lucataco
/
flux-vlta
A Flux finetune of an AI character named: Violeta
- Public
- 1.7K runs
-
H100
Prediction
lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29aIDfv1mkt04zdrm40chr1k8qzd21gStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- portrait photo of VLTA with purple hair as a charismatic female speaker at conference, captured mid-speech on stage. She is wearing business casual clothes. She's also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text "Replicate"
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 3:4
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "portrait photo of VLTA with purple hair as a charismatic female speaker at conference, captured mid-speech on stage. She is wearing business casual clothes. She's also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text \"Replicate\"", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", { input: { model: "dev", prompt: "portrait photo of VLTA with purple hair as a charismatic female speaker at conference, captured mid-speech on stage. She is wearing business casual clothes. She's also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text \"Replicate\"", lora_scale: 1, num_outputs: 1, aspect_ratio: "3:4", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", input={ "model": "dev", "prompt": "portrait photo of VLTA with purple hair as a charismatic female speaker at conference, captured mid-speech on stage. She is wearing business casual clothes. She's also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text \"Replicate\"", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", "input": { "model": "dev", "prompt": "portrait photo of VLTA with purple hair as a charismatic female speaker at conference, captured mid-speech on stage. She is wearing business casual clothes. She\'s also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text \\"Replicate\\"", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-05T04:16:56.421570Z", "created_at": "2024-09-05T04:16:37.115000Z", "data_removed": false, "error": null, "id": "fv1mkt04zdrm40chr1k8qzd21g", "input": { "model": "dev", "prompt": "portrait photo of VLTA with purple hair as a charismatic female speaker at conference, captured mid-speech on stage. She is wearing business casual clothes. She's also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text \"Replicate\"", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:4", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 61404\nPrompt: portrait photo of VLTA with purple hair as a charismatic female speaker at conference, captured mid-speech on stage. She is wearing business casual clothes. She's also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text \"Replicate\"\ntxt2img mode\nUsing dev model\nfree=8126079803392\nDownloading weights\n2024-09-05T04:16:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpd6uzlb90/weights url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar\n2024-09-05T04:16:40Z | INFO | [ Complete ] dest=/tmp/tmpd6uzlb90/weights size=\"172 MB\" total_elapsed=2.804s url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar\nDownloaded weights in 2.83s\nLoaded LoRAs in 10.79s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.50it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.97it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.74it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.64it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.59it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.56it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.53it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.52it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.52it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.51it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.51it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.51it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.50it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.51it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.50it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.50it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.51it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.50it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.50it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.50it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.50it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.50it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.51it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.51it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.50it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.51it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.50it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.50it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]", "metrics": { "predict_time": 