lucataco / open-dalle-v1.1
A unique fusion that showcases exceptional prompt adherence and semantic understanding, it seems to be a step above base SDXL and a step closer to DALLE-3 in terms of prompt comprehension
Prediction
lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144IDmjmx7ctbqibebhmaauzkfkx3oqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- negative_prompt
- worst quality, low quality
- prompt_strength
- 0.8
- num_inference_steps
- 60
{ "width": 1024, "height": 1024, "prompt": "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", { input: { width: 1024, height: 1024, prompt: "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, negative_prompt: "worst quality, low quality", prompt_strength: 0.8, num_inference_steps: 60 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", input={ "width": 1024, "height": 1024, "prompt": "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", "input": { "width": 1024, "height": 1024, "prompt": "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-27T06:50:36.581261Z", "created_at": "2023-12-27T06:48:29.534801Z", "data_removed": false, "error": null, "id": "mjmx7ctbqibebhmaauzkfkx3oq", "input": { "width": 1024, "height": 1024, "prompt": "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }, "logs": "Using seed: 2034103420\nPrompt: black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed\ntxt2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:18, 3.14it/s]\n 5%|▌ | 3/60 [00:00<00:11, 5.17it/s]\n 7%|▋ | 4/60 [00:00<00:11, 5.09it/s]\n 8%|▊ | 5/60 [00:01<00:10, 5.03it/s]\n 10%|█ | 6/60 [00:01<00:10, 4.99it/s]\n 12%|█▏ | 7/60 [00:01<00:10, 4.96it/s]\n 13%|█▎ | 8/60 [00:01<00:10, 4.94it/s]\n 15%|█▌ | 9/60 [00:01<00:10, 4.93it/s]\n 17%|█▋ | 10/60 [00:02<00:10, 4.92it/s]\n 18%|█▊ | 11/60 [00:02<00:09, 4.91it/s]\n 20%|██ | 12/60 [00:02<00:09, 4.91it/s]\n 22%|██▏ | 13/60 [00:02<00:09, 4.90it/s]\n 23%|██▎ | 14/60 [00:02<00:09, 4.90it/s]\n 25%|██▌ | 15/60 [00:03<00:09, 4.90it/s]\n 27%|██▋ | 16/60 [00:03<00:08, 4.90it/s]\n 28%|██▊ | 17/60 [00:03<00:08, 4.83it/s]\n 30%|███ | 18/60 [00:03<00:08, 4.83it/s]\n 32%|███▏ | 19/60 [00:03<00:08, 4.85it/s]\n 33%|███▎ | 20/60 [00:04<00:08, 4.88it/s]\n 35%|███▌ | 21/60 [00:04<00:07, 4.90it/s]\n 37%|███▋ | 22/60 [00:04<00:07, 4.90it/s]\n 38%|███▊ | 23/60 [00:04<00:07, 4.91it/s]\n 40%|████ | 24/60 [00:04<00:07, 4.91it/s]\n 42%|████▏ | 25/60 [00:05<00:07, 4.92it/s]\n 43%|████▎ | 26/60 [00:05<00:06, 4.92it/s]\n 45%|████▌ | 27/60 [00:05<00:06, 4.92it/s]\n 47%|████▋ | 28/60 [00:05<00:06, 4.92it/s]\n 48%|████▊ | 29/60 [00:05<00:06, 4.92it/s]\n 50%|█████ | 30/60 [00:06<00:06, 4.92it/s]\n 52%|█████▏ | 31/60 [00:06<00:05, 4.92it/s]\n 53%|█████▎ | 32/60 [00:06<00:05, 4.92it/s]\n 55%|█████▌ | 33/60 [00:06<00:05, 4.92it/s]\n 57%|█████▋ | 34/60 [00:06<00:05, 4.92it/s]\n 58%|█████▊ | 35/60 [00:07<00:05, 4.92it/s]\n 60%|██████ | 36/60 [00:07<00:04, 4.92it/s]\n 62%|██████▏ | 37/60 [00:07<00:04, 4.92it/s]\n 63%|██████▎ | 38/60 [00:07<00:04, 4.92it/s]\n 65%|██████▌ | 39/60 [00:07<00:04, 4.92it/s]\n 67%|██████▋ | 40/60 [00:08<00:04, 4.92it/s]\n 68%|██████▊ | 41/60 [00:08<00:03, 4.91it/s]\n 70%|███████ | 42/60 [00:08<00:03, 4.91it/s]\n 72%|███████▏ | 43/60 [00:08<00:03, 4.91it/s]\n 73%|███████▎ | 44/60 [00:08<00:03, 4.91it/s]\n 75%|███████▌ | 45/60 [00:09<00:03, 4.91it/s]\n 77%|███████▋ | 46/60 [00:09<00:02, 4.91it/s]\n 78%|███████▊ | 47/60 [00:09<00:02, 4.91it/s]\n 80%|████████ | 48/60 [00:09<00:02, 4.91it/s]\n 82%|████████▏ | 49/60 [00:09<00:02, 4.90it/s]\n 83%|████████▎ | 50/60 [00:10<00:02, 4.91it/s]\n 85%|████████▌ | 51/60 [00:10<00:01, 4.91it/s]\n 87%|████████▋ | 52/60 [00:10<00:01, 4.91it/s]\n 88%|████████▊ | 53/60 [00:10<00:01, 4.90it/s]\n 90%|█████████ | 54/60 [00:11<00:01, 4.90it/s]\n 92%|█████████▏| 55/60 [00:11<00:01, 4.90it/s]\n 93%|█████████▎| 56/60 [00:11<00:00, 4.90it/s]\n 95%|█████████▌| 57/60 [00:11<00:00, 4.91it/s]\n 97%|█████████▋| 58/60 [00:11<00:00, 4.90it/s]\n 98%|█████████▊| 59/60 [00:12<00:00, 4.90it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.91it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.90it/s]", "metrics": { "predict_time": 14.356088, "total_time": 127.04646 }, "output": [ "https://replicate.delivery/pbxt/7QcJQaHWyoqbDJxOHReq5UtphruA3RfbLvK1NhSYXVq7sXGSA/out-0.png" ], "started_at": "2023-12-27T06:50:22.225173Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/mjmx7ctbqibebhmaauzkfkx3oq", "cancel": "https://api.replicate.com/v1/predictions/mjmx7ctbqibebhmaauzkfkx3oq/cancel" }, "version": "1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144" }
Generated inUsing seed: 2034103420 Prompt: black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed txt2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:18, 3.14it/s] 5%|▌ | 3/60 [00:00<00:11, 5.17it/s] 7%|▋ | 4/60 [00:00<00:11, 5.09it/s] 8%|▊ | 5/60 [00:01<00:10, 5.03it/s] 10%|█ | 6/60 [00:01<00:10, 4.99it/s] 12%|█▏ | 7/60 [00:01<00:10, 4.96it/s] 13%|█▎ | 8/60 [00:01<00:10, 4.94it/s] 15%|█▌ | 9/60 [00:01<00:10, 4.93it/s] 17%|█▋ | 10/60 [00:02<00:10, 4.92it/s] 18%|█▊ | 11/60 [00:02<00:09, 4.91it/s] 20%|██ | 12/60 [00:02<00:09, 4.91it/s] 22%|██▏ | 13/60 [00:02<00:09, 4.90it/s] 23%|██▎ | 14/60 [00:02<00:09, 4.90it/s] 25%|██▌ | 15/60 [00:03<00:09, 4.90it/s] 27%|██▋ | 16/60 [00:03<00:08, 4.90it/s] 28%|██▊ | 17/60 [00:03<00:08, 4.83it/s] 30%|███ | 18/60 [00:03<00:08, 4.83it/s] 32%|███▏ | 19/60 [00:03<00:08, 4.85it/s] 33%|███▎ | 20/60 [00:04<00:08, 4.88it/s] 35%|███▌ | 21/60 [00:04<00:07, 4.90it/s] 37%|███▋ | 22/60 [00:04<00:07, 4.90it/s] 38%|███▊ | 23/60 [00:04<00:07, 4.91it/s] 40%|████ | 24/60 [00:04<00:07, 4.91it/s] 42%|████▏ | 25/60 [00:05<00:07, 4.92it/s] 43%|████▎ | 26/60 [00:05<00:06, 4.92it/s] 45%|████▌ | 27/60 [00:05<00:06, 4.92it/s] 47%|████▋ | 28/60 [00:05<00:06, 4.92it/s] 48%|████▊ | 29/60 [00:05<00:06, 4.92it/s] 50%|█████ | 30/60 [00:06<00:06, 4.92it/s] 52%|█████▏ | 31/60 [00:06<00:05, 4.92it/s] 53%|█████▎ | 32/60 [00:06<00:05, 4.92it/s] 55%|█████▌ | 33/60 [00:06<00:05, 4.92it/s] 57%|█████▋ | 34/60 [00:06<00:05, 4.92it/s] 58%|█████▊ | 35/60 [00:07<00:05, 4.92it/s] 60%|██████ | 36/60 [00:07<00:04, 4.92it/s] 62%|██████▏ | 37/60 [00:07<00:04, 4.92it/s] 63%|██████▎ | 38/60 [00:07<00:04, 4.92it/s] 65%|██████▌ | 39/60 [00:07<00:04, 4.92it/s] 67%|██████▋ | 40/60 [00:08<00:04, 4.92it/s] 68%|██████▊ | 41/60 [00:08<00:03, 4.91it/s] 70%|███████ | 42/60 [00:08<00:03, 4.91it/s] 72%|███████▏ | 43/60 [00:08<00:03, 4.91it/s] 73%|███████▎ | 44/60 [00:08<00:03, 4.91it/s] 75%|███████▌ | 45/60 [00:09<00:03, 4.91it/s] 77%|███████▋ | 46/60 [00:09<00:02, 4.91it/s] 78%|███████▊ | 47/60 [00:09<00:02, 4.91it/s] 80%|████████ | 48/60 [00:09<00:02, 4.91it/s] 82%|████████▏ | 49/60 [00:09<00:02, 4.90it/s] 83%|████████▎ | 50/60 [00:10<00:02, 4.91it/s] 85%|████████▌ | 51/60 [00:10<00:01, 4.91it/s] 87%|████████▋ | 52/60 [00:10<00:01, 4.91it/s] 88%|████████▊ | 53/60 [00:10<00:01, 4.90it/s] 90%|█████████ | 54/60 [00:11<00:01, 4.90it/s] 92%|█████████▏| 55/60 [00:11<00:01, 4.90it/s] 93%|█████████▎| 56/60 [00:11<00:00, 4.90it/s] 95%|█████████▌| 57/60 [00:11<00:00, 4.91it/s] 97%|█████████▋| 58/60 [00:11<00:00, 4.90it/s] 98%|█████████▊| 59/60 [00:12<00:00, 4.90it/s] 100%|██████████| 60/60 [00:12<00:00, 4.91it/s] 100%|██████████| 60/60 [00:12<00:00, 4.90it/s]
Prediction
lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144IDl3wthrtbebjadj5bod72ylrd7qStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- in the style of artgerm, comic style,3D model, mythical seascape, negative space, space quixotic dreams, temporal hallucination, psychedelic, mystical, intricate details, very bright neon colors, (vantablack background:1.5), pointillism, pareidolia, melting, symbolism, very high contrast, chiaroscuro
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- negative_prompt
- bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image
- prompt_strength
- 0.8
- num_inference_steps
- 60
