lucataco/wizardcoder-33b-v1.1-gguf

WizardCoder: Empowering Code Large Language Models with Evol-Instruct

  • Public
  • 71 runs

Run time and cost

This model runs on Nvidia A40 (Large) GPU hardware. Predictions typically complete within 84 seconds. The predict time for this model varies significantly based on the inputs.

Readme

Cog implementation of TheBloke/WizardCoder-33B-V1.1-GGUF

[2024/01/04] 🔥 We released WizardCoder-33B-V1.1 trained from deepseek-coder-33b-base, the SOTA OSS Code LLM on EvalPlus Leaderboard, achieves 79.9 pass@1 on HumanEval, 73.2 pass@1 on HumanEval-Plus, 78.9 pass@1 on MBPP, and 66.9 pass@1 on MBPP-Plus.

[2024/01/04] 🔥 WizardCoder-33B-V1.1 outperforms ChatGPT 3.5, Gemini Pro, and DeepSeek-Coder-33B-instruct on HumanEval and HumanEval-Plus pass@1.

[2024/01/04] 🔥 WizardCoder-33B-V1.1 is comparable with ChatGPT 3.5, and surpasses Gemini Pro on MBPP and MBPP-Plus pass@1.

How to Make the Training Data?

Apply our Code Evol-Instruct on Code-Aplaca data.

❗ Data Contamination Check: Before model training, we carefully and rigorously checked all the training data, and used multiple deduplication methods to verify and prevent data leakage on HumanEval and MBPP test set.

🔥 ❗Note for model system prompts usage:

Please use the same systems prompts strictly with us, and we do not guarantee the accuracy of the quantified versions.

@article{luo2023wizardcoder,
  title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
  author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
  journal={arXiv preprint arXiv:2306.08568},
  year={2023}
}