19.296487631, "total_time": 19.30657 }, "output": [ "https://replicate.delivery/yhqm/62togKkGFF6PHF7qrae2a6x7lAwKo2VVoAjSiAB7kDccF3sJA/out-0.webp" ], "started_at": "2024-09-05T04:16:37.125082Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fv1mkt04zdrm40chr1k8qzd21g", "cancel": "https://api.replicate.com/v1/predictions/fv1mkt04zdrm40chr1k8qzd21g/cancel" }, "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a" }
Generated inUsing seed: 61404 Prompt: portrait photo of VLTA with purple hair as a charismatic female speaker at conference, captured mid-speech on stage. She is wearing business casual clothes. She's also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text "Replicate" txt2img mode Using dev model free=8126079803392 Downloading weights 2024-09-05T04:16:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpd6uzlb90/weights url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar 2024-09-05T04:16:40Z | INFO | [ Complete ] dest=/tmp/tmpd6uzlb90/weights size="172 MB" total_elapsed=2.804s url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar Downloaded weights in 2.83s Loaded LoRAs in 10.79s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.50it/s] 7%|▋ | 2/28 [00:00<00:06, 3.97it/s] 11%|█ | 3/28 [00:00<00:06, 3.74it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.64it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.59it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.56it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.53it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.52it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.52it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.51it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.51it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.51it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.50it/s] 50%|█████ | 14/28 [00:03<00:03, 3.51it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.50it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.50it/s] 61%|██████ | 17/28 [00:04<00:03, 3.51it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.50it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.50it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.50it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.50it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.50it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.51it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.51it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.50it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.51it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.50it/s] 100%|██████████| 28/28 [00:07<00:00, 3.50it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s]
Prediction
lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29aIDyxthx7tww5rm40chr1ra4gdq14StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- pnt style Illustration of VLTA with purple hair
- extra_lora
- https://civitai.com/api/download/models/735262
- lora_scale
- 0.8
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "pnt style Illustration of VLTA with purple hair", "extra_lora": "https://civitai.com/api/download/models/735262", "lora_scale": 0.8, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", { input: { model: "dev", prompt: "pnt style Illustration of VLTA with purple hair", extra_lora: "https://civitai.com/api/download/models/735262", lora_scale: 0.8, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", input={ "model": "dev", "prompt": "pnt style Illustration of VLTA with purple hair", "extra_lora": "https://civitai.com/api/download/models/735262", "lora_scale": 0.8, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", "input": { "model": "dev", "prompt": "pnt style Illustration of