{ "width": 1024, "height": 1024, "prompt": "in the style of artgerm, comic style,3D model, mythical seascape, negative space, space quixotic dreams, temporal hallucination, psychedelic, mystical, intricate details, very bright neon colors, (vantablack background:1.5), pointillism, pareidolia, melting, symbolism, very high contrast, chiaroscuro", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image", "prompt_strength": 0.8, "num_inference_steps": 60 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", { input: { width: 1024, height: 1024, prompt: "in the style of artgerm, comic style,3D model, mythical seascape, negative space, space quixotic dreams, temporal hallucination, psychedelic, mystical, intricate details, very bright neon colors, (vantablack background:1.5), pointillism, pareidolia, melting, symbolism, very high contrast, chiaroscuro", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, negative_prompt: "bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image", prompt_strength: 0.8, num_inference_steps: 60 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", input={ "width": 1024, "height": 1024, "prompt": "in the style of artgerm, comic style,3D model, mythical seascape, negative space, space quixotic dreams, temporal hallucination, psychedelic, mystical, intricate details, very bright neon colors, (vantablack background:1.5), pointillism, pareidolia, melting, symbolism, very high contrast, chiaroscuro", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "negative_prompt": "bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image", "prompt_strength": 0.8, "num_inference_steps": 60 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", "input": { "width": 1024, "height": 1024, "prompt": "in the style of artgerm, comic style,3D model, mythical seascape, negative space, space quixotic dreams, temporal hallucination, psychedelic, mystical, intricate details, very bright neon colors, (vantablack background:1.5), pointillism, pareidolia, melting, symbolism, very high contrast, chiaroscuro", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image", "prompt_strength": 0.8, "num_inference_steps": 60 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-27T06:54:07.593363Z", "created_at": "2023-12-27T06:53:53.477040Z", "data_removed": false, "error": null, "id": "l3wthrtbebjadj5bod72ylrd7q", "input": { "width": 1024, "height": 1024, "prompt": "in the style of artgerm, comic style,3D model, mythical seascape, negative space, space quixotic dreams, temporal hallucination, psychedelic, mystical, intricate details, very bright neon colors, (vantablack background:1.5), pointillism, pareidolia, melting, symbolism, very high contrast, chiaroscuro", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image", "prompt_strength": 0.8, "num_inference_steps": 60 }, "logs": "Using seed: 1491634838\nPrompt: in the style of artgerm, comic style,3D model, mythical seascape, negative space, space quixotic dreams, temporal hallucination, psychedelic, mystical, intricate details, very bright neon colors, (vantablack background:1.5), pointillism, pareidolia, melting, symbolism, very high contrast, chiaroscuro\ntxt2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:11, 4.94it/s]\n 5%|▌ | 3/60 [00:00<00:09, 6.10it/s]\n 7%|▋ | 4/60 [00:00<00:09, 5.62it/s]\n 8%|▊ | 5/60 [00:00<00:10, 5.36it/s]\n 10%|█ | 6/60 [00:01<00:10, 5.20it/s]\n 12%|█▏ | 7/60 [00:01<00:10, 5.10it/s]\n 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s]\n 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s]\n 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s]\n 18%|█▊ | 11/60 [00:02<00:09, 4.94it/s]\n 20%|██ | 12/60 [00:02<00:09, 4.93it/s]\n 22%|██▏ | 13/60 [00:02<00:09, 4.92it/s]\n 23%|██▎ | 14/60 [00:02<00:09, 4.91it/s]\n 25%|██▌ | 15/60 [00:02<00:09, 4.90it/s]\n 27%|██▋ | 16/60 [00:03<00:08, 4.90it/s]\n 28%|██▊ | 17/60 [00:03<00:08, 4.90it/s]\n 30%|███ | 18/60 [00:03<00:08, 4.90it/s]\n 32%|███▏ | 19/60 [00:03<00:08, 4.89it/s]\n 33%|███▎ | 20/60 [00:03<00:08, 4.89it/s]\n 35%|███▌ | 21/60 [00:04<00:07, 4.88it/s]\n 37%|███▋ | 22/60 [00:04<00:07, 4.89it/s]\n 38%|███▊ | 23/60 [00:04<00:07, 4.89it/s]\n 40%|████ | 24/60 [00:04<00:07, 4.89it/s]\n 42%|████▏ | 25/60 [00:05<00:07, 4.88it/s]\n 43%|████▎ | 26/60 [00:05<00:06, 4.88it/s]\n 45%|████▌ | 27/60 [00:05<00:06, 4.89it/s]\n 47%|████▋ | 28/60 [00:05<00:06, 4.89it/s]\n 48%|████▊ | 29/60 [00:05<00:06, 4.88it/s]\n 50%|█████ | 30/60 [00:06<00:06, 4.88it/s]\n 52%|█████▏ | 31/60 [00:06<00:05, 4.88it/s]\n 53%|█████▎ | 32/60 [00:06<00:05, 4.88it/s]\n 55%|█████▌ | 33/60 [00:06<00:05, 4.88it/s]\n 57%|█████▋ | 34/60 [00:06<00:05, 4.88it/s]\n 58%|█████▊ | 35/60 [00:07<00:05, 4.88it/s]\n 60%|██████ | 36/60 [00:07<00:04, 4.88it/s]\n 62%|██████▏ | 37/60 [00:07<00:04, 4.87it/s]\n 63%|██████▎ | 38/60 [00:07<00:04, 4.87it/s]\n 65%|██████▌ | 39/60 [00:07<00:04, 4.88it/s]\n 67%|██████▋ | 40/60 [00:08<00:04, 4.88it/s]\n 68%|██████▊ | 41/60 [00:08<00:03, 4.88it/s]\n 70%|███████ | 42/60 [00:08<00:03, 4.88it/s]\n 72%|███████▏ | 43/60 [00:08<00:03, 4.88it/s]\n 73%|███████▎ | 44/60 [00:08<00:03, 4.88it/s]\n 75%|███████▌ | 45/60 [00:09<00:03, 4.87it/s]\n 77%|███████▋ | 46/60 [00:09<00:02, 4.87it/s]\n 78%|███████▊ | 47/60 [00:09<00:02, 4.87it/s]\n 80%|████████ | 48/60 [00:09<00:02, 4.87it/s]\n 82%|████████▏ | 49/60 [00:09<00:02, 4.87it/s]\n 83%|████████▎ | 50/60 [00:10<00:02, 4.87it/s]\n 85%|████████▌ | 51/60 [00:10<00:01, 4.87it/s]\n 87%|████████▋ | 52/60 [00:10<00:01, 4.87it/s]\n 88%|████████▊ | 53/60 [00:10<00:01, 4.87it/s]\n 90%|█████████ | 54/60 [00:10<00:01, 4.87it/s]\n 92%|█████████▏| 55/60 [00:11<00:01, 4.86it/s]\n 93%|█████████▎| 56/60 [00:11<00:00, 4.87it/s]\n 95%|█████████▌| 57/60 [00:11<00:00, 4.87it/s]\n 97%|█████████▋| 58/60 [00:11<00:00, 4.87it/s]\n 98%|█████████▊| 59/60 [00:11<00:00, 4.87it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.87it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.92it/s]", "metrics": { "predict_time": 14.081802, "total_time": 14.116323 }, "output": [ "https://replicate.delivery/pbxt/IKGL52sYC35uLNeaMxIffTBweTZLAQJLWJyHYuufwtQyBelhE/out-0.png" ], "started_at": "2023-12-27T06:53:53.511561Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/l3wthrtbebjadj5bod72ylrd7q", "cancel": "https://api.replicate.com/v1/predictions/l3wthrtbebjadj5bod72ylrd7q/cancel" }, "version": "1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144" }
Generated inUsing seed: 1491634838 Prompt: in the style of artgerm, comic style,3D model, mythical seascape, negative space, space quixotic dreams, temporal hallucination, psychedelic, mystical, intricate details, very bright neon colors, (vantablack background:1.5), pointillism, pareidolia, melting, symbolism, very high contrast, chiaroscuro txt2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:11, 4.94it/s] 5%|▌ | 3/60 [00:00<00:09, 6.10it/s] 7%|▋ | 4/60 [00:00<00:09, 5.62it/s] 8%|▊ | 5/60 [00:00<00:10, 5.36it/s] 10%|█ | 6/60 [00:01<00:10, 5.20it/s] 12%|█▏ | 7/60 [00:01<00:10, 5.10it/s] 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s] 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s] 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s] 18%|█▊ | 11/60 [00:02<00:09, 4.94it/s] 20%|██ | 12/60 [00:02<00:09, 4.93it/s] 22%|██▏ | 13/60 [00:02<00:09, 4.92it/s] 23%|██▎ | 14/60 [00:02<00:09, 4.91it/s] 25%|██▌ | 15/60 [00:02<00:09, 4.90it/s] 27%|██▋ | 16/60 [00:03<00:08, 4.90it/s] 28%|██▊ | 17/60 [00:03<00:08, 4.90it/s] 30%|███ | 18/60 [00:03<00:08, 4.90it/s] 32%|███▏ | 19/60 [00:03<00:08, 4.89it/s] 33%|███▎ | 20/60 [00:03<00:08, 4.89it/s] 35%|███▌ | 21/60 [00:04<00:07, 4.88it/s] 37%|███▋ | 22/60 [00:04<00:07, 4.89it/s] 38%|███▊ | 23/60 [00:04<00:07, 4.89it/s] 40%|████ | 24/60 [00:04<00:07, 4.89it/s] 42%|████▏ | 25/60 [00:05<00:07, 4.88it/s] 43%|████▎ | 26/60 [00:05<00:06, 4.88it/s] 45%|████▌ | 27/60 [00:05<00:06, 4.89it/s] 47%|████▋ | 28/60 [00:05<00:06, 4.89it/s] 48%|████▊ | 29/60 [00:05<00:06, 4.88it/s] 50%|█████ | 30/60 [00:06<00:06, 4.88it/s] 52%|█████▏ | 31/60 [00:06<00:05, 4.88it/s] 53%|█████▎ | 32/60 [00:06<00:05, 4.88it/s] 55%|█████▌ | 33/60 [00:06<00:05, 4.88it/s] 57%|█████▋ | 34/60 [00:06<00:05, 4.88it/s] 58%|█████▊ | 35/60 [00:07<00:05, 4.88it/s] 60%|██████ | 36/60 [00:07<00:04, 4.88it/s] 62%|██████▏ | 37/60 [00:07<00:04, 4.87it/s] 63%|██████▎ | 38/60 [00:07<00:04, 4.87it/s] 65%|██████▌ | 39/60 [00:07<00:04, 4.88it/s] 67%|██████▋ | 40/60 [00:08<00:04, 4.88it/s] 68%|██████▊ | 41/60 [00:08<00:03, 4.88it/s] 70%|███████ | 42/60 [00:08<00:03, 4.88it/s] 72%|███████▏ | 43/60 [00:08<00:03, 4.88it/s] 73%|███████▎ | 44/60 [00:08<00:03, 4.88it/s] 75%|███████▌ | 45/60 [00:09<00:03, 4.87it/s] 77%|███████▋ | 46/60 [00:09<00:02, 4.87it/s] 78%|███████▊ | 47/60 [00:09<00:02, 4.87it/s] 80%|████████ | 48/60 [00:09<00:02, 4.87it/s] 82%|████████▏ | 49/60 [00:09<00:02, 4.87it/s] 83%|████████▎ | 50/60 [00:10<00:02, 4.87it/s] 85%|████████▌ | 51/60 [00:10<00:01, 4.87it/s] 87%|████████▋ | 52/60 [00:10<00:01, 4.87it/s] 88%|████████▊ | 53/60 [00:10<00:01, 4.87it/s] 90%|█████████ | 54/60 [00:10<00:01, 4.87it/s] 92%|█████████▏| 55/60 [00:11<00:01, 4.86it/s] 93%|█████████▎| 56/60 [00:11<00:00, 4.87it/s] 95%|█████████▌| 57/60 [00:11<00:00, 4.87it/s] 97%|█████████▋| 58/60 [00:11<00:00, 4.87it/s] 98%|█████████▊| 59/60 [00:11<00:00, 4.87it/s] 100%|██████████| 60/60 [00:12<00:00, 4.87it/s] 100%|██████████| 60/60 [00:12<00:00, 4.92it/s]
