Readme
Implementation of thibaud/controlnet-openpose-sdxl-1.0
Give me a follow if you like my work! @lucataco93
SDXL ControlNet - OpenPose
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lucataco/sdxl-controlnet-openpose using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lucataco/sdxl-controlnet-openpose:d63e0b238b2d963d90348e2dad19830fbe372a7a43d90d234b2b63cae76d4397",
{
input: {
seed: 25403,
image: "https://replicate.delivery/pbxt/JMf0SV6w1yp8ZcrtrYungReCNQzUUhXJHciDFi5nylAdqmCo/demo.jpg",
prompt: "a latina ballerina, romantic sunset, 4k photo",
guidance_scale: 7.5,
high_noise_frac: 0.8,
negative_prompt: "low quality, bad quality",
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lucataco/sdxl-controlnet-openpose using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lucataco/sdxl-controlnet-openpose:d63e0b238b2d963d90348e2dad19830fbe372a7a43d90d234b2b63cae76d4397",
input={
"seed": 25403,
"image": "https://replicate.delivery/pbxt/JMf0SV6w1yp8ZcrtrYungReCNQzUUhXJHciDFi5nylAdqmCo/demo.jpg",
"prompt": "a latina ballerina, romantic sunset, 4k photo",
"guidance_scale": 7.5,
"high_noise_frac": 0.8,
"negative_prompt": "low quality, bad quality",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lucataco/sdxl-controlnet-openpose using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "d63e0b238b2d963d90348e2dad19830fbe372a7a43d90d234b2b63cae76d4397",
"input": {
"seed": 25403,
"image": "https://replicate.delivery/pbxt/JMf0SV6w1yp8ZcrtrYungReCNQzUUhXJHciDFi5nylAdqmCo/demo.jpg",
"prompt": "a latina ballerina, romantic sunset, 4k photo",
"guidance_scale": 7.5,
"high_noise_frac": 0.8,
"negative_prompt": "low quality, bad quality",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lucataco/sdxl-controlnet-openpose@sha256:d63e0b238b2d963d90348e2dad19830fbe372a7a43d90d234b2b63cae76d4397 \
-i 'seed=25403' \
-i 'image="https://replicate.delivery/pbxt/JMf0SV6w1yp8ZcrtrYungReCNQzUUhXJHciDFi5nylAdqmCo/demo.jpg"' \
-i 'prompt="a latina ballerina, romantic sunset, 4k photo"' \
-i 'guidance_scale=7.5' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt="low quality, bad quality"' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lucataco/sdxl-controlnet-openpose@sha256:d63e0b238b2d963d90348e2dad19830fbe372a7a43d90d234b2b63cae76d4397
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 25403, "image": "https://replicate.delivery/pbxt/JMf0SV6w1yp8ZcrtrYungReCNQzUUhXJHciDFi5nylAdqmCo/demo.jpg", "prompt": "a latina ballerina, romantic sunset, 4k photo", "guidance_scale": 7.5, "high_noise_frac": 0.8, "negative_prompt": "low quality, bad quality", "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.012. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-08-17T06:24:28.501864Z",
"created_at": "2023-08-17T06:21:10.994936Z",
"data_removed": false,
"error": null,
"id": "v2doo4dbv2foj6ngr26wnjy7cm",
"input": {
"seed": 25403,
"image": "https://replicate.delivery/pbxt/JMf0SV6w1yp8ZcrtrYungReCNQzUUhXJHciDFi5nylAdqmCo/demo.jpg",
"prompt": "a latina ballerina, romantic sunset, 4k photo",
"guidance_scale": 7.5,
"high_noise_frac": 0.8,
"negative_prompt": "low quality, bad quality",
"num_inference_steps": 50
},
