Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
jagilley /controlnet-normal:cc8066f6
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jagilley/controlnet-normal using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jagilley/controlnet-normal:cc8066f617b6c99fdb134bc1195c5291cf2610875da4985a39de50ee1f46d81c",
{
input: {
eta: 0,
image: "https://replicate.delivery/pbxt/IKJDOSvDE4LwU5xGg9oRIW389oViZ5JCaxTrlAdAg5Ab8x8p/toy.png",
scale: 9,
prompt: "a cuddly teddy bear",
a_prompt: "best quality, extremely detailed",
n_prompt: "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
ddim_steps: 20,
num_samples: "1",
bg_threshold: 0,
image_resolution: "512",
detect_resolution: 512
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jagilley/controlnet-normal using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jagilley/controlnet-normal:cc8066f617b6c99fdb134bc1195c5291cf2610875da4985a39de50ee1f46d81c",
input={
"eta": 0,
"image": "https://replicate.delivery/pbxt/IKJDOSvDE4LwU5xGg9oRIW389oViZ5JCaxTrlAdAg5Ab8x8p/toy.png",
"scale": 9,
"prompt": "a cuddly teddy bear",
"a_prompt": "best quality, extremely detailed",
"n_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"ddim_steps": 20,
"num_samples": "1",
"bg_threshold": 0,
"image_resolution": "512",
"detect_resolution": 512
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jagilley/controlnet-normal using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cc8066f617b6c99fdb134bc1195c5291cf2610875da4985a39de50ee1f46d81c",
"input": {
"eta": 0,
"image": "https://replicate.delivery/pbxt/IKJDOSvDE4LwU5xGg9oRIW389oViZ5JCaxTrlAdAg5Ab8x8p/toy.png",
"scale": 9,
"prompt": "a cuddly teddy bear",
"a_prompt": "best quality, extremely detailed",
"n_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"ddim_steps": 20,
"num_samples": "1",
"bg_threshold": 0,
"image_resolution": "512",
"detect_resolution": 512
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-02-16T23:20:33.056465Z",
"created_at": "2023-02-16T23:17:44.546582Z",
"data_removed": false,
"error": null,
"id": "bzd7ccmmt5f6tgzbn5fvp6qsxi",
"input": {
"image": "https://replicate.delivery/pbxt/IKJDOSvDE4LwU5xGg9oRIW389oViZ5JCaxTrlAdAg5Ab8x8p/toy.png",
"scale": 9,
"prompt": "a cuddly teddy bear",
"a_prompt": "best quality, extremely detailed",
"n_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"ddim_steps": 20,
"num_samples": "1",
"image_resolution": "512",
"detect_resolution": 512
},
"logs": "Global seed set to 715078\nData shape for DDIM sampling is (1, 4, 64, 64), eta 0.0\nRunning DDIM Sampling with 20 timesteps\nDDIM Sampler: 0%| | 0/20 [00:00<?, ?it/s]\nDDIM Sampler: 5%|▌ | 1/20 [00:00<00:18, 1.05it/s]\nDDIM Sampler: 10%|█ | 2/20 [00:01<00:15, 1.16it/s]\nDDIM Sampler: 15%|█▌ | 3/20 [00:02<00:14, 1.21it/s]\nDDIM Sampler: 20%|██ | 4/20 [00:03<00:13, 1.22it/s]\nDDIM Sampler: 25%|██▌ | 5/20 [00:04<00:12, 1.24it/s]\nDDIM Sampler: 