Prediction
lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144ID5dgh3d3brw5b2ey6gy2dirihpyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- (impressionistic realism by csybgh), a 50 something male, working in banking, very short dyed dark curly balding hair, Afro-Asiatic ancestry, talks a lot but listens poorly, stuck in the past, wearing a suit, he has a certain charm, bronze skintone, sitting in a bar at night, he is smoking and feeling cool, drunk on plum wine, masterpiece, 8k, hyper detailed, smokey ambiance, perfect hands AND fingers
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- negative_prompt
- worst quality, low quality
- prompt_strength
- 0.8
- num_inference_steps
- 60
{ "width": 1024, "height": 1024, "prompt": "(impressionistic realism by csybgh), a 50 something male, working in banking, very short dyed dark curly balding hair, Afro-Asiatic ancestry, talks a lot but listens poorly, stuck in the past, wearing a suit, he has a certain charm, bronze skintone, sitting in a bar at night, he is smoking and feeling cool, drunk on plum wine, masterpiece, 8k, hyper detailed, smokey ambiance, perfect hands AND fingers", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", { input: { width: 1024, height: 1024, prompt: "(impressionistic realism by csybgh), a 50 something male, working in banking, very short dyed dark curly balding hair, Afro-Asiatic ancestry, talks a lot but listens poorly, stuck in the past, wearing a suit, he has a certain charm, bronze skintone, sitting in a bar at night, he is smoking and feeling cool, drunk on plum wine, masterpiece, 8k, hyper detailed, smokey ambiance, perfect hands AND fingers", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, negative_prompt: "worst quality, low quality", prompt_strength: 0.8, num_inference_steps: 60 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", input={ "width": 1024, "height": 1024, "prompt": "(impressionistic realism by csybgh), a 50 something male, working in banking, very short dyed dark curly balding hair, Afro-Asiatic ancestry, talks a lot but listens poorly, stuck in the past, wearing a suit, he has a certain charm, bronze skintone, sitting in a bar at night, he is smoking and feeling cool, drunk on plum wine, masterpiece, 8k, hyper detailed, smokey ambiance, perfect hands AND fingers", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", "input": { "width": 1024, "height": 1024, "prompt": "(impressionistic realism by csybgh), a 50 something male, working in banking, very short dyed dark curly balding hair, Afro-Asiatic ancestry, talks a lot but listens poorly, stuck in the past, wearing a suit, he has a certain charm, bronze skintone, sitting in a bar at night, he is smoking and feeling cool, drunk on plum wine, masterpiece, 8k, hyper detailed, smokey ambiance, perfect hands AND fingers", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-27T06:52:13.952725Z", "created_at": "2023-12-27T06:51:59.727364Z", "data_removed": false, "error": null, "id": "5dgh3d3brw5b2ey6gy2dirihpy", "input": { "width": 1024, "height": 1024, "prompt": "(impressionistic realism by csybgh), a 50 something male, working in banking, very short dyed dark curly balding hair, Afro-Asiatic ancestry, talks a lot but listens poorly, stuck in the past, wearing a suit, he has a certain charm, bronze skintone, sitting in a bar at night, he is smoking and feeling cool, drunk on plum wine, masterpiece, 8k, hyper detailed, smokey ambiance, perfect hands AND fingers", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }, "logs": "Using seed: 416690887\nPrompt: (impressionistic realism by csybgh), a 50 something male, working in banking, very short dyed dark curly balding hair, Afro-Asiatic ancestry, talks a lot but listens poorly, stuck in the past, wearing a suit, he has a certain charm, bronze skintone, sitting in a bar at night, he is smoking and feeling cool, drunk on plum wine, masterpiece, 8k, hyper detailed, smokey ambiance, perfect hands AND fingers\ntxt2img mode\nToken indices sequence length is longer than the specified maximum sequence length for this model (101 > 77). Running this sequence through the model will result in indexing errors\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['feeling cool, drunk on plum wine, masterpiece, 8 k, hyper detailed, smokey ambiance, perfect hands and fingers']\nToken indices sequence length is longer than the specified maximum sequence length for this model (101 > 77). Running this sequence through the model will result in indexing errors\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['feeling cool, drunk on plum wine, masterpiece, 8 k, hyper detailed, smokey ambiance, perfect hands and fingers']\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:11, 4.94it/s]\n 5%|▌ | 3/60 [00:00<00:09, 6.15it/s]\n 7%|▋ | 4/60 [00:00<00:09, 5.68it/s]\n 8%|▊ | 5/60 [00:00<00:10, 5.41it/s]\n 10%|█ | 6/60 [00:01<00:10, 5.24it/s]\n 12%|█▏ | 7/60 [00:01<00:10, 5.14it/s]\n 13%|█▎ | 8/60 [00:01<00:10, 5.08it/s]\n 15%|█▌ | 9/60 [00:01<00:10, 5.04it/s]\n 17%|█▋ | 10/60 [00:01<00:09, 5.00it/s]\n 18%|█▊ | 11/60 [00:02<00:09, 4.97it/s]\n 20%|██ | 12/60 [00:02<00:09, 4.95it/s]\n 22%|██▏ | 13/60 [00:02<00:09, 4.94it/s]\n 23%|██▎ | 14/60 [00:02<00:09, 4.93it/s]\n 25%|██▌ | 15/60 [00:02<00:09, 4.93it/s]\n 27%|██▋ | 16/60 [00:03<00:08, 4.92it/s]\n 28%|██▊ | 17/60 [00:03<00:08, 4.92it/s]\n 30%|███ | 18/60 [00:03<00:08, 4.92it/s]\n 32%|███▏ | 19/60 [00:03<00:08, 4.91it/s]\n 33%|███▎ | 20/60 [00:03<00:08, 4.91it/s]\n 35%|███▌ | 21/60 [00:04<00:07, 4.92it/s]\n 37%|███▋ | 22/60 [00:04<00:07, 4.92it/s]\n 38%|███▊ | 23/60 [00:04<00:07, 4.92it/s]\n 40%|████ | 24/60 [00:04<00:07, 4.91it/s]\n 42%|████▏ | 25/60 [00:04<00:07, 4.91it/s]\n 43%|████▎ | 26/60 [00:05<00:06, 4.91it/s]\n 45%|████▌ | 27/60 [00:05<00:06, 4.91it/s]\n 47%|████▋ | 28/60 [00:05<00:06, 4.87it/s]\n 48%|████▊ | 29/60 [00:05<00:06, 4.85it/s]\n 50%|█████ | 30/60 [00:05<00:06, 4.87it/s]\n 52%|█████▏ | 31/60 [00:06<00:05, 4.88it/s]\n 53%|█████▎ | 32/60 [00:06<00:05, 4.88it/s]\n 55%|█████▌ | 33/60 [00:06<00:05, 4.89it/s]\n 57%|█████▋ | 34/60 [00:06<00:05, 4.90it/s]\n 58%|█████▊ | 35/60 [00:07<00:05, 4.90it/s]\n 60%|██████ | 36/60 [00:07<00:04, 4.90it/s]\n 62%|██████▏ | 37/60 [00:07<00:04, 4.90it/s]\n 63%|██████▎ | 38/60 [00:07<00:04, 4.90it/s]\n 65%|██████▌ | 39/60 [00:07<00:04, 4.90it/s]\n 67%|██████▋ | 40/60 [00:08<00:04, 4.91it/s]\n 68%|██████▊ | 41/60 [00:08<00:03, 4.90it/s]\n 70%|███████ | 42/60 [00:08<00:03, 4.90it/s]\n 72%|███████▏ | 43/60 [00:08<00:03, 4.90it/s]\n 73%|███████▎ | 44/60 [00:08<00:03, 4.89it/s]\n 75%|███████▌ | 45/60 [00:09<00:03, 4.89it/s]\n 77%|███████▋ | 46/60 [00:09<00:02, 4.90it/s]\n 78%|███████▊ | 47/60 [00:09<00:02, 4.90it/s]\n 80%|████████ | 48/60 [00:09<00:02, 4.89it/s]\n 82%|████████▏ | 49/60 [00:09<00:02, 4.89it/s]\n 83%|████████▎ | 50/60 [00:10<00:02, 4.89it/s]\n 85%|████████▌ | 51/60 [00:10<00:01, 4.90it/s]\n 87%|████████▋ | 52/60 [00:10<00:01, 4.89it/s]\n 88%|████████▊ | 53/60 [00:10<00:01, 4.89it/s]\n 90%|█████████ | 54/60 [00:10<00:01, 4.89it/s]\n 92%|█████████▏| 55/60 [00:11<00:01, 4.89it/s]\n 93%|█████████▎| 56/60 [00:11<00:00, 4.89it/s]\n 95%|█████████▌| 57/60 [00:11<00:00, 4.90it/s]\n 97%|█████████▋| 58/60 [00:11<00:00, 4.89it/s]\n 98%|█████████▊| 59/60 [00:11<00:00, 4.90it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.90it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.95it/s]", "metrics": { "predict_time": 14.19093, "total_time": 14.225361 }, "output": [ "https://replicate.delivery/pbxt/xFUXm1cNnlKsB1Mb5Hzz5yHEVIAdXEO7g3TZAPxfGZrO3LDJA/out-0.png" ], "started_at": "2023-12-27T06:51:59.761795Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5dgh3d3brw5b2ey6gy2dirihpy", "cancel": "https://api.replicate.com/v1/predictions/5dgh3d3brw5b2ey6gy2dirihpy/cancel" }, "version": "1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144" }