VLTA with purple hair", "extra_lora": "https://civitai.com/api/download/models/735262", "lora_scale": 0.8, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-05T04:28:04.749454Z", "created_at": "2024-09-05T04:27:54.977000Z", "data_removed": false, "error": null, "id": "yxthx7tww5rm40chr1ra4gdq14", "input": { "model": "dev", "prompt": "pnt style Illustration of VLTA with purple hair", "extra_lora": "https://civitai.com/api/download/models/735262", "lora_scale": 0.8, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 45620\nPrompt: pnt style Illustration of VLTA with purple hair\ntxt2img mode\nUsing dev model\nLoading extra LoRA weights from: https://civitai.com/api/download/models/735262\nWeights already loaded\nLoaded LoRAs in 0.07s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.05it/s]\n 7%|▋ | 2/28 [00:00<00:07, 3.34it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.20it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.14it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.11it/s]\n 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.08it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.07it/s]\n 32%|███▏ | 9/28 [00:02<00:06, 3.07it/s]\n 36%|███▌ | 10/28 [00:03<00:05, 3.06it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.06it/s]\n 43%|████▎ | 12/28 [00:03<00:05, 3.06it/s]\n 46%|████▋ | 13/28 [00:04<00:04, 3.06it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.05it/s]\n 54%|█████▎ | 15/28 [00:04<00:04, 3.05it/s]\n 57%|█████▋ | 16/28 [00:05<00:03, 3.05it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.05it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.05it/s]\n 68%|██████▊ | 19/28 [00:06<00:02, 3.05it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.05it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.05it/s]\n 79%|███████▊ | 22/28 [00:07<00:01, 3.05it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 3.05it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.05it/s]\n 89%|████████▉ | 25/28 [00:08<00:00, 3.05it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 3.05it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.05it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.05it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.07it/s]", "metrics": { "predict_time": 9.76521584, "total_time": 9.772454 }, "output": [ "https://replicate.delivery/yhqm/mK6WJHE4liZFBhbY6eVCnHTxuptMX8SlKJ2Be7YzbfPpqczmA/out-0.webp" ], "started_at": "2024-09-05T04:27:54.984238Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yxthx7tww5rm40chr1ra4gdq14", "cancel": "https://api.replicate.com/v1/predictions/yxthx7tww5rm40chr1ra4gdq14/cancel" }, "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a" }
Generated inUsing seed: 45620 Prompt: pnt style Illustration of VLTA with purple hair txt2img mode Using dev model Loading extra LoRA weights from: https://civitai.com/api/download/models/735262 Weights already loaded Loaded LoRAs in 0.07s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.05it/s] 7%|▋ | 2/28 [00:00<00:07, 3.34it/s] 11%|█ | 3/28 [00:00<00:07, 3.20it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.14it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.11it/s] 21%|██▏ | 6/28 [00:01<00:07, 3.09it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.08it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.07it/s] 32%|███▏ | 9/28 [00:02<00:06, 3.07it/s] 36%|███▌ | 10/28 [00:03<00:05, 3.06it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.06it/s] 43%|████▎ | 12/28 [00:03<00:05, 3.06it/s] 46%|████▋ | 13/28 [00:04<00:04, 3.06it/s] 50%|█████ | 14/28 [00:04<00:04, 3.05it/s] 54%|█████▎ | 15/28 [00:04<00:04, 3.05it/s] 57%|█████▋ | 16/28 [00:05<00:03, 3.05it/s] 61%|██████ | 17/28 [00:05<00:03, 3.05it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.05it/s] 68%|██████▊ | 19/28 [00:06<00:02, 3.05it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.05it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.05it/s] 79%|███████▊ | 22/28 [00:07<00:01, 3.05it/s] 82%|████████▏ | 23/28 [00:07<00:01, 3.05it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.05it/s] 89%|████████▉ | 25/28 [00:08<00:00, 3.05it/s] 93%|█████████▎| 26/28 [00:08<00:00, 3.05it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.05it/s] 100%|██████████| 28/28 [00:09<00:00, 3.05it/s] 100%|██████████| 28/28 [00:09<00:00, 3.07it/s]