30%|███ | 6/20 [00:04<00:11, 1.24it/s]\nDDIM Sampler: 35%|███▌ | 7/20 [00:05<00:10, 1.24it/s]\nDDIM Sampler: 40%|████ | 8/20 [00:06<00:09, 1.24it/s]\nDDIM Sampler: 45%|████▌ | 9/20 [00:07<00:08, 1.24it/s]\nDDIM Sampler: 50%|█████ | 10/20 [00:08<00:08, 1.24it/s]\nDDIM Sampler: 55%|█████▌ | 11/20 [00:08<00:07, 1.23it/s]\nDDIM Sampler: 60%|██████ | 12/20 [00:09<00:06, 1.23it/s]\nDDIM Sampler: 65%|██████▌ | 13/20 [00:10<00:05, 1.23it/s]\nDDIM Sampler: 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]\nDDIM Sampler: 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]\nDDIM Sampler: 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]\nDDIM Sampler: 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]\nDDIM Sampler: 90%|█████████ | 18/20 [00:14<00:01, 1.21it/s]\nDDIM Sampler: 95%|█████████▌| 19/20 [00:15<00:00, 1.21it/s]\nDDIM Sampler: 100%|██████████| 20/20 [00:16<00:00, 1.20it/s]\nDDIM Sampler: 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]",
"metrics": {
"predict_time": 22.479606,
"total_time": 168.509883
},
"output": [
"https://replicate.delivery/pbxt/g4Ar1CnKn0Z2K5HSLUwRAsrHCORPf70SRwXpW9eAe5bBiNeBB/output_0.png",
"https://replicate.delivery/pbxt/t5zcnku5zfVSXiXfU3Ao9iAkfU030dm2oVTJzrWHE4UBiNeBB/output_1.png"
],
"started_at": "2023-02-16T23:20:10.576859Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/bzd7ccmmt5f6tgzbn5fvp6qsxi",
"cancel": "https://api.replicate.com/v1/predictions/bzd7ccmmt5f6tgzbn5fvp6qsxi/cancel"
},
"version": "cc8066f617b6c99fdb134bc1195c5291cf2610875da4985a39de50ee1f46d81c"
}
Global seed set to 715078
Data shape for DDIM sampling is (1, 4, 64, 64), eta 0.0
Running DDIM Sampling with 20 timesteps
DDIM Sampler: 0%| | 0/20 [00:00<?, ?it/s]
DDIM Sampler: 5%|▌ | 1/20 [00:00<00:18, 1.05it/s]
DDIM Sampler: 10%|█ | 2/20 [00:01<00:15, 1.16it/s]
DDIM Sampler: 15%|█▌ | 3/20 [00:02<00:14, 1.21it/s]
DDIM Sampler: 20%|██ | 4/20 [00:03<00:13, 1.22it/s]
DDIM Sampler: 25%|██▌ | 5/20 [00:04<00:12, 1.24it/s]
DDIM Sampler: 30%|███ | 6/20 [00:04<00:11, 1.24it/s]
DDIM Sampler: 35%|███▌ | 7/20 [00:05<00:10, 1.24it/s]
DDIM Sampler: 40%|████ | 8/20 [00:06<00:09, 1.24it/s]
DDIM Sampler: 45%|████▌ | 9/20 [00:07<00:08, 1.24it/s]
DDIM Sampler: 50%|█████ | 10/20 [00:08<00:08, 1.24it/s]
DDIM Sampler: 55%|█████▌ | 11/20 [00:08<00:07, 1.23it/s]
DDIM Sampler: 60%|██████ | 12/20 [00:09<00:06, 1.23it/s]
DDIM Sampler: 65%|██████▌ | 13/20 [00:10<00:05, 1.23it/s]
DDIM Sampler: 70%|███████ | 14/20 [00:11<00:04, 1.22it/s]
DDIM Sampler: 75%|███████▌ | 15/20 [00:12<00:04, 1.22it/s]
DDIM Sampler: 80%|████████ | 16/20 [00:13<00:03, 1.22it/s]
DDIM Sampler: 85%|████████▌ | 17/20 [00:13<00:02, 1.22it/s]
DDIM Sampler: 90%|█████████ | 18/20 [00:14<00:01, 1.21it/s]
DDIM Sampler: 95%|█████████▌| 19/20 [00:15<00:00, 1.21it/s]
DDIM Sampler: 100%|██████████| 20/20 [00:16<00:00, 1.20it/s]
DDIM Sampler: 100%|██████████| 20/20 [00:16<00:00, 1.22it/s]