Generated inUsing seed: 416690887 Prompt: (impressionistic realism by csybgh), a 50 something male, working in banking, very short dyed dark curly balding hair, Afro-Asiatic ancestry, talks a lot but listens poorly, stuck in the past, wearing a suit, he has a certain charm, bronze skintone, sitting in a bar at night, he is smoking and feeling cool, drunk on plum wine, masterpiece, 8k, hyper detailed, smokey ambiance, perfect hands AND fingers txt2img mode Token indices sequence length is longer than the specified maximum sequence length for this model (101 > 77). Running this sequence through the model will result in indexing errors The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['feeling cool, drunk on plum wine, masterpiece, 8 k, hyper detailed, smokey ambiance, perfect hands and fingers'] Token indices sequence length is longer than the specified maximum sequence length for this model (101 > 77). Running this sequence through the model will result in indexing errors The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['feeling cool, drunk on plum wine, masterpiece, 8 k, hyper detailed, smokey ambiance, perfect hands and fingers'] 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:11, 4.94it/s] 5%|▌ | 3/60 [00:00<00:09, 6.15it/s] 7%|▋ | 4/60 [00:00<00:09, 5.68it/s] 8%|▊ | 5/60 [00:00<00:10, 5.41it/s] 10%|█ | 6/60 [00:01<00:10, 5.24it/s] 12%|█▏ | 7/60 [00:01<00:10, 5.14it/s] 13%|█▎ | 8/60 [00:01<00:10, 5.08it/s] 15%|█▌ | 9/60 [00:01<00:10, 5.04it/s] 17%|█▋ | 10/60 [00:01<00:09, 5.00it/s] 18%|█▊ | 11/60 [00:02<00:09, 4.97it/s] 20%|██ | 12/60 [00:02<00:09, 4.95it/s] 22%|██▏ | 13/60 [00:02<00:09, 4.94it/s] 23%|██▎ | 14/60 [00:02<00:09, 4.93it/s] 25%|██▌ | 15/60 [00:02<00:09, 4.93it/s] 27%|██▋ | 16/60 [00:03<00:08, 4.92it/s] 28%|██▊ | 17/60 [00:03<00:08, 4.92it/s] 30%|███ | 18/60 [00:03<00:08, 4.92it/s] 32%|███▏ | 19/60 [00:03<00:08, 4.91it/s] 33%|███▎ | 20/60 [00:03<00:08, 4.91it/s] 35%|███▌ | 21/60 [00:04<00:07, 4.92it/s] 37%|███▋ | 22/60 [00:04<00:07, 4.92it/s] 38%|███▊ | 23/60 [00:04<00:07, 4.92it/s] 40%|████ | 24/60 [00:04<00:07, 4.91it/s] 42%|████▏ | 25/60 [00:04<00:07, 4.91it/s] 43%|████▎ | 26/60 [00:05<00:06, 4.91it/s] 45%|████▌ | 27/60 [00:05<00:06, 4.91it/s] 47%|████▋ | 28/60 [00:05<00:06, 4.87it/s] 48%|████▊ | 29/60 [00:05<00:06, 4.85it/s] 50%|█████ | 30/60 [00:05<00:06, 4.87it/s] 52%|█████▏ | 31/60 [00:06<00:05, 4.88it/s] 53%|█████▎ | 32/60 [00:06<00:05, 4.88it/s] 55%|█████▌ | 33/60 [00:06<00:05, 4.89it/s] 57%|█████▋ | 34/60 [00:06<00:05, 4.90it/s] 58%|█████▊ | 35/60 [00:07<00:05, 4.90it/s] 60%|██████ | 36/60 [00:07<00:04, 4.90it/s] 62%|██████▏ | 37/60 [00:07<00:04, 4.90it/s] 63%|██████▎ | 38/60 [00:07<00:04, 4.90it/s] 65%|██████▌ | 39/60 [00:07<00:04, 4.90it/s] 67%|██████▋ | 40/60 [00:08<00:04, 4.91it/s] 68%|██████▊ | 41/60 [00:08<00:03, 4.90it/s] 70%|███████ | 42/60 [00:08<00:03, 4.90it/s] 72%|███████▏ | 43/60 [00:08<00:03, 4.90it/s] 73%|███████▎ | 44/60 [00:08<00:03, 4.89it/s] 75%|███████▌ | 45/60 [00:09<00:03, 4.89it/s] 77%|███████▋ | 46/60 [00:09<00:02, 4.90it/s] 78%|███████▊ | 47/60 [00:09<00:02, 4.90it/s] 80%|████████ | 48/60 [00:09<00:02, 4.89it/s] 82%|████████▏ | 49/60 [00:09<00:02, 4.89it/s] 83%|████████▎ | 50/60 [00:10<00:02, 4.89it/s] 85%|████████▌ | 51/60 [00:10<00:01, 4.90it/s] 87%|████████▋ | 52/60 [00:10<00:01, 4.89it/s] 88%|████████▊ | 53/60 [00:10<00:01, 4.89it/s] 90%|█████████ | 54/60 [00:10<00:01, 4.89it/s] 92%|█████████▏| 55/60 [00:11<00:01, 4.89it/s] 93%|█████████▎| 56/60 [00:11<00:00, 4.89it/s] 95%|█████████▌| 57/60 [00:11<00:00, 4.90it/s] 97%|█████████▋| 58/60 [00:11<00:00, 4.89it/s] 98%|█████████▊| 59/60 [00:11<00:00, 4.90it/s] 100%|██████████| 60/60 [00:12<00:00, 4.90it/s] 100%|██████████| 60/60 [00:12<00:00, 4.95it/s]
Prediction
lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144ID7i2lcidb4axeciiyr4wmyqax24StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- John Berkey Style page,ral-oilspill, There is no road ahead,no land, Strangely,the river is still flowing,crossing the void into the mysterious unknown, The end of nothingness,a huge ripple,it is a kind of wave,and it is the law of time that lasts forever in that void, At the end of the infinite void,there is a colorful world,very hazy and mysterious,and it cannot be seen clearly,but it is real, And that's where the river goes
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- negative_prompt
- worst quality, low quality
- prompt_strength
- 0.8
- num_inference_steps
- 60
{ "width": 1024, "height": 1024, "prompt": "John Berkey Style page,ral-oilspill, There is no road ahead,no land, Strangely,the river is still flowing,crossing the void into the mysterious unknown, The end of nothingness,a huge ripple,it is a kind of wave,and it is the law of time that lasts forever in that void, At the end of the infinite void,there is a colorful world,very hazy and mysterious,and it cannot be seen clearly,but it is real, And that's where the river goes", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", { input: { width: 1024, height: 1024, prompt: "John Berkey Style page,ral-oilspill, There is no road ahead,no land, Strangely,the river is still flowing,crossing the void into the mysterious unknown, The end of nothingness,a huge ripple,it is a kind of wave,and it is the law of time that lasts forever in that void, At the end of the infinite void,there is a colorful world,very hazy and mysterious,and it cannot be seen clearly,but it is real, And that's where the river goes", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, negative_prompt: "worst quality, low quality", prompt_strength: 0.8, num_inference_steps: 60 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", input={ "width": 1024, "height": 1024, "prompt": "John Berkey Style page,ral-oilspill, There is no road ahead,no land, Strangely,the river is still flowing,crossing the void into the mysterious unknown, The end of nothingness,a huge ripple,it is a kind of wave,and it is the law of time that lasts forever in that void, At the end of the infinite void,there is a colorful world,very hazy and mysterious,and it cannot be seen clearly,but it is real, And that's where the river goes", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", "input": { "width": 1024, "height": 1024, "prompt": "John Berkey Style page,ral-oilspill, There is no road ahead,no land, Strangely,the river is still flowing,crossing the void into the mysterious unknown, The end of nothingness,a huge ripple,it is a kind of wave,and it is the law of time that lasts forever in that void, At the end of the infinite void,there is a colorful world,very hazy and mysterious,and it cannot be seen clearly,but it is real, And that\'s where the river goes", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-27T06:52:52.515745Z", "created_at": "2023-12-27T06:52:38.218482Z", "data_removed": false, "error": null, "id": "7i2lcidb4axeciiyr4wmyqax24", "input": { "width": 1024, "height": 1024, "prompt": "John Berkey Style