✋ This model is not published yet.
You can claim this model if you're @mdork on GitHub. Contact us.
mdork / image2video-synthesis-using-cinns
image2video synthesis using cINNs
Prediction
mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189IDxyfnfnhp2nhw5b6lf7yitfe5kyStatusSucceededSourceWebHardware–Total duration–CreatedInput
{ "image": "https://replicate.delivery/mgxm/617a3365-1913-4da7-bcad-15cec3233369/133.png", "texture": "clouds", "model_type": "iPER" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", { input: { image: "https://replicate.delivery/mgxm/617a3365-1913-4da7-bcad-15cec3233369/133.png", texture: "clouds", model_type: "iPER" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", input={ "image": "https://replicate.delivery/mgxm/617a3365-1913-4da7-bcad-15cec3233369/133.png", "texture": "clouds", "model_type": "iPER" } ) # The mdork/image2video-synthesis-using-cinns model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mdork/image2video-synthesis-using-cinns/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", "input": { "image": "https://replicate.delivery/mgxm/617a3365-1913-4da7-bcad-15cec3233369/133.png", "texture": "clouds", "model_type": "iPER" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-27T18:50:50.567331Z", "created_at": "2021-11-27T18:47:54.714715Z", "data_removed": false, "error": null, "id": "xyfnfnhp2nhw5b6lf7yitfe5ky", "input": { "image": "https://replicate.delivery/mgxm/617a3365-1913-4da7-bcad-15cec3233369/133.png", "texture": "clouds", "model_type": "iPER" }, "logs": "/root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3060: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.\n warnings.warn(\"Default upsampling behavior when mode={} is changed \"", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/0daea780-7e1b-4e1f-831f-4d23b9301c6d/out.gif" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xyfnfnhp2nhw5b6lf7yitfe5ky", "cancel": "https://api.replicate.com/v1/predictions/xyfnfnhp2nhw5b6lf7yitfe5ky/cancel" }, "version": "85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189" }
/root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3060: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. warnings.warn("Default upsampling behavior when mode={} is changed "
Prediction
mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189IDe7jz3rfj6zasnex4b3pna5bunmStatusSucceededSourceWebHardware–Total duration–CreatedInput
{ "image": "https://replicate.delivery/mgxm/6073a579-45f0-4430-8f0b-661bde108c43/sample1.jpg", "texture": "fire", "model_type": "DTDB" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", { input: { image: "https://replicate.delivery/mgxm/6073a579-45f0-4430-8f0b-661bde108c43/sample1.jpg", texture: "fire", model_type: "DTDB" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", input={ "image": "https://replicate.delivery/mgxm/6073a579-45f0-4430-8f0b-661bde108c43/sample1.jpg", "texture": "fire", "model_type": "DTDB" } ) # The mdork/image2video-synthesis-using-cinns model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mdork/image2video-synthesis-using-cinns/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", "input": { "image": "https://replicate.delivery/mgxm/6073a579-45f0-4430-8f0b-661bde108c43/sample1.jpg", "texture": "fire", "model_type": "DTDB" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-27T18:57:45.801247Z", "created_at": "2021-11-27T18:57:43.716596Z", "data_removed": false, "error": null, "id": "e7jz3rfj6zasnex4b3pna5bunm", "input": { "image": "https://replicate.delivery/mgxm/6073a579-45f0-4430-8f0b-661bde108c43/sample1.jpg", "texture": "fire", "model_type": "DTDB" }, "logs": null, "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/e133a7a8-5432-409c-9a93-cd0792e8640a/out.gif" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/e7jz3rfj6zasnex4b3pna5bunm", "cancel": "https://api.replicate.com/v1/predictions/e7jz3rfj6zasnex4b3pna5bunm/cancel" }, "version": "85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189" }
Prediction
mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189ID24ysy2so45grzngc4c6emla7buStatusSucceededSourceWebHardware–Total duration–CreatedInput
{ "image": "https://replicate.delivery/mgxm/bce3a76b-785f-46ac-8c73-01ecf5ca5eb5/sample2.jpg", "texture": "vegetation", "model_type": "DTDB" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", { input: { image: "https://replicate.delivery/mgxm/bce3a76b-785f-46ac-8c73-01ecf5ca5eb5/sample2.jpg", texture: "vegetation", model_type: "DTDB" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", input={ "image": "https://replicate.delivery/mgxm/bce3a76b-785f-46ac-8c73-01ecf5ca5eb5/sample2.jpg", "texture": "vegetation", "model_type": "DTDB" } ) # The mdork/image2video-synthesis-using-cinns model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mdork/image2video-synthesis-using-cinns/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", "input": { "image": "https://replicate.delivery/mgxm/bce3a76b-785f-46ac-8c73-01ecf5ca5eb5/sample2.jpg", "texture": "vegetation", "model_type": "DTDB" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-27T18:58:20.734024Z", "created_at": "2021-11-27T18:58:18.230944Z", "data_removed": false, "error": null, "id": "24ysy2so45grzngc4c6emla7bu", "input": { "image": "https://replicate.delivery/mgxm/bce3a76b-785f-46ac-8c73-01ecf5ca5eb5/sample2.jpg", "texture": "vegetation", "model_type": "DTDB" }, "logs": null, "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/868fa0e1-0e95-4fdd-bc4d-000e763791d7/out.gif" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/24ysy2so45grzngc4c6emla7bu", "cancel": "https://api.replicate.com/v1/predictions/24ysy2so45grzngc4c6emla7bu/cancel" }, "version": "85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189" }
Prediction
mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189IDcyorkvrzuvedhpxiojpvrjyb7iStatusSucceededSourceWebHardware–Total duration–CreatedInput
{ "image": "https://replicate.delivery/mgxm/14573ea2-a09a-42fd-ba78-5fe9d0f28781/sample4.jpg", "texture": "waterfall", "model_type": "DTDB" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", { input: { image: "https://replicate.delivery/mgxm/14573ea2-a09a-42fd-ba78-5fe9d0f28781/sample4.jpg", texture: "waterfall", model_type: "DTDB" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", input={ "image": "https://replicate.delivery/mgxm/14573ea2-a09a-42fd-ba78-5fe9d0f28781/sample4.jpg", "texture": "waterfall", "model_type": "DTDB" } ) # The mdork/image2video-synthesis-using-cinns model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mdork/image2video-synthesis-using-cinns/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", "input": { "image": "https://replicate.delivery/mgxm/14573ea2-a09a-42fd-ba78-5fe9d0f28781/sample4.jpg", "texture": "waterfall", "model_type": "DTDB" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-27T18:58:58.892569Z", "created_at": "2021-11-27T18:58:55.026191Z", "data_removed": false, "error": null, "id": "cyorkvrzuvedhpxiojpvrjyb7i", "input": { "image": "https://replicate.delivery/mgxm/14573ea2-a09a-42fd-ba78-5fe9d0f28781/sample4.jpg", "texture": "waterfall", "model_type": "DTDB" }, "logs": null, "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/10e228c4-5738-4a0e-a26e-b644d45f0c9f/out.gif" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/cyorkvrzuvedhpxiojpvrjyb7i", "cancel": "https://api.replicate.com/v1/predictions/cyorkvrzuvedhpxiojpvrjyb7i/cancel" }, "version": "85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189" }
Prediction
mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189ID7b5phdy3yrgkhpue6apjv7c65iStatusSucceededSourceWebHardware–Total duration–CreatedInput
{ "image": "https://replicate.delivery/mgxm/3908a711-16f2-4f18-b611-70cfa8bd4070/sample2.jpg", "texture": "clouds", "model_type": "landscape" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", { input: { image: "https://replicate.delivery/mgxm/3908a711-16f2-4f18-b611-70cfa8bd4070/sample2.jpg", texture: "clouds", model_type: "landscape" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", input={ "image": "https://replicate.delivery/mgxm/3908a711-16f2-4f18-b611-70cfa8bd4070/sample2.jpg", "texture": "clouds", "model_type": "landscape" } ) # The mdork/image2video-synthesis-using-cinns model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mdork/image2video-synthesis-using-cinns/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", "input": { "image": "https://replicate.delivery/mgxm/3908a711-16f2-4f18-b611-70cfa8bd4070/sample2.jpg", "texture": "clouds", "model_type": "landscape" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-27T17:50:45.885799Z", "created_at": "2021-11-27T17:47:47.158985Z", "data_removed": false, "error": null, "id": "7b5phdy3yrgkhpue6apjv7c65i", "input": { "image": "https://replicate.delivery/mgxm/3908a711-16f2-4f18-b611-70cfa8bd4070/sample2.jpg", "texture": "clouds", "model_type": "landscape" }, "logs": "/root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3060: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.\n warnings.warn(\"Default upsampling behavior when mode={} is changed \"", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/eae76a1c-58fc-42a4-9183-41b71863da4f/out.gif" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7b5phdy3yrgkhpue6apjv7c65i", "cancel": "https://api.replicate.com/v1/predictions/7b5phdy3yrgkhpue6apjv7c65i/cancel" }, "version": "85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189" }
/root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3060: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. warnings.warn("Default upsampling behavior when mode={} is changed "
Prediction
mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189IDmox4tezmx5gxnkxaq33g6e7vxqStatusSucceededSourceWebHardware–Total duration–CreatedInput
{ "image": "https://replicate.delivery/mgxm/4ee08776-6a1e-4eb7-bded-48a8c9aefd59/sample8.png", "texture": "clouds", "model_type": "DTDB" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", { input: { image: "https://replicate.delivery/mgxm/4ee08776-6a1e-4eb7-bded-48a8c9aefd59/sample8.png", texture: "clouds", model_type: "DTDB" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", input={ "image": "https://replicate.delivery/mgxm/4ee08776-6a1e-4eb7-bded-48a8c9aefd59/sample8.png", "texture": "clouds", "model_type": "DTDB" } ) # The mdork/image2video-synthesis-using-cinns model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mdork/image2video-synthesis-using-cinns/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mdork/image2video-synthesis-using-cinns using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mdork/image2video-synthesis-using-cinns:85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189", "input": { "image": "https://replicate.delivery/mgxm/4ee08776-6a1e-4eb7-bded-48a8c9aefd59/sample8.png", "texture": "clouds", "model_type": "DTDB" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-27T18:57:16.166710Z", "created_at": "2021-11-27T18:57:13.886042Z", "data_removed": false, "error": null, "id": "mox4tezmx5gxnkxaq33g6e7vxq", "input": { "image": "https://replicate.delivery/mgxm/4ee08776-6a1e-4eb7-bded-48a8c9aefd59/sample8.png", "texture": "clouds", "model_type": "DTDB" }, "logs": null, "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/9a13b054-cc97-4ede-b458-0c1db7bff65e/out.gif" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/mox4tezmx5gxnkxaq33g6e7vxq", "cancel": "https://api.replicate.com/v1/predictions/mox4tezmx5gxnkxaq33g6e7vxq/cancel" }, "version": "85121d411a88b3ab962579be9916247d67196e34ca2d90d8bac15287b144e189" }
Want to make some of these yourself?
Run this model