lucataco / sdxl-lcm

Latent Consistency Model (LCM): SDXL, distills the original model into a version that requires fewer steps (4 to 8 instead of the original 25 to 50)

  • Public
  • 395.4K runs
  • L40S
  • GitHub
  • Paper
  • License
Iterate in playground
Run with an API
  • Prediction

    lucataco/sdxl-lcm:e9e25ca4176eb9f7b92994670e7c40e85910118c3f2370213c136046ec0774a4
    ID
    qsqxt73b5uiaf4yzztpmoqywse
    Status
    Succeeded
    Source
    Web
    Hardware
    A40 (Large)
    Total duration
    Created
    by @lucataco

    Input

    seed
    48373
    width
    1024
    height
    1024
    prompt
    A studio photo of a rainbow coloured cat
    scheduler
    LCM
    lora_scale
    0.6
    num_outputs
    1
    guidance_scale
    2
    apply_watermark
    negative_prompt
     
    prompt_strength
    0.8
    num_inference_steps
    6

    Output

    output
    Generated in
  • Prediction

    lucataco/sdxl-lcm:e9e25ca4176eb9f7b92994670e7c40e85910118c3f2370213c136046ec0774a4
    ID
    gs2hrhdb4e3poez7f66peyp6um
    Status
    Succeeded
    Source
    Web
    Hardware
    A40 (Large)
    Total duration
    Created

    Input

    seed
    58684
    width
    1248
    height
    832
    prompt
    A beautiful landscape photo, cinematic
    scheduler
    LCM
    lora_scale
    0.6
    num_outputs
    1
    guidance_scale
    2
    apply_watermark
    negative_prompt
     
    prompt_strength
    0.8
    num_inference_steps
    6

    Output

    output
    Generated in
  • Prediction

    lucataco/sdxl-lcm:e9e25ca4176eb9f7b92994670e7c40e85910118c3f2370213c136046ec0774a4
    ID
    roonubtbesgwbxriccu6do2t4e
    Status
    Succeeded
    Source
    Web
    Hardware
    A40 (Large)
    Total duration
    Created

    Input

    seed
    47500
    image
    image
    width
    1024
    height
    1024
    prompt
    A rainbow coloured tiger
    scheduler
    LCM
    lora_scale
    0.6
    num_outputs
    1
    guidance_scale
    2
    apply_watermark
    negative_prompt
     
    prompt_strength
    0.8
    num_inference_steps
    6

    Output

    output
    Generated in
  • Prediction

    lucataco/sdxl-lcm:e9e25ca4176eb9f7b92994670e7c40e85910118c3f2370213c136046ec0774a4
    ID
    zjx7ah3bpzllwwjoh65fkklnhe
    Status
    Succeeded
    Source
    Web
    Hardware
    A40 (Large)
    Total duration
    Created

    Input

    mask
    mask
    seed
    42283
    image
    image
    width
    1024
    height
    1024
    prompt
    Alien invasion in NYC
    scheduler
    LCM
    lora_scale
    0.6
    num_outputs
    1
    guidance_scale
    2
    apply_watermark
    negative_prompt
     
    prompt_strength
    0.8
    num_inference_steps
    6

    Output

    output
    Generated in
  • Prediction

    lucataco/sdxl-lcm:fbbd475b1084de80c47c35bfe4ae64b964294aa7e237e6537eed938cfd24903d
    ID
    zn3e3ctb7zixnch5xz37exafuy
    Status
    Succeeded
    Source
    Web
    Hardware
    A40 (Large)
    Total duration
    Created

    Input

    seed
    16010
    width
    1024
    height
    1024
    prompt
    An astronaut riding a rainbow unicorn, cinematic, dramatic
    scheduler
    LCM
    lora_scale
    0.6
    num_outputs
    1
    guidance_scale
    2
    apply_watermark
    negative_prompt
     
    prompt_strength
    0.8
    num_inference_steps
    6

    Output

    output
    Generated in
  • Prediction

    lucataco/sdxl-lcm:fbbd475b1084de80c47c35bfe4ae64b964294aa7e237e6537eed938cfd24903d
    ID
    x0cwyhz955rma0ckkq9rwsdma4
    Status
    Succeeded
    Source
    Web
    Hardware
    L40S
    Total duration
    Created

    Input

    seed
    29070
    width
    1024
    height
    1024
    prompt
    close-up photography of a panda standing in the rain at night in a yellow jacket, under a clear umbrella, urban setting, in a street lit by lamps, facing camera, leica 35mm summilux
    scheduler
    LCM
    lora_scale
    0.6
    num_outputs
    1
    guidance_scale
    1
    apply_watermark
    negative_prompt
     
    prompt_strength
    0.8
    num_inference_steps
    4

    Output

    output
    Generated in

Want to make some of these yourself?

Run this model