page,ral-oilspill, There is no road ahead,no land, Strangely,the river is still flowing,crossing the void into the mysterious unknown, The end of nothingness,a huge ripple,it is a kind of wave,and it is the law of time that lasts forever in that void, At the end of the infinite void,there is a colorful world,very hazy and mysterious,and it cannot be seen clearly,but it is real, And that's where the river goes", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }, "logs": "Using seed: 1508301455\nPrompt: John Berkey Style page,ral-oilspill, There is no road ahead,no land, Strangely,the river is still flowing,crossing the void into the mysterious unknown, The end of nothingness,a huge ripple,it is a kind of wave,and it is the law of time that lasts forever in that void, At the end of the infinite void,there is a colorful world,very hazy and mysterious,and it cannot be seen clearly,but it is real, And that's where the river goes\ntxt2img mode\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: [\"there is a colorful world, very hazy and mysterious, and it cannot be seen clearly, but it is real, and that's where the river goes\"]\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: [\"there is a colorful world, very hazy and mysterious, and it cannot be seen clearly, but it is real, and that's where the river goes\"]\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:11, 4.92it/s]\n 5%|▌ | 3/60 [00:00<00:09, 6.09it/s]\n 7%|▋ | 4/60 [00:00<00:09, 5.62it/s]\n 8%|▊ | 5/60 [00:00<00:10, 5.36it/s]\n 10%|█ | 6/60 [00:01<00:10, 5.20it/s]\n 12%|█▏ | 7/60 [00:01<00:10, 5.10it/s]\n 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s]\n 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s]\n 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s]\n 18%|█▊ | 11/60 [00:02<00:09, 4.94it/s]\n 20%|██ | 12/60 [00:02<00:09, 4.93it/s]\n 22%|██▏ | 13/60 [00:02<00:09, 4.92it/s]\n 23%|██▎ | 14/60 [00:02<00:09, 4.91it/s]\n 25%|██▌ | 15/60 [00:02<00:09, 4.90it/s]\n 27%|██▋ | 16/60 [00:03<00:08, 4.90it/s]\n 28%|██▊ | 17/60 [00:03<00:08, 4.90it/s]\n 30%|███ | 18/60 [00:03<00:08, 4.90it/s]\n 32%|███▏ | 19/60 [00:03<00:08, 4.89it/s]\n 33%|███▎ | 20/60 [00:03<00:08, 4.89it/s]\n 35%|███▌ | 21/60 [00:04<00:07, 4.89it/s]\n 37%|███▋ | 22/60 [00:04<00:07, 4.88it/s]\n 38%|███▊ | 23/60 [00:04<00:07, 4.89it/s]\n 40%|████ | 24/60 [00:04<00:07, 4.89it/s]\n 42%|████▏ | 25/60 [00:05<00:07, 4.89it/s]\n 43%|████▎ | 26/60 [00:05<00:06, 4.88it/s]\n 45%|████▌ | 27/60 [00:05<00:06, 4.88it/s]\n 47%|████▋ | 28/60 [00:05<00:06, 4.88it/s]\n 48%|████▊ | 29/60 [00:05<00:06, 4.88it/s]\n 50%|█████ | 30/60 [00:06<00:06, 4.88it/s]\n 52%|█████▏ | 31/60 [00:06<00:05, 4.88it/s]\n 53%|█████▎ | 32/60 [00:06<00:05, 4.88it/s]\n 55%|█████▌ | 33/60 [00:06<00:05, 4.88it/s]\n 57%|█████▋ | 34/60 [00:06<00:05, 4.88it/s]\n 58%|█████▊ | 35/60 [00:07<00:05, 4.87it/s]\n 60%|██████ | 36/60 [00:07<00:04, 4.88it/s]\n 62%|██████▏ | 37/60 [00:07<00:04, 4.87it/s]\n 63%|██████▎ | 38/60 [00:07<00:04, 4.88it/s]\n 65%|██████▌ | 39/60 [00:07<00:04, 4.88it/s]\n 67%|██████▋ | 40/60 [00:08<00:04, 4.88it/s]\n 68%|██████▊ | 41/60 [00:08<00:03, 4.88it/s]\n 70%|███████ | 42/60 [00:08<00:03, 4.87it/s]\n 72%|███████▏ | 43/60 [00:08<00:03, 4.87it/s]\n 73%|███████▎ | 44/60 [00:08<00:03, 4.87it/s]\n 75%|███████▌ | 45/60 [00:09<00:03, 4.87it/s]\n 77%|███████▋ | 46/60 [00:09<00:02, 4.88it/s]\n 78%|███████▊ | 47/60 [00:09<00:02, 4.87it/s]\n 80%|████████ | 48/60 [00:09<00:02, 4.87it/s]\n 82%|████████▏ | 49/60 [00:09<00:02, 4.87it/s]\n 83%|████████▎ | 50/60 [00:10<00:02, 4.87it/s]\n 85%|████████▌ | 51/60 [00:10<00:01, 4.87it/s]\n 87%|████████▋ | 52/60 [00:10<00:01, 4.86it/s]\n 88%|████████▊ | 53/60 [00:10<00:01, 4.87it/s]\n 90%|█████████ | 54/60 [00:10<00:01, 4.87it/s]\n 92%|█████████▏| 55/60 [00:11<00:01, 4.87it/s]\n 93%|█████████▎| 56/60 [00:11<00:00, 4.87it/s]\n 95%|█████████▌| 57/60 [00:11<00:00, 4.86it/s]\n 97%|█████████▋| 58/60 [00:11<00:00, 4.86it/s]\n 98%|█████████▊| 59/60 [00:11<00:00, 4.86it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.87it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.92it/s]", "metrics": { "predict_time": 14.261237, "total_time": 14.297263 }, "output": [ "https://replicate.delivery/pbxt/sxYlUIIf59zYaSz6kqCwfUBJGusZkXPMQ67f1eD6eNua49yQC/out-0.png" ], "started_at": "2023-12-27T06:52:38.254508Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7i2lcidb4axeciiyr4wmyqax24", "cancel": "https://api.replicate.com/v1/predictions/7i2lcidb4axeciiyr4wmyqax24/cancel" }, "version": "1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144" }
Generated inUsing seed: 1508301455 Prompt: John Berkey Style page,ral-oilspill, There is no road ahead,no land, Strangely,the river is still flowing,crossing the void into the mysterious unknown, The end of nothingness,a huge ripple,it is a kind of wave,and it is the law of time that lasts forever in that void, At the end of the infinite void,there is a colorful world,very hazy and mysterious,and it cannot be seen clearly,but it is real, And that's where the river goes txt2img mode The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ["there is a colorful world, very hazy and mysterious, and it cannot be seen clearly, but it is real, and that's where the river goes"] The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ["there is a colorful world, very hazy and mysterious, and it cannot be seen clearly, but it is real, and that's where the river goes"] 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:11, 4.92it/s] 5%|▌ | 3/60 [00:00<00:09, 6.09it/s] 7%|▋ | 4/60 [00:00<00:09, 5.62it/s] 8%|▊ | 5/60 [00:00<00:10, 5.36it/s] 10%|█ | 6/60 [00:01<00:10, 5.20it/s] 12%|█▏ | 7/60 [00:01<00:10, 5.10it/s] 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s] 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s] 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s] 18%|█▊ | 11/60 [00:02<00:09, 4.94it/s] 20%|██ | 12/60 [00:02<00:09, 4.93it/s] 22%|██▏ | 13/60 [00:02<00:09, 4.92it/s] 23%|██▎ | 14/60 [00:02<00:09, 4.91it/s] 25%|██▌ | 15/60 [00:02<00:09, 4.90it/s] 27%|██▋ | 16/60 [00:03<00:08, 4.90it/s] 28%|██▊ | 17/60 [00:03<00:08, 4.90it/s] 30%|███ | 18/60 [00:03<00:08, 4.90it/s] 32%|███▏ | 19/60 [00:03<00:08, 4.89it/s] 33%|███▎ | 20/60 [00:03<00:08, 4.89it/s] 35%|███▌ | 21/60 [00:04<00:07, 4.89it/s] 37%|███▋ | 22/60 [00:04<00:07, 4.88it/s] 38%|███▊ | 23/60 [00:04<00:07, 4.89it/s] 40%|████ | 24/60 [00:04<00:07, 4.89it/s] 42%|████▏ | 25/60 [00:05<00:07, 4.89it/s] 43%|████▎ | 26/60 [00:05<00:06, 4.88it/s] 45%|████▌ | 27/60 [00:05<00:06, 4.88it/s] 47%|████▋ | 28/60 [00:05<00:06, 4.88it/s] 48%|████▊ | 29/60 [00:05<00:06, 4.88it/s] 50%|█████ | 30/60 [00:06<00:06, 4.88it/s] 52%|█████▏ | 31/60 [00:06<00:05, 4.88it/s] 53%|█████▎ | 32/60 [00:06<00:05, 4.88it/s] 55%|█████▌ | 33/60 [00:06<00:05, 4.88it/s] 57%|█████▋ | 34/60 [00:06<00:05, 4.88it/s] 58%|█████▊ | 35/60 [00:07<00:05, 4.87it/s] 60%|██████ | 36/60 [00:07<00:04, 4.88it/s] 62%|██████▏ | 37/60 [00:07<00:04, 4.87it/s] 63%|██████▎ | 38/60 [00:07<00:04, 4.88it/s] 65%|██████▌ | 39/60 [00:07<00:04, 4.88it/s] 67%|██████▋ | 40/60 [00:08<00:04, 4.88it/s] 68%|██████▊ | 41/60 [00:08<00:03, 4.88it/s] 70%|███████ | 42/60 [00:08<00:03, 4.87it/s] 72%|███████▏ | 43/60 [00:08<00:03, 4.87it/s] 73%|███████▎ | 44/60 [00:08<00:03, 4.87it/s] 75%|███████▌ | 45/60 [00:09<00:03, 4.87it/s] 77%|███████▋ | 46/60 [00:09<00:02, 4.88it/s] 78%|███████▊ | 47/60 [00:09<00:02, 4.87it/s] 80%|████████ | 48/60 [00:09<00:02, 4.87it/s] 82%|████████▏ | 49/60 [00:09<00:02, 4.87it/s] 83%|████████▎ | 50/60 [00:10<00:02, 4.87it/s] 85%|████████▌ | 51/60 [00:10<00:01, 4.87it/s] 87%|████████▋ | 52/60 [00:10<00:01, 4.86it/s] 88%|████████▊ | 53/60 [00:10<00:01, 4.87it/s] 90%|█████████ | 54/60 [00:10<00:01, 4.87it/s] 92%|█████████▏| 55/60 [00:11<00:01, 4.87it/s] 93%|█████████▎| 56/60 [00:11<00:00, 4.87it/s] 95%|█████████▌| 57/60 [00:11<00:00, 4.86it/s] 97%|█████████▋| 58/60 [00:11<00:00, 4.86it/s] 98%|█████████▊| 59/60 [00:11<00:00, 4.86it/s] 100%|██████████| 60/60 [00:12<00:00, 4.87it/s] 100%|██████████| 60/60 [00:12<00:00, 4.92it/s]