"logs": "Using seed: 25403\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:36, 1.35it/s]\n 4%|▍ | 2/50 [00:01<00:22, 2.09it/s]\n 6%|▌ | 3/50 [00:01<00:18, 2.54it/s]\n 8%|▊ | 4/50 [00:01<00:16, 2.82it/s]\n 10%|█ | 5/50 [00:01<00:14, 3.00it/s]\n 12%|█▏ | 6/50 [00:02<00:14, 3.13it/s]\n 14%|█▍ | 7/50 [00:02<00:13, 3.21it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.26it/s]\n 18%|█▊ | 9/50 [00:03<00:12, 3.30it/s]\n 20%|██ | 10/50 [00:03<00:12, 3.33it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.35it/s]\n 24%|██▍ | 12/50 [00:03<00:11, 3.36it/s]\n 26%|██▌ | 13/50 [00:04<00:10, 3.36it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.37it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.37it/s]\n 32%|███▏ | 16/50 [00:05<00:10, 3.37it/s]\n 34%|███▍ | 17/50 [00:05<00:09, 3.37it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.37it/s]\n 38%|███▊ | 19/50 [00:06<00:09, 3.37it/s]\n 40%|████ | 20/50 [00:06<00:08, 3.37it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.37it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.38it/s]\n 46%|████▌ | 23/50 [00:07<00:08, 3.37it/s]\n 48%|████▊ | 24/50 [00:07<00:07, 3.38it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.38it/s]\n 52%|█████▏ | 26/50 [00:08<00:07, 3.38it/s]\n 54%|█████▍ | 27/50 [00:08<00:06, 3.38it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.37it/s]\n 58%|█████▊ | 29/50 [00:09<00:06, 3.37it/s]\n 60%|██████ | 30/50 [00:09<00:05, 3.37it/s]\n 62%|██████▏ | 31/50 [00:09<00:05, 3.37it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.37it/s]\n 66%|██████▌ | 33/50 [00:10<00:05, 3.36it/s]\n 68%|██████▊ | 34/50 [00:10<00:04, 3.36it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.36it/s]\n 72%|███████▏ | 36/50 [00:11<00:04, 3.36it/s]\n 74%|███████▍ | 37/50 [00:11<00:03, 3.36it/s]\n 76%|███████▌ | 38/50 [00:11<00:03, 3.37it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.38it/s]\n 80%|████████ | 40/50 [00:12<00:02, 3.38it/s]\n 82%|████████▏ | 41/50 [00:12<00:02, 3.38it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.39it/s]\n 86%|████████▌ | 43/50 [00:13<00:02, 3.39it/s]\n 88%|████████▊ | 44/50 [00:13<00:01, 3.39it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 3.39it/s]\n 92%|█████████▏| 46/50 [00:14<00:01, 3.39it/s]\n 94%|█████████▍| 47/50 [00:14<00:00, 3.39it/s]\n 96%|█████████▌| 48/50 [00:14<00:00, 3.39it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.39it/s]\n100%|██████████| 50/50 [00:15<00:00, 3.39it/s]\n100%|██████████| 50/50 [00:15<00:00, 3.28it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:02, 4.22it/s]\n 20%|██ | 2/10 [00:00<00:01, 4.29it/s]\n 30%|███ | 3/10 [00:00<00:01, 4.32it/s]\n 40%|████ | 4/10 [00:00<00:01, 4.31it/s]\n 50%|█████ | 5/10 [00:01<00:01, 4.32it/s]\n 60%|██████ | 6/10 [00:01<00:00, 4.33it/s]\n 70%|███████ | 7/10 [00:01<00:00, 4.33it/s]\n 80%|████████ | 8/10 [00:01<00:00, 4.33it/s]\n 90%|█████████ | 9/10 [00:02<00:00, 4.33it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.33it/s]\n100%|██████████| 10/10 [00:02<00:00, 4.32it/s]",
"metrics": {
"predict_time": 21.248046,
"total_time": 197.506928
},
"output": "https://replicate.delivery/pbxt/6qIkIhoz7EosJVfFfrQUnPYSsXfy2WIcTk9u27TM3LP44t1iA/output.png",
