 377M/1.63G [00:02<00:06, 197MB/s]
model.safetensors: 24%|██▍ | 398M/1.63G [00:02<00:06, 197MB/s]
model.safetensors: 26%|██▋ | 430M/1.63G [00:02<00:05, 202MB/s]
model.safetensors: 28%|██▊ | 461M/1.63G [00:02<00:05, 206MB/s]
model.safetensors: 30%|███ | 493M/1.63G [00:02<00:05, 209MB/s]
model.safetensors: 32%|███▏ | 524M/1.63G [00:02<00:05, 208MB/s]
model.safetensors: 33%|███▎ | 545M/1.63G [00:03<00:05, 206MB/s]
model.safetensors: 35%|███▍ | 566M/1.63G [00:03<00:05, 203MB/s]
model.safetensors: 36%|███▌ | 587M/1.63G [00:03<00:05, 202MB/s]
model.safetensors: 37%|███▋ | 608M/1.63G [00:03<00:05, 202MB/s]
model.safetensors: 39%|███▊ | 629M/1.63G [00:03<00:04, 203MB/s]
model.safetensors: 41%|████ | 661M/1.63G [00:03<00:04, 206MB/s]
model.safetensors: 42%|████▏ | 682M/1.63G [00:03<00:04, 205MB/s]
model.safetensors: 43%|████▎ | 703M/1.63G [00:03<00:04, 203MB/s]
model.safetensors: 44%|████▍ | 724M/1.63G [00:03<00:05, 178MB/s]
model.safetensors: 46%|████▌ | 744M/1.63G [00:04<00:04, 186MB/s]
model.safetensors: 48%|████▊ | 776M/1.63G [00:04<00:04, 193MB/s]
model.safetensors: 49%|████▉ | 797M/1.63G [00:04<00:04, 195MB/s]
model.safetensors: 50%|█████ | 818M/1.63G [00:04<00:04, 198MB/s]
model.safetensors: 52%|█████▏ | 849M/1.63G [00:04<00:03, 203MB/s]
model.safetensors: 54%|█████▍ | 881M/1.63G [00:04<00:03, 201MB/s]
model.safetensors: 55%|█████▌ | 902M/1.63G [00:04<00:03, 200MB/s]
model.safetensors: 57%|█████▋ | 923M/1.63G [00:04<00:03, 199MB/s]
model.safetensors: 58%|█████▊ | 944M/1.63G [00:05<00:03, 202MB/s]
model.safetensors: 60%|█████▉ | 975M/1.63G [00:05<00:03, 204MB/s]
model.safetensors: 61%|██████ | 996M/1.63G [00:05<00:03, 204MB/s]
model.safetensors: 62%|██████▏ | 1.02G/1.63G [00:05<00:03, 200MB/s]
model.safetensors: 64%|██████▎ | 1.04G/1.63G [00:05<00:02, 200MB/s]
model.safetensors: 66%|██████▌ | 1.07G/1.63G [00:05<00:02, 205MB/s]
model.safetensors: 67%|██████▋ | 1.09G/1.63G [00:05<00:02, 191MB/s]
model.safetensors: 69%|██████▉ | 1.12G/1.63G [00:05<00:02, 199MB/s]
model.safetensors: 70%|███████ | 1.14G/1.63G [00:06<00:02, 200MB/s]
model.safetensors: 71%|███████▏ | 1.16G/1.63G [00:06<00:02, 201MB/s]
model.safetensors: 73%|███████▎ | 1.18G/1.63G [00:06<00:02, 204MB/s]
model.safetensors: 75%|███████▍ | 1.22G/1.63G [00:06<00:01, 207MB/s]
model.safetensors: 77%|███████▋ | 1.25G/1.63G [00:06<00:01, 209MB/s]
model.safetensors: 78%|███████▊ | 1.27G/1.63G [00:06<00:01, 182MB/s]
model.safetensors: 79%|███████▉ | 1.29G/1.63G [00:06<00:01, 185MB/s]
model.safetensors: 80%|████████ | 1.31G/1.63G [00:06<00:01, 172MB/s]
model.safetensors: 82%|████████▏ | 1.33G/1.63G [00:07<00:01, 176MB/s]
model.safetensors: 83%|████████▎ | 1.35G/1.63G [00:07<00:01, 183MB/s]
model.safetensors: 84%|████████▍ | 1.37G/1.63G [00:07<00:01, 189MB/s]
model.safetensors: 86%|████████▌ | 1.41G/1.63G [00:07<00:01, 198MB/s]
model.safetensors: 88%|████████▊ | 1.44G/1.63G [00:07<00:01, 192MB/s]
model.safetensors: 90%|█████████ | 1.47G/1.63G [00:07<00:00, 197MB/s]
model.safetensors: 91%|█████████▏| 1.49G/1.63G [00:07<00:00, 199MB/s]
model.safetensors: 93%|█████████▎| 1.51G/1.63G [00:07<00:00, 189MB/s]
model.safetensors: 94%|█████████▍| 1.53G/1.63G [00:08<00:00, 189MB/s]
model.safetensors: 95%|█████████▌| 1.55G/1.63G [00:08<00:00, 193MB/s]
model.safetensors: 97%|█████████▋| 1.57G/1.63G [00:08<00:00, 178MB/s]
model.safetensors: 98%|█████████▊| 1.59G/1.63G [00:08<00:00, 185MB/s]
model.safetensors: 99%|█████████▉| 1.61G/1.63G [00:08<00:00, 170MB/s]
model.safetensors: 100%|██████████| 1.63G/1.63G [00:08<00:00, 186MB/s]
tokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]
tokenizer_config.json: 100%|██████████| 26.0/26.0 [00:00<00:00, 78.8kB/s]
vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]
vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 9.29MB/s]
merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]
merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 61.4MB/s]
tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.29MB/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.17MB/s]