Readme
This Flux.1 LoRA was trained on and inspired by this blog post which has a bunch of photos of soviet-era controlrooms: https://designyoutrust.com/2018/01/vintage-beauty-soviet-control-rooms/
Flux.1 fine-tune on soviet-era controlrooms
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jakedahn/flux-soviet-controlrooms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jakedahn/flux-soviet-controlrooms:10371959bab24ed449af0d5a03f36a4090fdd8468609ca1825824eb040988418",
{
input: {
model: "dev",
prompt: "a pink hello kitty SVCTR controlroom",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "16:9",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 0.8,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jakedahn/flux-soviet-controlrooms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jakedahn/flux-soviet-controlrooms:10371959bab24ed449af0d5a03f36a4090fdd8468609ca1825824eb040988418",
input={
"model": "dev",
"prompt": "a pink hello kitty SVCTR controlroom",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "16:9",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jakedahn/flux-soviet-controlrooms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "10371959bab24ed449af0d5a03f36a4090fdd8468609ca1825824eb040988418",
"input": {
"model": "dev",
"prompt": "a pink hello kitty SVCTR controlroom",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "16:9",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/jakedahn/flux-soviet-controlrooms@sha256:10371959bab24ed449af0d5a03f36a4090fdd8468609ca1825824eb040988418 \
-i 'model="dev"' \
-i 'prompt="a pink hello kitty SVCTR controlroom"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="16:9"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=0.8' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/jakedahn/flux-soviet-controlrooms@sha256:10371959bab24ed449af0d5a03f36a4090fdd8468609ca1825824eb040988418
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "a pink hello kitty SVCTR controlroom", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "16:9", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-25T20:23:31.131504Z",
"created_at": "2024-08-25T20:22:59.861000Z",
"data_removed": false,
"error": null,
"id": "2edv3veg2nrm20chhcta9cafmw",
"input": {
"model": "dev",
"prompt": "a pink hello kitty SVCTR controlroom",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "16:9",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
},
"logs": "Using seed: 21029\nPrompt: a pink hello kitty SVCTR controlroom\ntxt2img mode\nUsing dev model\nfree=9858535002112\nDownloading weights\n2024-08-25T20:23:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0dqq0e9y/weights url=https://replicate.delivery/yhqm/3S2qu3TtEqrNEllNalsrYkQvlUH3GtceIJLpO4aIBYuTGDrJA/trained_model.tar\n2024-08-25T20:23:13Z | INFO | [ Complete ] dest=/tmp/tmp0dqq0e9y/weights size=\"172 MB\" total_elapsed=3.528s url=https://replicate.delivery/yhqm/3S2qu3TtEqrNEllNalsrYkQvlUH3GtceIJLpO4aIBYuTGDrJA/trained_model.tar\nDownloaded weights in 3.56s\nLoaded LoRAs in 12.83s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.71it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.27it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.98it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.87it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.80it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.77it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.74it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.73it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.72it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.71it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.71it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.71it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.70it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.70it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.70it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.70it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.70it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.70it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.70it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.70it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.70it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.70it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.70it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.70it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.70it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.70it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.70it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.70it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.73it/s]",
"metrics": {
"predict_time": 20.913431923,
"total_time": 31.270504
},
"output": [
"https://replicate.delivery/yhqm/DQRY169u1P7qNZNBrFFHKlDsi4A408X5bdBwAho2jVlwEl1E/out-0.webp"
],
"started_at": "2024-08-25T20:23:10.218072Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/2edv3veg2nrm20chhcta9cafmw",
"cancel": "https://api.replicate.com/v1/predictions/2edv3veg2nrm20chhcta9cafmw/cancel"
},
"version": "10371959bab24ed449af0d5a03f36a4090fdd8468609ca1825824eb040988418"
}
Using seed: 21029
Prompt: a pink hello kitty SVCTR controlroom
txt2img mode
Using dev model
free=9858535002112
Downloading weights
2024-08-25T20:23:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0dqq0e9y/weights url=https://replicate.delivery/yhqm/3S2qu3TtEqrNEllNalsrYkQvlUH3GtceIJLpO4aIBYuTGDrJA/trained_model.tar
2024-08-25T20:23:13Z | INFO | [ Complete ] dest=/tmp/tmp0dqq0e9y/weights size="172 MB" total_elapsed=3.528s url=https://replicate.delivery/yhqm/3S2qu3TtEqrNEllNalsrYkQvlUH3GtceIJLpO4aIBYuTGDrJA/trained_model.tar
Downloaded weights in 3.56s
Loaded LoRAs in 12.83s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.71it/s]
7%|▋ | 2/28 [00:00<00:06, 4.27it/s]
11%|█ | 3/28 [00:00<00:06, 3.98it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.87it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.80it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.77it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.74it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.73it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.72it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.71it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.71it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.71it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.70it/s]
50%|█████ | 14/28 [00:03<00:03, 3.70it/s]
54%|█████▎ | 15/28 [00:03<00:03, 3.70it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.70it/s]
61%|██████ | 17/28 [00:04<00:02, 3.70it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.70it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.70it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.70it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.70it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.70it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.70it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.70it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.70it/s]
93%|█████████▎| 26/28 [00:06<00:00, 3.70it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.70it/s]
100%|██████████| 28/28 [00:07<00:00, 3.70it/s]
100%|██████████| 28/28 [00:07<00:00, 3.73it/s]
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This Flux.1 LoRA was trained on and inspired by this blog post which has a bunch of photos of soviet-era controlrooms: https://designyoutrust.com/2018/01/vintage-beauty-soviet-control-rooms/
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 21029
Prompt: a pink hello kitty SVCTR controlroom
txt2img mode
Using dev model
free=9858535002112
Downloading weights
2024-08-25T20:23:10Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp0dqq0e9y/weights url=https://replicate.delivery/yhqm/3S2qu3TtEqrNEllNalsrYkQvlUH3GtceIJLpO4aIBYuTGDrJA/trained_model.tar
2024-08-25T20:23:13Z | INFO | [ Complete ] dest=/tmp/tmp0dqq0e9y/weights size="172 MB" total_elapsed=3.528s url=https://replicate.delivery/yhqm/3S2qu3TtEqrNEllNalsrYkQvlUH3GtceIJLpO4aIBYuTGDrJA/trained_model.tar
Downloaded weights in 3.56s
Loaded LoRAs in 12.83s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.71it/s]
7%|▋ | 2/28 [00:00<00:06, 4.27it/s]
11%|█ | 3/28 [00:00<00:06, 3.98it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.87it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.80it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.77it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.74it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.73it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.72it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.71it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.71it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.71it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.70it/s]
50%|█████ | 14/28 [00:03<00:03, 3.70it/s]
54%|█████▎ | 15/28 [00:03<00:03, 3.70it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.70it/s]
61%|██████ | 17/28 [00:04<00:02, 3.70it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.70it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.70it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.70it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.70it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.70it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.70it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.70it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.70it/s]
93%|█████████▎| 26/28 [00:06<00:00, 3.70it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.70it/s]
100%|██████████| 28/28 [00:07<00:00, 3.70it/s]
100%|██████████| 28/28 [00:07<00:00, 3.73it/s]