"started_at": "2023-08-17T06:24:07.253818Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/v2doo4dbv2foj6ngr26wnjy7cm",
"cancel": "https://api.replicate.com/v1/predictions/v2doo4dbv2foj6ngr26wnjy7cm/cancel"
},
"version": "d63e0b238b2d963d90348e2dad19830fbe372a7a43d90d234b2b63cae76d4397"
}
Using seed: 25403
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:36, 1.35it/s]
4%|▍ | 2/50 [00:01<00:22, 2.09it/s]
6%|▌ | 3/50 [00:01<00:18, 2.54it/s]
8%|▊ | 4/50 [00:01<00:16, 2.82it/s]
10%|█ | 5/50 [00:01<00:14, 3.00it/s]
12%|█▏ | 6/50 [00:02<00:14, 3.13it/s]
14%|█▍ | 7/50 [00:02<00:13, 3.21it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.26it/s]
18%|█▊ | 9/50 [00:03<00:12, 3.30it/s]
20%|██ | 10/50 [00:03<00:12, 3.33it/s]
22%|██▏ | 11/50 [00:03<00:11, 3.35it/s]
24%|██▍ | 12/50 [00:03<00:11, 3.36it/s]
26%|██▌ | 13/50 [00:04<00:10, 3.36it/s]
28%|██▊ | 14/50 [00:04<00:10, 3.37it/s]
30%|███ | 15/50 [00:04<00:10, 3.37it/s]
32%|███▏ | 16/50 [00:05<00:10, 3.37it/s]
34%|███▍ | 17/50 [00:05<00:09, 3.37it/s]
36%|███▌ | 18/50 [00:05<00:09, 3.37it/s]
38%|███▊ | 19/50 [00:06<00:09, 3.37it/s]
40%|████ | 20/50 [00:06<00:08, 3.37it/s]
42%|████▏ | 21/50 [00:06<00:08, 3.37it/s]
44%|████▍ | 22/50 [00:06<00:08, 3.38it/s]
46%|████▌ | 23/50 [00:07<00:08, 3.37it/s]
48%|████▊ | 24/50 [00:07<00:07, 3.38it/s]
50%|█████ | 25/50 [00:07<00:07, 3.38it/s]
52%|█████▏ | 26/50 [00:08<00:07, 3.38it/s]
54%|█████▍ | 27/50 [00:08<00:06, 3.38it/s]
56%|█████▌ | 28/50 [00:08<00:06, 3.37it/s]
58%|█████▊ | 29/50 [00:09<00:06, 3.37it/s]
60%|██████ | 30/50 [00:09<00:05, 3.37it/s]
62%|██████▏ | 31/50 [00:09<00:05, 3.37it/s]
64%|██████▍ | 32/50 [00:09<00:05, 3.37it/s]
66%|██████▌ | 33/50 [00:10<00:05, 3.36it/s]
68%|██████▊ | 34/50 [00:10<00:04, 3.36it/s]
70%|███████ | 35/50 [00:10<00:04, 3.36it/s]
72%|███████▏ | 36/50 [00:11<00:04, 3.36it/s]
74%|███████▍ | 37/50 [00:11<00:03, 3.36it/s]
76%|███████▌ | 38/50 [00:11<00:03, 3.37it/s]
78%|███████▊ | 39/50 [00:11<00:03, 3.38it/s]
80%|████████ | 40/50 [00:12<00:02, 3.38it/s]
82%|████████▏ | 41/50 [00:12<00:02, 3.38it/s]
84%|████████▍ | 42/50 [00:12<00:02, 3.39it/s]
86%|████████▌ | 43/50 [00:13<00:02, 3.39it/s]
88%|████████▊ | 44/50 [00:13<00:01, 3.39it/s]
90%|█████████ | 45/50 [00:13<00:01, 3.39it/s]
92%|█████████▏| 46/50 [00:14<00:01, 3.39it/s]
94%|█████████▍| 47/50 [00:14<00:00, 3.39it/s]
96%|█████████▌| 48/50 [00:14<00:00, 3.39it/s]
98%|█████████▊| 49/50 [00:14<00:00, 3.39it/s]
100%|██████████| 50/50 [00:15<00:00, 3.39it/s]
100%|██████████| 50/50 [00:15<00:00, 3.28it/s]
0%| | 0/10 [00:00<?, ?it/s]
10%|█ | 1/10 [00:00<00:02, 4.22it/s]
20%|██ | 2/10 [00:00<00:01, 4.29it/s]
30%|███ | 3/10 [00:00<00:01, 4.32it/s]
40%|████ | 4/10 [00:00<00:01, 4.31it/s]
50%|█████ | 5/10 [00:01<00:01, 4.32it/s]
60%|██████ | 6/10 [00:01<00:00, 4.33it/s]
70%|███████ | 7/10 [00:01<00:00, 4.33it/s]
80%|████████ | 8/10 [00:01<00:00, 4.33it/s]
90%|█████████ | 9/10 [00:02<00:00, 4.33it/s]
100%|██████████| 10/10 [00:02<00:00, 4.33it/s]
100%|██████████| 10/10 [00:02<00:00, 4.32it/s]
This model costs approximately $0.012 to run on Replicate, or 83 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 12 seconds.