Prediction
lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144IDz6cmi4tbwveyoihoc2hxwec7vaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- negative_prompt
- worst quality, low quality
- prompt_strength
- 0.8
- num_inference_steps
- 60
{ "width": 1024, "height": 1024, "prompt": "Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", { input: { width: 1024, height: 1024, prompt: "Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, negative_prompt: "worst quality, low quality", prompt_strength: 0.8, num_inference_steps: 60 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", input={ "width": 1024, "height": 1024, "prompt": "Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", "input": { "width": 1024, "height": 1024, "prompt": "Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d\'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-27T06:53:14.768154Z", "created_at": "2023-12-27T06:53:00.521308Z", "data_removed": false, "error": null, "id": "z6cmi4tbwveyoihoc2hxwec7va", "input": { "width": 1024, "height": 1024, "prompt": "Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }, "logs": "Using seed: 1376679043\nPrompt: Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd\ntxt2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:11, 4.94it/s]\n 5%|▌ | 3/60 [00:00<00:09, 6.09it/s]\n 7%|▋ | 4/60 [00:00<00:09, 5.62it/s]\n 8%|▊ | 5/60 [00:00<00:10, 5.35it/s]\n 10%|█ | 6/60 [00:01<00:10, 5.19it/s]\n 12%|█▏ | 7/60 [00:01<00:10, 5.10it/s]\n 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s]\n 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s]\n 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s]\n 18%|█▊ | 11/60 [00:02<00:09, 4.94it/s]\n 20%|██ | 12/60 [00:02<00:09, 4.92it/s]\n 22%|██▏ | 13/60 [00:02<00:09, 4.92it/s]\n 23%|██▎ | 14/60 [00:02<00:09, 4.91it/s]\n 25%|██▌ | 15/60 [00:02<00:09, 4.90it/s]\n 27%|██▋ | 16/60 [00:03<00:08, 4.89it/s]\n 28%|██▊ | 17/60 [00:03<00:08, 4.89it/s]\n 30%|███ | 18/60 [00:03<00:08, 4.88it/s]\n 32%|███▏ | 19/60 [00:03<00:08, 4.88it/s]\n 33%|███▎ | 20/60 [00:03<00:08, 4.88it/s]\n 35%|███▌ | 21/60 [00:04<00:07, 4.88it/s]\n 37%|███▋ | 22/60 [00:04<00:07, 4.88it/s]\n 38%|███▊ | 23/60 [00:04<00:07, 4.88it/s]\n 40%|████ | 24/60 [00:04<00:07, 4.88it/s]\n 42%|████▏ | 25/60 [00:05<00:07, 4.88it/s]\n 43%|████▎ | 26/60 [00:05<00:06, 4.88it/s]\n 45%|████▌ | 27/60 [00:05<00:06, 4.87it/s]\n 47%|████▋ | 28/60 [00:05<00:06, 4.88it/s]\n 48%|████▊ | 29/60 [00:05<00:06, 4.88it/s]\n 50%|█████ | 30/60 [00:06<00:06, 4.87it/s]\n 52%|█████▏ | 31/60 [00:06<00:05, 4.87it/s]\n 53%|█████▎ | 32/60 [00:06<00:05, 4.87it/s]\n 55%|█████▌ | 33/60 [00:06<00:05, 4.87it/s]\n 57%|█████▋ | 34/60 [00:06<00:05, 4.87it/s]\n 58%|█████▊ | 35/60 [00:07<00:05, 4.88it/s]\n 60%|██████ | 36/60 [00:07<00:04, 4.87it/s]\n 62%|██████▏ | 37/60 [00:07<00:04, 4.87it/s]\n 63%|██████▎ | 38/60 [00:07<00:04, 4.87it/s]\n 65%|██████▌ | 39/60 [00:07<00:04, 4.87it/s]\n 67%|██████▋ | 40/60 [00:08<00:04, 4.87it/s]\n 68%|██████▊ | 41/60 [00:08<00:03, 4.87it/s]\n 70%|███████ | 42/60 [00:08<00:03, 4.86it/s]\n 72%|███████▏ | 43/60 [00:08<00:03, 4.87it/s]\n 73%|███████▎ | 44/60 [00:08<00:03, 4.87it/s]\n 75%|███████▌ | 45/60 [00:09<00:03, 4.87it/s]\n 77%|███████▋ | 46/60 [00:09<00:02, 4.87it/s]\n 78%|███████▊ | 47/60 [00:09<00:02, 4.87it/s]\n 80%|████████ | 48/60 [00:09<00:02, 4.87it/s]\n 82%|████████▏ | 49/60 [00:09<00:02, 4.87it/s]\n 83%|████████▎ | 50/60 [00:10<00:02, 4.87it/s]\n 85%|████████▌ | 51/60 [00:10<00:01, 4.87it/s]\n 87%|████████▋ | 52/60 [00:10<00:01, 4.87it/s]\n 88%|████████▊ | 53/60 [00:10<00:01, 4.86it/s]\n 90%|█████████ | 54/60 [00:10<00:01, 4.86it/s]\n 92%|█████████▏| 55/60 [00:11<00:01, 4.86it/s]\n 93%|█████████▎| 56/60 [00:11<00:00, 4.86it/s]\n 95%|█████████▌| 57/60 [00:11<00:00, 4.87it/s]\n 97%|█████████▋| 58/60 [00:11<00:00, 4.86it/s]\n 98%|█████████▊| 59/60 [00:11<00:00, 4.86it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.86it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.92it/s]", "metrics": { "predict_time": 14.209639, "total_time": 14.246846 }, "output": [ "https://replicate.delivery/pbxt/R80lnepdvTyEAqZFGTeOGyQfRE9WLNfDGFwT5dfzp5lM79yQC/out-0.png" ], "started_at": "2023-12-27T06:53:00.558515Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/z6cmi4tbwveyoihoc2hxwec7va", "cancel": "https://api.replicate.com/v1/predictions/z6cmi4tbwveyoihoc2hxwec7va/cancel" }, "version": "1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144" }
Generated inUsing seed: 1376679043 Prompt: Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd txt2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:11, 4.94it/s] 5%|▌ | 3/60 [00:00<00:09, 6.09it/s] 7%|▋ | 4/60 [00:00<00:09, 5.62it/s] 8%|▊ | 5/60 [00:00<00:10, 5.35it/s] 10%|█ | 6/60 [00:01<00:10, 5.19it/s] 12%|█▏ | 7/60 [00:01<00:10, 5.10it/s] 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s] 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s] 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s] 18%|█▊ | 11/60 [00:02<00:09, 4.94it/s] 20%|██ | 12/60 [00:02<00:09, 4.92it/s] 22%|██▏ | 13/60 [00:02<00:09, 4.92it/s] 23%|██▎ | 14/60 [00:02<00:09, 4.91it/s] 25%|██▌ | 15/60 [00:02<00:09, 4.90it/s] 27%|██▋ | 16/60 [00:03<00:08, 4.89it/s] 28%|██▊ | 17/60 [00:03<00:08, 4.89it/s] 30%|███ | 18/60 [00:03<00:08, 4.88it/s] 32%|███▏ | 19/60 [00:03<00:08, 4.88it/s] 33%|███▎ | 20/60 [00:03<00:08, 4.88it/s] 35%|███▌ | 21/60 [00:04<00:07, 4.88it/s] 37%|███▋ | 22/60 [00:04<00:07, 4.88it/s] 38%|███▊ | 23/60 [00:04<00:07, 4.88it/s] 40%|████ | 24/60 [00:04<00:07, 4.88it/s] 42%|████▏ | 25/60 [00:05<00:07, 4.88it/s] 43%|████▎ | 26/60 [00:05<00:06, 4.88it/s] 45%|████▌ | 27/60 [00:05<00:06, 4.87it/s] 47%|████▋ | 28/60 [00:05<00:06, 4.88it/s] 48%|████▊ | 29/60 [00:05<00:06, 4.88it/s] 50%|█████ | 30/60 [00:06<00:06, 4.87it/s] 52%|█████▏ | 31/60 [00:06<00:05, 4.87it/s] 53%|█████▎ | 32/60 [00:06<00:05, 4.87it/s] 55%|█████▌ | 33/60 [00:06<00:05, 4.87it/s] 57%|█████▋ | 34/60 [00:06<00:05, 4.87it/s] 58%|█████▊ | 35/60 [00:07<00:05, 4.88it/s] 60%|██████ | 36/60 [00:07<00:04, 4.87it/s] 62%|██████▏ | 37/60 [00:07<00:04, 4.87it/s] 63%|██████▎ | 38/60 [00:07<00:04, 4.87it/s] 65%|██████▌ | 39/60 [00:07<00:04, 4.87it/s] 67%|██████▋ | 40/60 [00:08<00:04, 4.87it/s] 68%|██████▊ | 41/60 [00:08<00:03, 4.87it/s] 70%|███████ | 42/60 [00:08<00:03, 4.86it/s] 72%|███████▏ | 43/60 [00:08<00:03, 4.87it/s] 73%|███████▎ | 44/60 [00:08<00:03, 4.87it/s] 75%|███████▌ | 45/60 [00:09<00:03, 4.87it/s] 77%|███████▋ | 46/60 [00:09<00:02, 4.87it/s] 78%|███████▊ | 47/60 [00:09<00:02, 4.87it/s] 80%|████████ | 48/60 [00:09<00:02, 4.87it/s] 82%|████████▏ | 49/60 [00:09<00:02, 4.87it/s] 83%|████████▎ | 50/60 [00:10<00:02, 4.87it/s] 85%|████████▌ | 51/60 [00:10<00:01, 4.87it/s] 87%|████████▋ | 52/60 [00:10<00:01, 4.87it/s] 88%|████████▊ | 53/60 [00:10<00:01, 4.86it/s] 90%|█████████ | 54/60 [00:10<00:01, 4.86it/s] 92%|█████████▏| 55/60 [00:11<00:01, 4.86it/s] 93%|█████████▎| 56/60 [00:11<00:00, 4.86it/s] 95%|█████████▌| 57/60 [00:11<00:00, 4.87it/s] 97%|█████████▋| 58/60 [00:11<00:00, 4.86it/s] 98%|█████████▊| 59/60 [00:11<00:00, 4.86it/s] 100%|██████████| 60/60 [00:12<00:00, 4.86it/s] 100%|██████████| 60/60 [00:12<00:00, 4.92it/s]
Prediction
lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144IDxqen5atbh2xjt7jbuz42hghyhyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- cinematic film still of Kodak Motion Picture Film: (Sharp Detailed Image) An Oscar winning movie for Best Cinematography a woman in a kimono standing on a subway train in Japan Kodak Motion Picture Film Style, shallow depth of field, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- negative_prompt
- worst quality, low quality
- prompt_strength
- 0.8
- num_inference_steps
- 60