Prediction
lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29aID1a9s7gw3edrm20chr1w933cn0cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- style of 80s cyberpunk, portrait photo of VLTA with purple hair
- extra_lora
- fofr/flux-80s-cyberpunk
- lora_scale
- 0.8
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.9
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "style of 80s cyberpunk, portrait photo of VLTA with purple hair", "extra_lora": "fofr/flux-80s-cyberpunk", "lora_scale": 0.8, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.9, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", { input: { model: "dev", prompt: "style of 80s cyberpunk, portrait photo of VLTA with purple hair", extra_lora: "fofr/flux-80s-cyberpunk", lora_scale: 0.8, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.9, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", input={ "model": "dev", "prompt": "style of 80s cyberpunk, portrait photo of VLTA with purple hair", "extra_lora": "fofr/flux-80s-cyberpunk", "lora_scale": 0.8, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.9, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", "input": { "model": "dev", "prompt": "style of 80s cyberpunk, portrait photo of VLTA with purple hair", "extra_lora": "fofr/flux-80s-cyberpunk", "lora_scale": 0.8, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.9, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-09-05T04:37:25.173459Z", "created_at": "2024-09-05T04:36:49.139000Z", "data_removed": false, "error": null, "id": "1a9s7gw3edrm20chr1w933cn0c", "input": { "model": "dev", "prompt": "style of 80s cyberpunk, portrait photo of VLTA with purple hair", "extra_lora": "fofr/flux-80s-cyberpunk", "lora_scale": 0.8, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.9, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 41935\nPrompt: style of 80s cyberpunk, portrait photo of VLTA with purple hair\ntxt2img mode\nUsing dev model\nLoading extra LoRA weights from: fofr/flux-80s-cyberpunk\nLoaded LoRAs in 26.23s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.02it/s]\n 7%|▋ | 2/28 [00:00<00:07, 3.31it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.17it/s]\n 14%|█▍ | 4/28 [00:01<00:07, 3.11it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 3.08it/s]\n 21%|██▏ | 6/28 [00:01<00:07, 3.06it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.05it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 3.04it/s]\n 32%|███▏ | 9/28 [00:02<00:06, 3.03it/s]\n 36%|███▌ | 10/28 [00:03<00:05, 3.03it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.03it/s]\n 43%|████▎ | 12/28 [00:03<00:05, 3.03it/s]\n 46%|████▋ | 13/28 [00:04<00:04, 3.03it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.03it/s]\n 54%|█████▎ | 15/28 [00:04<00:04, 3.03it/s]\n 57%|█████▋ | 16/28 [00:05<00:03, 3.02it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.02it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.02it/s]\n 68%|██████▊ | 19/28 [00:06<00:02, 3.02it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 3.03it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.03it/s]\n 79%|███████▊ | 22/28 [00:07<00:01, 3.03it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 3.03it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.03it/s]\n 89%|████████▉ | 25/28 [00:08<00:00, 3.03it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 3.03it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.03it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.03it/s]\n100%|██████████| 28/28 [00:09<00:00, 3.04it/s]", "metrics": { "predict_time": 36.02496969, "total_time": 36.034459 }, "output": [ "https://replicate.delivery/yhqm/fFd5pZfejRG1LIrFee1c84VfSzHwGshxPf7jqSpjT2H2CP3sJA/out-0.webp" ], "started_at": "2024-09-05T04:36:49.148490Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/1a9s7gw3edrm20chr1w933cn0c", "cancel": "https://api.replicate.com/v1/predictions/1a9s7gw3edrm20chr1w933cn0c/cancel" }, "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a" }