Implementation of thibaud/controlnet-openpose-sdxl-1.0
Give me a follow if you like my work! @lucataco93
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 25403
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:36, 1.35it/s]
4%|▍ | 2/50 [00:01<00:22, 2.09it/s]
6%|▌ | 3/50 [00:01<00:18, 2.54it/s]
8%|▊ | 4/50 [00:01<00:16, 2.82it/s]
10%|█ | 5/50 [00:01<00:14, 3.00it/s]
12%|█▏ | 6/50 [00:02<00:14, 3.13it/s]
14%|█▍ | 7/50 [00:02<00:13, 3.21it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.26it/s]
18%|█▊ | 9/50 [00:03<00:12, 3.30it/s]
20%|██ | 10/50 [00:03<00:12, 3.33it/s]
22%|██▏ | 11/50 [00:03<00:11, 3.35it/s]
24%|██▍ | 12/50 [00:03<00:11, 3.36it/s]
26%|██▌ | 13/50 [00:04<00:10, 3.36it/s]
28%|██▊ | 14/50 [00:04<00:10, 3.37it/s]
30%|███ | 15/50 [00:04<00:10, 3.37it/s]
32%|███▏ | 16/50 [00:05<00:10, 3.37it/s]
34%|███▍ | 17/50 [00:05<00:09, 3.37it/s]
36%|███▌ | 18/50 [00:05<00:09, 3.37it/s]
38%|███▊ | 19/50 [00:06<00:09, 3.37it/s]
40%|████ | 20/50 [00:06<00:08, 3.37it/s]
42%|████▏ | 21/50 [00:06<00:08, 3.37it/s]
44%|████▍ | 22/50 [00:06<00:08, 3.38it/s]
46%|████▌ | 23/50 [00:07<00:08, 3.37it/s]
48%|████▊ | 24/50 [00:07<00:07, 3.38it/s]
50%|█████ | 25/50 [00:07<00:07, 3.38it/s]
52%|█████▏ | 26/50 [00:08<00:07, 3.38it/s]
54%|█████▍ | 27/50 [00:08<00:06, 3.38it/s]
56%|█████▌ | 28/50 [00:08<00:06, 3.37it/s]
58%|█████▊ | 29/50 [00:09<00:06, 3.37it/s]
60%|██████ | 30/50 [00:09<00:05, 3.37it/s]
62%|██████▏ | 31/50 [00:09<00:05, 3.37it/s]
64%|██████▍ | 32/50 [00:09<00:05, 3.37it/s]
66%|██████▌ | 33/50 [00:10<00:05, 3.36it/s]
68%|██████▊ | 34/50 [00:10<00:04, 3.36it/s]
70%|███████ | 35/50 [00:10<00:04, 3.36it/s]
72%|███████▏ | 36/50 [00:11<00:04, 3.36it/s]
74%|███████▍ | 37/50 [00:11<00:03, 3.36it/s]
76%|███████▌ | 38/50 [00:11<00:03, 3.37it/s]
78%|███████▊ | 39/50 [00:11<00:03, 3.38it/s]
80%|████████ | 40/50 [00:12<00:02, 3.38it/s]
82%|████████▏ | 41/50 [00:12<00:02, 3.38it/s]
84%|████████▍ | 42/50 [00:12<00:02, 3.39it/s]
86%|████████▌ | 43/50 [00:13<00:02, 3.39it/s]
88%|████████▊ | 44/50 [00:13<00:01, 3.39it/s]
90%|█████████ | 45/50 [00:13<00:01, 3.39it/s]
92%|█████████▏| 46/50 [00:14<00:01, 3.39it/s]
94%|█████████▍| 47/50 [00:14<00:00, 3.39it/s]
96%|█████████▌| 48/50 [00:14<00:00, 3.39it/s]
98%|█████████▊| 49/50 [00:14<00:00, 3.39it/s]
100%|██████████| 50/50 [00:15<00:00, 3.39it/s]
100%|██████████| 50/50 [00:15<00:00, 3.28it/s]
0%| | 0/10 [00:00<?, ?it/s]
10%|█ | 1/10 [00:00<00:02, 4.22it/s]
20%|██ | 2/10 [00:00<00:01, 4.29it/s]
30%|███ | 3/10 [00:00<00:01, 4.32it/s]
40%|████ | 4/10 [00:00<00:01, 4.31it/s]
50%|█████ | 5/10 [00:01<00:01, 4.32it/s]
60%|██████ | 6/10 [00:01<00:00, 4.33it/s]
70%|███████ | 7/10 [00:01<00:00, 4.33it/s]
80%|████████ | 8/10 [00:01<00:00, 4.33it/s]
90%|█████████ | 9/10 [00:02<00:00, 4.33it/s]
100%|██████████| 10/10 [00:02<00:00, 4.33it/s]
100%|██████████| 10/10 [00:02<00:00, 4.32it/s]