{ "width": 1024, "height": 1024, "prompt": "cinematic film still of Kodak Motion Picture Film: (Sharp Detailed Image) An Oscar winning movie for Best Cinematography a woman in a kimono standing on a subway train in Japan Kodak Motion Picture Film Style, shallow depth of field, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", { input: { width: 1024, height: 1024, prompt: "cinematic film still of Kodak Motion Picture Film: (Sharp Detailed Image) An Oscar winning movie for Best Cinematography a woman in a kimono standing on a subway train in Japan Kodak Motion Picture Film Style, shallow depth of field, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, negative_prompt: "worst quality, low quality", prompt_strength: 0.8, num_inference_steps: 60 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", input={ "width": 1024, "height": 1024, "prompt": "cinematic film still of Kodak Motion Picture Film: (Sharp Detailed Image) An Oscar winning movie for Best Cinematography a woman in a kimono standing on a subway train in Japan Kodak Motion Picture Film Style, shallow depth of field, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", "input": { "width": 1024, "height": 1024, "prompt": "cinematic film still of Kodak Motion Picture Film: (Sharp Detailed Image) An Oscar winning movie for Best Cinematography a woman in a kimono standing on a subway train in Japan Kodak Motion Picture Film Style, shallow depth of field, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-27T06:53:35.607735Z", "created_at": "2023-12-27T06:53:21.061451Z", "data_removed": false, "error": null, "id": "xqen5atbh2xjt7jbuz42hghyhy", "input": { "width": 1024, "height": 1024, "prompt": "cinematic film still of Kodak Motion Picture Film: (Sharp Detailed Image) An Oscar winning movie for Best Cinematography a woman in a kimono standing on a subway train in Japan Kodak Motion Picture Film Style, shallow depth of field, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, low quality", "prompt_strength": 0.8, "num_inference_steps": 60 }, "logs": "Using seed: 2061037940\nPrompt: cinematic film still of Kodak Motion Picture Film: (Sharp Detailed Image) An Oscar winning movie for Best Cinematography a woman in a kimono standing on a subway train in Japan Kodak Motion Picture Film Style, shallow depth of field, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy\ntxt2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:11, 4.92it/s]\n 5%|▌ | 3/60 [00:00<00:09, 6.08it/s]\n 7%|▋ | 4/60 [00:00<00:09, 5.61it/s]\n 8%|▊ | 5/60 [00:00<00:10, 5.35it/s]\n 10%|█ | 6/60 [00:01<00:10, 5.19it/s]\n 12%|█▏ | 7/60 [00:01<00:10, 5.09it/s]\n 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s]\n 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s]\n 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s]\n 18%|█▊ | 11/60 [00:02<00:09, 4.93it/s]\n 20%|██ | 12/60 [00:02<00:09, 4.91it/s]\n 22%|██▏ | 13/60 [00:02<00:09, 4.91it/s]\n 23%|██▎ | 14/60 [00:02<00:09, 4.90it/s]\n 25%|██▌ | 15/60 [00:02<00:09, 4.89it/s]\n 27%|██▋ | 16/60 [00:03<00:09, 4.88it/s]\n 28%|██▊ | 17/60 [00:03<00:08, 4.89it/s]\n 30%|███ | 18/60 [00:03<00:08, 4.89it/s]\n 32%|███▏ | 19/60 [00:03<00:08, 4.88it/s]\n 33%|███▎ | 20/60 [00:03<00:08, 4.88it/s]\n 35%|███▌ | 21/60 [00:04<00:08, 4.87it/s]\n 37%|███▋ | 22/60 [00:04<00:07, 4.88it/s]\n 38%|███▊ | 23/60 [00:04<00:07, 4.88it/s]\n 40%|████ | 24/60 [00:04<00:07, 4.87it/s]\n 42%|████▏ | 25/60 [00:05<00:07, 4.87it/s]\n 43%|████▎ | 26/60 [00:05<00:06, 4.87it/s]\n 45%|████▌ | 27/60 [00:05<00:06, 4.87it/s]\n 47%|████▋ | 28/60 [00:05<00:06, 4.87it/s]\n 48%|████▊ | 29/60 [00:05<00:06, 4.87it/s]\n 50%|█████ | 30/60 [00:06<00:06, 4.87it/s]\n 52%|█████▏ | 31/60 [00:06<00:05, 4.86it/s]\n 53%|█████▎ | 32/60 [00:06<00:05, 4.87it/s]\n 55%|█████▌ | 33/60 [00:06<00:05, 4.87it/s]\n 57%|█████▋ | 34/60 [00:06<00:05, 4.87it/s]\n 58%|█████▊ | 35/60 [00:07<00:05, 4.86it/s]\n 60%|██████ | 36/60 [00:07<00:04, 4.86it/s]\n 62%|██████▏ | 37/60 [00:07<00:04, 4.86it/s]\n 63%|██████▎ | 38/60 [00:07<00:04, 4.87it/s]\n 65%|██████▌ | 39/60 [00:07<00:04, 4.86it/s]\n 67%|██████▋ | 40/60 [00:08<00:04, 4.86it/s]\n 68%|██████▊ | 41/60 [00:08<00:03, 4.86it/s]\n 70%|███████ | 42/60 [00:08<00:03, 4.86it/s]\n 72%|███████▏ | 43/60 [00:08<00:03, 4.86it/s]\n 73%|███████▎ | 44/60 [00:08<00:03, 4.86it/s]\n 75%|███████▌ | 45/60 [00:09<00:03, 4.86it/s]\n 77%|███████▋ | 46/60 [00:09<00:02, 4.86it/s]\n 78%|███████▊ | 47/60 [00:09<00:02, 4.86it/s]\n 80%|████████ | 48/60 [00:09<00:02, 4.86it/s]\n 82%|████████▏ | 49/60 [00:09<00:02, 4.86it/s]\n 83%|████████▎ | 50/60 [00:10<00:02, 4.86it/s]\n 85%|████████▌ | 51/60 [00:10<00:01, 4.85it/s]\n 87%|████████▋ | 52/60 [00:10<00:01, 4.86it/s]\n 88%|████████▊ | 53/60 [00:10<00:01, 4.86it/s]\n 90%|█████████ | 54/60 [00:10<00:01, 4.85it/s]\n 92%|█████████▏| 55/60 [00:11<00:01, 4.85it/s]\n 93%|█████████▎| 56/60 [00:11<00:00, 4.85it/s]\n 95%|█████████▌| 57/60 [00:11<00:00, 4.86it/s]\n 97%|█████████▋| 58/60 [00:11<00:00, 4.85it/s]\n 98%|█████████▊| 59/60 [00:12<00:00, 4.85it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.85it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.91it/s]", "metrics": { "predict_time": 14.509783, "total_time": 14.546284 }, "output": [ "https://replicate.delivery/pbxt/wGLUWX389JpLBBOtf6kAS39dSPDcIuMSI3ZlzseeFi9dfeyQC/out-0.png" ], "started_at": "2023-12-27T06:53:21.097952Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xqen5atbh2xjt7jbuz42hghyhy", "cancel": "https://api.replicate.com/v1/predictions/xqen5atbh2xjt7jbuz42hghyhy/cancel" }, "version": "1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144" }
Generated inUsing seed: 2061037940 Prompt: cinematic film still of Kodak Motion Picture Film: (Sharp Detailed Image) An Oscar winning movie for Best Cinematography a woman in a kimono standing on a subway train in Japan Kodak Motion Picture Film Style, shallow depth of field, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy txt2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:11, 4.92it/s] 5%|▌ | 3/60 [00:00<00:09, 6.08it/s] 7%|▋ | 4/60 [00:00<00:09, 5.61it/s] 8%|▊ | 5/60 [00:00<00:10, 5.35it/s] 10%|█ | 6/60 [00:01<00:10, 5.19it/s] 12%|█▏ | 7/60 [00:01<00:10, 5.09it/s] 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s] 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s] 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s] 18%|█▊ | 11/60 [00:02<00:09, 4.93it/s] 20%|██ | 12/60 [00:02<00:09, 4.91it/s] 22%|██▏ | 13/60 [00:02<00:09, 4.91it/s] 23%|██▎ | 14/60 [00:02<00:09, 4.90it/s] 25%|██▌ | 15/60 [00:02<00:09, 4.89it/s] 27%|██▋ | 16/60 [00:03<00:09, 4.88it/s] 28%|██▊ | 17/60 [00:03<00:08, 4.89it/s] 30%|███ | 18/60 [00:03<00:08, 4.89it/s] 32%|███▏ | 19/60 [00:03<00:08, 4.88it/s] 33%|███▎ | 20/60 [00:03<00:08, 4.88it/s] 35%|███▌ | 21/60 [00:04<00:08, 4.87it/s] 37%|███▋ | 22/60 [00:04<00:07, 4.88it/s] 38%|███▊ | 23/60 [00:04<00:07, 4.88it/s] 40%|████ | 24/60 [00:04<00:07, 4.87it/s] 42%|████▏ | 25/60 [00:05<00:07, 4.87it/s] 43%|████▎ | 26/60 [00:05<00:06, 4.87it/s] 45%|████▌ | 27/60 [00:05<00:06, 4.87it/s] 47%|████▋ | 28/60 [00:05<00:06, 4.87it/s] 48%|████▊ | 29/60 [00:05<00:06, 4.87it/s] 50%|█████ | 30/60 [00:06<00:06, 4.87it/s] 52%|█████▏ | 31/60 [00:06<00:05, 4.86it/s] 53%|█████▎ | 32/60 [00:06<00:05, 4.87it/s] 55%|█████▌ | 33/60 [00:06<00:05, 4.87it/s] 57%|█████▋ | 34/60 [00:06<00:05, 4.87it/s] 58%|█████▊ | 35/60 [00:07<00:05, 4.86it/s] 60%|██████ | 36/60 [00:07<00:04, 4.86it/s] 62%|██████▏ | 37/60 [00:07<00:04, 4.86it/s] 63%|██████▎ | 38/60 [00:07<00:04, 4.87it/s] 65%|██████▌ | 39/60 [00:07<00:04, 4.86it/s] 67%|██████▋ | 40/60 [00:08<00:04, 4.86it/s] 68%|██████▊ | 41/60 [00:08<00:03, 4.86it/s] 70%|███████ | 42/60 [00:08<00:03, 4.86it/s] 72%|███████▏ | 43/60 [00:08<00:03, 4.86it/s] 73%|███████▎ | 44/60 [00:08<00:03, 4.86it/s] 75%|███████▌ | 45/60 [00:09<00:03, 4.86it/s] 77%|███████▋ | 46/60 [00:09<00:02, 4.86it/s] 78%|███████▊ | 47/60 [00:09<00:02, 4.86it/s] 80%|████████ | 48/60 [00:09<00:02, 4.86it/s] 82%|████████▏ | 49/60 [00:09<00:02, 4.86it/s] 83%|████████▎ | 50/60 [00:10<00:02, 4.86it/s] 85%|████████▌ | 51/60 [00:10<00:01, 4.85it/s] 87%|████████▋ | 52/60 [00:10<00:01, 4.86it/s] 88%|████████▊ | 53/60 [00:10<00:01, 4.86it/s] 90%|█████████ | 54/60 [00:10<00:01, 4.85it/s] 92%|█████████▏| 55/60 [00:11<00:01, 4.85it/s] 93%|█████████▎| 56/60 [00:11<00:00, 4.85it/s] 95%|█████████▌| 57/60 [00:11<00:00, 4.86it/s] 97%|█████████▋| 58/60 [00:11<00:00, 4.85it/s] 98%|█████████▊| 59/60 [00:12<00:00, 4.85it/s] 100%|██████████| 60/60 [00:12<00:00, 4.85it/s] 100%|██████████| 60/60 [00:12<00:00, 4.91it/s]