Generated inUsing seed: 41935 Prompt: style of 80s cyberpunk, portrait photo of VLTA with purple hair txt2img mode Using dev model Loading extra LoRA weights from: fofr/flux-80s-cyberpunk Loaded LoRAs in 26.23s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.02it/s] 7%|▋ | 2/28 [00:00<00:07, 3.31it/s] 11%|█ | 3/28 [00:00<00:07, 3.17it/s] 14%|█▍ | 4/28 [00:01<00:07, 3.11it/s] 18%|█▊ | 5/28 [00:01<00:07, 3.08it/s] 21%|██▏ | 6/28 [00:01<00:07, 3.06it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.05it/s] 29%|██▊ | 8/28 [00:02<00:06, 3.04it/s] 32%|███▏ | 9/28 [00:02<00:06, 3.03it/s] 36%|███▌ | 10/28 [00:03<00:05, 3.03it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.03it/s] 43%|████▎ | 12/28 [00:03<00:05, 3.03it/s] 46%|████▋ | 13/28 [00:04<00:04, 3.03it/s] 50%|█████ | 14/28 [00:04<00:04, 3.03it/s] 54%|█████▎ | 15/28 [00:04<00:04, 3.03it/s] 57%|█████▋ | 16/28 [00:05<00:03, 3.02it/s] 61%|██████ | 17/28 [00:05<00:03, 3.02it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.02it/s] 68%|██████▊ | 19/28 [00:06<00:02, 3.02it/s] 71%|███████▏ | 20/28 [00:06<00:02, 3.03it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.03it/s] 79%|███████▊ | 22/28 [00:07<00:01, 3.03it/s] 82%|████████▏ | 23/28 [00:07<00:01, 3.03it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.03it/s] 89%|████████▉ | 25/28 [00:08<00:00, 3.03it/s] 93%|█████████▎| 26/28 [00:08<00:00, 3.03it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.03it/s] 100%|██████████| 28/28 [00:09<00:00, 3.03it/s] 100%|██████████| 28/28 [00:09<00:00, 3.04it/s]
Prediction
lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29aInput
- model
- dev
- prompt
- Vibrant Calavera, a portrait photo of VLTA with purple hair wearing a colorful and intricate sugar skull makeup with intricate patterns and designs on her face
- extra_lora
- https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.7
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "Vibrant Calavera, a portrait photo of VLTA with purple hair wearing a colorful and intricate sugar skull makeup with intricate patterns and designs on her face", "extra_lora": "https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.7, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", { input: { model: "dev", prompt: "Vibrant Calavera, a portrait photo of VLTA with purple hair wearing a colorful and intricate sugar skull makeup with intricate patterns and designs on her face", extra_lora: "https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.7, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", input={ "model": "dev", "prompt": "Vibrant Calavera, a portrait photo of VLTA with purple hair wearing a colorful and intricate sugar skull makeup with intricate patterns and designs on her face", "extra_lora": "https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.7, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", "input": { "model": "dev", "prompt": "Vibrant Calavera, a portrait photo of VLTA with purple hair wearing a colorful and intricate sugar skull makeup with intricate patterns and designs on her face", "extra_lora": "https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.7, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-09T14:54:00.457444Z", "created_at": "2024-10-09T14:53:44.784000Z", "data_removed": false, "error": null, "id": "4cg64vcbt1rm20cje72v097b48", "input": { "model": "dev", "prompt": "Vibrant Calavera, a portrait photo of VLTA with purple hair wearing a colorful and intricate sugar skull makeup with intricate patterns and designs on her face", "extra_lora": "https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.7, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 8269\nPrompt: Vibrant Calavera, a portrait photo of VLTA with purple hair wearing a colorful and intricate sugar skull makeup with intricate patterns and designs on her face\n[!] txt2img mode\nUsing dev model\nLoading extra LoRA weights from: https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor\nfree=6798827577344\nDownloading weights\n2024-10-09T14:53:44Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpwiuzk8cp/weights url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar\n2024-10-09T14:53:46Z | INFO | [ Complete ] dest=/tmp/tmpwiuzk8cp/weights size=\"172 MB\" total_elapsed=1.158s url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar\nDownloaded weights in 1.19s\nfree=6798653812736\nDownloading weights\n2024-10-09T14:53:46Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/02d0c57a5abd56f3 url=https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor\n2024-10-09T14:53:46Z | INFO | [ Redirect ] redirect_url=https://civitai-delivery-worker-prod.5ac0637cfd0766c97916cefa3764fbdf.r2.cloudflarestorage.com/modelVersion/921391/Vibrant_Calavera.safetensors?X-Amz-Expires=86400&response-content-disposition=attachment%3B%20filename%3D%22Vibrant_Calavera.safetensors%22&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=e01358d793ad6966166af8b3064953ad/20241009/us-east-1/s3/aws4_request&X-Amz-Date=20241009T145346Z&X-Amz-SignedHeaders=host&X-Amz-Signature=a6b2431c809fd36a1044bb93fdff62d3335c719fdf83256a76d61a9e8beb1ae5 url=https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor\n2024-10-09T14:53:47Z | INFO | [ Complete ] dest=/src/weights-cache/02d0c57a5abd56f3 size=\"19 MB\" total_elapsed=0.581s url=https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor\nDownloaded weights in 0.60s\nLoaded LoRAs in 3.29s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:11, 2.26it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.48it/s]\n 11%|█ | 3/28 [00:01<00:10, 2.41it/s]\n 14%|█▍ | 4/28 [00:01<00:10, 2.37it/s]\n 18%|█▊ | 5/28 [00:02<00:09, 2.35it/s]\n 21%|██▏ | 6/28 [00:02<00:09, 2.34it/s]\n 25%|██▌ | 7/28 [00:02<00:08, 2.34it/s]\n 29%|██▊ | 8/28 [00:03<00:08, 2.33it/s]\n 32%|███▏ | 9/28 [00:03<00:08, 2.33it/s]\n 36%|███▌ | 10/28 [00:04<00:07, 2.33it/s]\n 39%|███▉ | 11/28 [00:04<00:07, 2.33it/s]\n 43%|████▎ | 12/28 [00:05<00:06, 2.33it/s]\n 46%|████▋ | 13/28 [00:05<00:06, 2.32it/s]\n 50%|█████ | 14/28 [00:05<00:06, 2.32it/s]\n 54%|█████▎ | 15/28 [00:06<00:05, 2.32it/s]\n 57%|█████▋ | 16/28 [00:06<00:05, 2.32it/s]\n 61%|██████ | 17/28 [00:07<00:04, 2.32it/s]\n 64%|██████▍ | 18/28 [00:07<00:04, 2.32it/s]\n 68%|██████▊ | 19/28 [00:08<00:03, 2.32it/s]\n 71%|███████▏ | 20/28 [00:08<00:03, 2.32it/s]\n 75%|███████▌ | 21/28 [00:08<00:03, 2.32it/s]\n 79%|███████▊ | 22/28 [00:09<00:02, 2.32it/s]\n 82%|████████▏ | 23/28 [00:09<00:02, 2.32it/s]\n 86%|████████▌ | 24/28 [00:10<00:01, 2.33it/s]\n 89%|████████▉ | 25/28 [00:10<00:01, 2.33it/s]\n 93%|█████████▎| 26/28 [00:11<00:00, 2.33it/s]\n 96%|█████████▋| 27/28 [00:11<00:00, 2.33it/s]\n100%|██████████| 28/28 [00:12<00:00, 2.32it/s]\n100%|██████████| 28/28 [00:12<00:00, 2.33it/s]", "metrics": { "predict_time": 15.665560475, "total_time": 15.673444 }, "output": [ "https://replicate.delivery/yhqm/sVVamxwaDh7TE5TENpfmLihWTiDRYDoGn8FVLPIc35bEWiyJA/out-0.webp" ], "started_at": "2024-10-09T14:53:44.791883Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4cg64vcbt1rm20cje72v097b48", "cancel": "https://api.replicate.com/v1/predictions/4cg64vcbt1rm20cje72v097b48/cancel" }, "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a" }
Generated inUsing seed: 8269 Prompt: Vibrant Calavera, a portrait photo of VLTA with purple hair wearing a colorful and intricate sugar skull makeup with intricate patterns and designs on her face [!] txt2img mode Using dev model Loading extra LoRA weights from: https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor free=6798827577344 Downloading weights 2024-10-09T14:53:44Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpwiuzk8cp/weights url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar 2024-10-09T14:53:46Z | INFO | [ Complete ] dest=/tmp/tmpwiuzk8cp/weights size="172 MB" total_elapsed=1.158s url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar Downloaded weights in 1.19s free=6798653812736 Downloading weights 2024-10-09T14:53:46Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/02d0c57a5abd56f3 url=https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor 2024-10-09T14:53:46Z | INFO | [ Redirect ] redirect_url=https://civitai-delivery-worker-prod.5ac0637cfd0766c97916cefa3764fbdf.r2.cloudflarestorage.com/modelVersion/921391/Vibrant_Calavera.safetensors?X-Amz-Expires=86400&response-content-disposition=attachment%3B%20filename%3D%22Vibrant_Calavera.safetensors%22&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=e01358d793ad6966166af8b3064953ad/20241009/us-east-1/s3/aws4_request&X-Amz-Date=20241009T145346Z&X-Amz-SignedHeaders=host&X-Amz-Signature=a6b2431c809fd36a1044bb93fdff62d3335c719fdf83256a76d61a9e8beb1ae5 url=https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor 2024-10-09T14:53:47Z | INFO | [ Complete ] dest=/src/weights-cache/02d0c57a5abd56f3 size="19 MB" total_elapsed=0.581s