lucataco/sdxl-lightning-multi-controlnet

SDXL lightning mult-controlnet, img2img & inpainting

Public
9.6K runs

Input

string
Shift + Return to add a new line
Input prompt

Default: "A monkey making latte art"

string
Shift + Return to add a new line
Negative Prompt

Default: "worst quality, low quality"

file
Input image for img2img or inpaint mode
file
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
integer
Width of output image

Default: 1024

integer
Height of output image

Default: 1024

string
Decide how to resize images – use width/height, resize based on input image or control image

Default: "width_height"

integer
(minimum: 1, maximum: 4)
Number of images to output

Default: 1

string
scheduler

Default: "K_EULER"

integer
(minimum: 1, maximum: 500)
Number of denoising steps

Default: 4

number
(minimum: 0, maximum: 50)
Scale for classifier-free guidance

Default: 0

number
(minimum: 0, maximum: 1)
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image

Default: 0.8

integer
Random seed. Leave blank to randomize the seed
string
Which refine style to use

Default: "no_refiner"

integer
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
boolean
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.

Default: true

boolean

This model’s safety checker can’t be disabled when running on the website. Learn more about platform safety on Replicate.

Disable safety checker for generated images. This feature is only available through the API. See [https://replicate.com/docs/how-does-replicate-work#safety](https://replicate.com/docs/how-does-replicate-work#safety)

Default: false

string
Controlnet

Default: "none"

file
Preview
controlnet_1_image
Input image for first controlnet
number
(minimum: 0, maximum: 4)
How strong the controlnet conditioning is

Default: 0.75

number
(minimum: 0, maximum: 1)
When controlnet conditioning starts

Default: 0

number
(minimum: 0, maximum: 1)
When controlnet conditioning ends

Default: 1

string
Controlnet

Default: "none"

file
Input image for second controlnet
number
(minimum: 0, maximum: 4)
How strong the controlnet conditioning is

Default: 0.75

number
(minimum: 0, maximum: 1)
When controlnet conditioning starts

Default: 0

number
(minimum: 0, maximum: 1)
When controlnet conditioning ends

Default: 1

string
Controlnet

Default: "none"

file
Input image for third controlnet
number
(minimum: 0, maximum: 4)
How strong the controlnet conditioning is

Default: 0.75

number
(minimum: 0, maximum: 1)
When controlnet conditioning starts

Default: 0

number
(minimum: 0, maximum: 1)
When controlnet conditioning ends

Default: 1

Output

outputoutput
Generated in

Run time and cost

This model costs approximately $0.011 to run on Replicate, or 90 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.

This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 12 seconds. The predict time for this model varies significantly based on the inputs.

Readme

SDXL with:

  • img2img
  • inpainting
  • up to 3 simultaneous controlnets with different images
  • img2img plus controlnet
  • inpainting plus controlnet
  • controlnet conditioning strengths
  • controlnet start and end controls
  • SDXL refiner
  • Image resizing based on width/height, input image or a control image
  • Disable safety checker via API

Controlnets included:

  • canny
  • midas depth
  • leres depth
  • soft edge hed
  • soft edge pidi
  • openpose
  • QR Monster (illusions)
  • lineart
  • lineart anime