Prediction
lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144ID7hlns4lblney4bq5ahmqtnqbyaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- ((OpenDalle!)text logo:1), aesthetic
- scheduler
- KarrasDPM
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- prompt_strength
- 0.8
- num_inference_steps
- 60
{ "width": 1024, "height": 1024, "prompt": "((OpenDalle!)text logo:1), aesthetic", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "prompt_strength": 0.8, "num_inference_steps": 60 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", { input: { width: 1024, height: 1024, prompt: "((OpenDalle!)text logo:1), aesthetic", scheduler: "KarrasDPM", num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, prompt_strength: 0.8, num_inference_steps: 60 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", input={ "width": 1024, "height": 1024, "prompt": "((OpenDalle!)text logo:1), aesthetic", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "prompt_strength": 0.8, "num_inference_steps": 60 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/open-dalle-v1.1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144", "input": { "width": 1024, "height": 1024, "prompt": "((OpenDalle!)text logo:1), aesthetic", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "prompt_strength": 0.8, "num_inference_steps": 60 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-12-27T06:56:22.165340Z", "created_at": "2023-12-27T06:56:07.923143Z", "data_removed": false, "error": null, "id": "7hlns4lblney4bq5ahmqtnqbya", "input": { "width": 1024, "height": 1024, "prompt": "((OpenDalle!)text logo:1), aesthetic", "scheduler": "KarrasDPM", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "prompt_strength": 0.8, "num_inference_steps": 60 }, "logs": "Using seed: 2990328243\nPrompt: ((OpenDalle!)text logo:1), aesthetic\ntxt2img mode\n 0%| | 0/60 [00:00<?, ?it/s]\n 2%|▏ | 1/60 [00:00<00:11, 4.93it/s]\n 5%|▌ | 3/60 [00:00<00:09, 6.10it/s]\n 7%|▋ | 4/60 [00:00<00:09, 5.63it/s]\n 8%|▊ | 5/60 [00:00<00:10, 5.36it/s]\n 10%|█ | 6/60 [00:01<00:10, 5.19it/s]\n 12%|█▏ | 7/60 [00:01<00:10, 5.09it/s]\n 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s]\n 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s]\n 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s]\n 18%|█▊ | 11/60 [00:02<00:09, 4.93it/s]\n 20%|██ | 12/60 [00:02<00:09, 4.92it/s]\n 22%|██▏ | 13/60 [00:02<00:09, 4.91it/s]\n 23%|██▎ | 14/60 [00:02<00:09, 4.90it/s]\n 25%|██▌ | 15/60 [00:02<00:09, 4.89it/s]\n 27%|██▋ | 16/60 [00:03<00:08, 4.89it/s]\n 28%|██▊ | 17/60 [00:03<00:08, 4.89it/s]\n 30%|███ | 18/60 [00:03<00:08, 4.88it/s]\n 32%|███▏ | 19/60 [00:03<00:08, 4.88it/s]\n 33%|███▎ | 20/60 [00:03<00:08, 4.88it/s]\n 35%|███▌ | 21/60 [00:04<00:07, 4.88it/s]\n 37%|███▋ | 22/60 [00:04<00:07, 4.88it/s]\n 38%|███▊ | 23/60 [00:04<00:07, 4.88it/s]\n 40%|████ | 24/60 [00:04<00:07, 4.88it/s]\n 42%|████▏ | 25/60 [00:05<00:07, 4.88it/s]\n 43%|████▎ | 26/60 [00:05<00:06, 4.88it/s]\n 45%|████▌ | 27/60 [00:05<00:06, 4.88it/s]\n 47%|████▋ | 28/60 [00:05<00:06, 4.88it/s]\n 48%|████▊ | 29/60 [00:05<00:06, 4.88it/s]\n 50%|█████ | 30/60 [00:06<00:06, 4.87it/s]\n 52%|█████▏ | 31/60 [00:06<00:05, 4.87it/s]\n 53%|█████▎ | 32/60 [00:06<00:05, 4.88it/s]\n 55%|█████▌ | 33/60 [00:06<00:05, 4.88it/s]\n 57%|█████▋ | 34/60 [00:06<00:05, 4.87it/s]\n 58%|█████▊ | 35/60 [00:07<00:05, 4.88it/s]\n 60%|██████ | 36/60 [00:07<00:04, 4.87it/s]\n 62%|██████▏ | 37/60 [00:07<00:04, 4.87it/s]\n 63%|██████▎ | 38/60 [00:07<00:04, 4.87it/s]\n 65%|██████▌ | 39/60 [00:07<00:04, 4.87it/s]\n 67%|██████▋ | 40/60 [00:08<00:04, 4.88it/s]\n 68%|██████▊ | 41/60 [00:08<00:03, 4.87it/s]\n 70%|███████ | 42/60 [00:08<00:03, 4.87it/s]\n 72%|███████▏ | 43/60 [00:08<00:03, 4.87it/s]\n 73%|███████▎ | 44/60 [00:08<00:03, 4.87it/s]\n 75%|███████▌ | 45/60 [00:09<00:03, 4.87it/s]\n 77%|███████▋ | 46/60 [00:09<00:02, 4.87it/s]\n 78%|███████▊ | 47/60 [00:09<00:02, 4.87it/s]\n 80%|████████ | 48/60 [00:09<00:02, 4.87it/s]\n 82%|████████▏ | 49/60 [00:09<00:02, 4.86it/s]\n 83%|████████▎ | 50/60 [00:10<00:02, 4.87it/s]\n 85%|████████▌ | 51/60 [00:10<00:01, 4.87it/s]\n 87%|████████▋ | 52/60 [00:10<00:01, 4.87it/s]\n 88%|████████▊ | 53/60 [00:10<00:01, 4.87it/s]\n 90%|█████████ | 54/60 [00:10<00:01, 4.87it/s]\n 92%|█████████▏| 55/60 [00:11<00:01, 4.87it/s]\n 93%|█████████▎| 56/60 [00:11<00:00, 4.86it/s]\n 95%|█████████▌| 57/60 [00:11<00:00, 4.86it/s]\n 97%|█████████▋| 58/60 [00:11<00:00, 4.86it/s]\n 98%|█████████▊| 59/60 [00:11<00:00, 4.86it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.87it/s]\n100%|██████████| 60/60 [00:12<00:00, 4.92it/s]", "metrics": { "predict_time": 14.205423, "total_time": 14.242197 }, "output": [ "https://replicate.delivery/pbxt/vylSfrDkENRBHKdWy37zS9ZQ2hfrOREGd2g17W8X1OHVyXGSA/out-0.png" ], "started_at": "2023-12-27T06:56:07.959917Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7hlns4lblney4bq5ahmqtnqbya", "cancel": "https://api.replicate.com/v1/predictions/7hlns4lblney4bq5ahmqtnqbya/cancel" }, "version": "1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144" }
Generated inUsing seed: 2990328243 Prompt: ((OpenDalle!)text logo:1), aesthetic txt2img mode 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:11, 4.93it/s] 5%|▌ | 3/60 [00:00<00:09, 6.10it/s] 7%|▋ | 4/60 [00:00<00:09, 5.63it/s] 8%|▊ | 5/60 [00:00<00:10, 5.36it/s] 10%|█ | 6/60 [00:01<00:10, 5.19it/s] 12%|█▏ | 7/60 [00:01<00:10, 5.09it/s] 13%|█▎ | 8/60 [00:01<00:10, 5.03it/s] 15%|█▌ | 9/60 [00:01<00:10, 4.99it/s] 17%|█▋ | 10/60 [00:01<00:10, 4.96it/s] 18%|█▊ | 11/60 [00:02<00:09, 4.93it/s] 20%|██ | 12/60 [00:02<00:09, 4.92it/s] 22%|██▏ | 13/60 [00:02<00:09, 4.91it/s] 23%|██▎ | 14/60 [00:02<00:09, 4.90it/s] 25%|██▌ | 15/60 [00:02<00:09, 4.89it/s] 27%|██▋ | 16/60 [00:03<00:08, 4.89it/s] 28%|██▊ | 17/60 [00:03<00:08, 4.89it/s] 30%|███ | 18/60 [00:03<00:08, 4.88it/s] 32%|███▏ | 19/60 [00:03<00:08, 4.88it/s] 33%|███▎ | 20/60 [00:03<00:08, 4.88it/s] 35%|███▌ | 21/60 [00:04<00:07, 4.88it/s] 37%|███▋ | 22/60 [00:04<00:07, 4.88it/s] 38%|███▊ | 23/60 [00:04<00:07, 4.88it/s] 40%|████ | 24/60 [00:04<00:07, 4.88it/s] 42%|████▏ | 25/60 [00:05<00:07, 4.88it/s] 43%|████▎ | 26/60 [00:05<00:06, 4.88it/s] 45%|████▌ | 27/60 [00:05<00:06, 4.88it/s] 47%|████▋ | 28/60 [00:05<00:06, 4.88it/s] 48%|████▊ | 29/60 [00:05<00:06, 4.88it/s] 50%|█████ | 30/60 [00:06<00:06, 4.87it/s] 52%|█████▏ | 31/60 [00:06<00:05, 4.87it/s] 53%|█████▎ | 32/60 [00:06<00:05, 4.88it/s] 55%|█████▌ | 33/60 [00:06<00:05, 4.88it/s] 57%|█████▋ | 34/60 [00:06<00:05, 4.87it/s] 58%|█████▊ | 35/60 [00:07<00:05, 4.88it/s] 60%|██████ | 36/60 [00:07<00:04, 4.87it/s] 62%|██████▏ | 37/60 [00:07<00:04, 4.87it/s] 63%|██████▎ | 38/60 [00:07<00:04, 4.87it/s] 65%|██████▌ | 39/60 [00:07<00:04, 4.87it/s] 67%|██████▋ | 40/60 [00:08<00:04, 4.88it/s] 68%|██████▊ | 41/60 [00:08<00:03, 4.87it/s] 70%|███████ | 42/60 [00:08<00:03, 4.87it/s] 72%|███████▏ | 43/60 [00:08<00:03, 4.87it/s] 73%|███████▎ | 44/60 [00:08<00:03, 4.87it/s] 75%|███████▌ | 45/60 [00:09<00:03, 4.87it/s] 77%|███████▋ | 46/60 [00:09<00:02, 4.87it/s] 78%|███████▊ | 47/60 [00:09<00:02, 4.87it/s] 80%|████████ | 48/60 [00:09<00:02, 4.87it/s] 82%|████████▏ | 49/60 [00:09<00:02, 4.86it/s] 83%|████████▎ | 50/60 [00:10<00:02, 4.87it/s] 85%|████████▌ | 51/60 [00:10<00:01, 4.87it/s] 87%|████████▋ | 52/60 [00:10<00:01, 4.87it/s] 88%|████████▊ | 53/60 [00:10<00:01, 4.87it/s] 90%|█████████ | 54/60 [00:10<00:01, 4.87it/s] 92%|█████████▏| 55/60 [00:11<00:01, 4.87it/s] 93%|█████████▎| 56/60 [00:11<00:00, 4.86it/s] 95%|█████████▌| 57/60 [00:11<00:00, 4.86it/s] 97%|█████████▋| 58/60 [00:11<00:00, 4.86it/s] 98%|█████████▊| 59/60 [00:11<00:00, 4.86it/s] 100%|██████████| 60/60 [00:12<00:00, 4.87it/s] 100%|██████████| 60/60 [00:12<00:00, 4.92it/s]
Want to make some of these yourself?
Run this model