url=https://civitai.com/api/download/models/921391?type=Model&format=SafeTensor Downloaded weights in 0.60s Loaded LoRAs in 3.29s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:11, 2.26it/s] 7%|▋ | 2/28 [00:00<00:10, 2.48it/s] 11%|█ | 3/28 [00:01<00:10, 2.41it/s] 14%|█▍ | 4/28 [00:01<00:10, 2.37it/s] 18%|█▊ | 5/28 [00:02<00:09, 2.35it/s] 21%|██▏ | 6/28 [00:02<00:09, 2.34it/s] 25%|██▌ | 7/28 [00:02<00:08, 2.34it/s] 29%|██▊ | 8/28 [00:03<00:08, 2.33it/s] 32%|███▏ | 9/28 [00:03<00:08, 2.33it/s] 36%|███▌ | 10/28 [00:04<00:07, 2.33it/s] 39%|███▉ | 11/28 [00:04<00:07, 2.33it/s] 43%|████▎ | 12/28 [00:05<00:06, 2.33it/s] 46%|████▋ | 13/28 [00:05<00:06, 2.32it/s] 50%|█████ | 14/28 [00:05<00:06, 2.32it/s] 54%|█████▎ | 15/28 [00:06<00:05, 2.32it/s] 57%|█████▋ | 16/28 [00:06<00:05, 2.32it/s] 61%|██████ | 17/28 [00:07<00:04, 2.32it/s] 64%|██████▍ | 18/28 [00:07<00:04, 2.32it/s] 68%|██████▊ | 19/28 [00:08<00:03, 2.32it/s] 71%|███████▏ | 20/28 [00:08<00:03, 2.32it/s] 75%|███████▌ | 21/28 [00:08<00:03, 2.32it/s] 79%|███████▊ | 22/28 [00:09<00:02, 2.32it/s] 82%|████████▏ | 23/28 [00:09<00:02, 2.32it/s] 86%|████████▌ | 24/28 [00:10<00:01, 2.33it/s] 89%|████████▉ | 25/28 [00:10<00:01, 2.33it/s] 93%|█████████▎| 26/28 [00:11<00:00, 2.33it/s] 96%|█████████▋| 27/28 [00:11<00:00, 2.33it/s] 100%|██████████| 28/28 [00:12<00:00, 2.32it/s] 100%|██████████| 28/28 [00:12<00:00, 2.33it/s]
Prediction
lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29aID6naq7mw1mhrm20cjeb8s9b72e8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- portrait photo of VLTA with purple hair
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "portrait photo of VLTA with purple hair", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", { input: { model: "dev", prompt: "portrait photo of VLTA with purple hair", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-vlta:e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", input={ "model": "dev", "prompt": "portrait photo of VLTA with purple hair", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-vlta using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a", "input": { "model": "dev", "prompt": "portrait photo of VLTA with purple hair", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-09T19:46:38.512107Z", "created_at": "2024-10-09T19:46:25.828000Z", "data_removed": false, "error": null, "id": "6naq7mw1mhrm20cjeb8s9b72e8", "input": { "model": "dev", "prompt": "portrait photo of VLTA with purple hair", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 30002\nPrompt: portrait photo of VLTA with purple hair\n[!] txt2img mode\nUsing dev model\nfree=6941966012416\nDownloading weights\n2024-10-09T19:46:25Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmptj37z586/weights url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar\n2024-10-09T19:46:27Z | INFO | [ Complete ] dest=/tmp/tmptj37z586/weights size=\"172 MB\" total_elapsed=1.853s url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar\nDownloaded weights in 1.88s\nLoaded LoRAs in 2.46s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]", "metrics": { "predict_time": 12.682982625, "total_time": 12.684107 }, "output": [ "https://replicate.delivery/yhqm/6Hvx5t8qs27gOh5G7jcuLdbmdJ3UA1D9efpL4jLyJcGe8RKnA/out-0.webp" ], "started_at": "2024-10-09T19:46:25.829124Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6naq7mw1mhrm20cjeb8s9b72e8", "cancel": "https://api.replicate.com/v1/predictions/6naq7mw1mhrm20cjeb8s9b72e8/cancel" }, "version": "e0aeb648e5d574ad729269b07dfb80765f5b169b19aecc9b416a5ce14b43b29a" }
Generated inUsing seed: 30002 Prompt: portrait photo of VLTA with purple hair [!] txt2img mode Using dev model free=6941966012416 Downloading weights 2024-10-09T19:46:25Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmptj37z586/weights url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar 2024-10-09T19:46:27Z | INFO | [ Complete ] dest=/tmp/tmptj37z586/weights size="172 MB" total_elapsed=1.853s url=https://replicate.delivery/yhqm/M6dMdD4uIHqPGBBlpbdAJp1uge9x1DHe8v63nzEYfiNA4azmA/trained_model.tar Downloaded weights in 1.88s Loaded LoRAs in 2.46s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.90it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.88it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s]
Want to make some of these yourself?
Run this model