Readme
Attempt at creating an SDXL finetune on blueprints
Let me know if you like my work! @lucataco93
An SDXL fine-tune based on blueprints
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lucataco/blueprint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lucataco/blueprint:3a5ba8bcee5ecd1d4676f0f099c319f916975db7b5d03cad51fe9ba6630de4e7",
{
input: {
width: 1024,
height: 1024,
prompt: "A TOK blueprint of a museum",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lucataco/blueprint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lucataco/blueprint:3a5ba8bcee5ecd1d4676f0f099c319f916975db7b5d03cad51fe9ba6630de4e7",
input={
"width": 1024,
"height": 1024,
"prompt": "A TOK blueprint of a museum",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lucataco/blueprint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "3a5ba8bcee5ecd1d4676f0f099c319f916975db7b5d03cad51fe9ba6630de4e7",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A TOK blueprint of a museum",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lucataco/blueprint@sha256:3a5ba8bcee5ecd1d4676f0f099c319f916975db7b5d03cad51fe9ba6630de4e7 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="A TOK blueprint of a museum"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lucataco/blueprint@sha256:3a5ba8bcee5ecd1d4676f0f099c319f916975db7b5d03cad51fe9ba6630de4e7
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A TOK blueprint of a museum", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.022. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-09-04T19:19:41.527403Z",
"created_at": "2023-09-04T19:19:25.792198Z",
"data_removed": false,
"error": null,
"id": "7tuxedlbgpsallbbybv5gwv2bi",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A TOK blueprint of a museum",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 1992\nPrompt: A <s0><s1> blueprint of a museum\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.72it/s]\n 4%|▍ | 2/50 [00:00<00:12, 3.70it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.69it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.68it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.68it/s]\n 12%|█▏ | 6/50 [00:01<00:11, 3.68it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.68it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.67it/s]\n 22%|██▏ | 11/50 [00:02<00:10, 3.67it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.67it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]\n 34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.67it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]\n 44%|████▍ | 22/50 [00:05<00:07, 3.66it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.66it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.66it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]\n 66%|██████▌ | 33/50 [00:08<00:04, 3.67it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.67it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.68it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.66it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.68it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.67it/s]",
"metrics": {
"predict_time": 15.725051,
"total_time": 15.735205
},
"output": [
"https://pbxt.replicate.delivery/LDKCSsbuPx50AtWx43O8YcQRQIKWrrQGzLrq97LyGyFzfegRA/out-0.png"
],
"started_at": "2023-09-04T19:19:25.802352Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/7tuxedlbgpsallbbybv5gwv2bi",
"cancel": "https://api.replicate.com/v1/predictions/7tuxedlbgpsallbbybv5gwv2bi/cancel"
},
"version": "3a5ba8bcee5ecd1d4676f0f099c319f916975db7b5d03cad51fe9ba6630de4e7"
}
Using seed: 1992
Prompt: A <s0><s1> blueprint of a museum
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.72it/s]
4%|▍ | 2/50 [00:00<00:12, 3.70it/s]
6%|▌ | 3/50 [00:00<00:12, 3.69it/s]
8%|▊ | 4/50 [00:01<00:12, 3.68it/s]
10%|█ | 5/50 [00:01<00:12, 3.68it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.68it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.68it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.67it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]
30%|███ | 15/50 [00:04<00:09, 3.67it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]
40%|████ | 20/50 [00:05<00:08, 3.67it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.66it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]
50%|█████ | 25/50 [00:06<00:06, 3.66it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]
60%|██████ | 30/50 [00:08<00:05, 3.66it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.67it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.67it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]
80%|████████ | 40/50 [00:10<00:02, 3.66it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]
This model costs approximately $0.022 to run on Replicate, or 45 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 23 seconds. The predict time for this model varies significantly based on the inputs.
Attempt at creating an SDXL finetune on blueprints
Let me know if you like my work! @lucataco93
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 1992
Prompt: A <s0><s1> blueprint of a museum
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.72it/s]
4%|▍ | 2/50 [00:00<00:12, 3.70it/s]
6%|▌ | 3/50 [00:00<00:12, 3.69it/s]
8%|▊ | 4/50 [00:01<00:12, 3.68it/s]
10%|█ | 5/50 [00:01<00:12, 3.68it/s]
12%|█▏ | 6/50 [00:01<00:11, 3.68it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.68it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.67it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.67it/s]
20%|██ | 10/50 [00:02<00:10, 3.67it/s]
22%|██▏ | 11/50 [00:02<00:10, 3.67it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.67it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.67it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.67it/s]
30%|███ | 15/50 [00:04<00:09, 3.67it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.67it/s]
34%|███▍ | 17/50 [00:04<00:08, 3.67it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.67it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.67it/s]
40%|████ | 20/50 [00:05<00:08, 3.67it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.67it/s]
44%|████▍ | 22/50 [00:05<00:07, 3.66it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]
50%|█████ | 25/50 [00:06<00:06, 3.66it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]
60%|██████ | 30/50 [00:08<00:05, 3.66it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.67it/s]
66%|██████▌ | 33/50 [00:08<00:04, 3.67it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.67it/s]
70%|███████ | 35/50 [00:09<00:04, 3.68it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.68it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]
80%|████████ | 40/50 [00:10<00:02, 3.66it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.66it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.67it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s]
88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.68it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
100%|██████████| 50/50 [00:13<00:00, 3.67it/s]