phospho-app / act-policy
Let's you train an ACT policy from a LeRobot dataset
- Public
- 11 runs
Run phospho-app/act-policy with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
dataset_repo_id |
string
|
Hugging Face dataset ID to train on, LeRobot format > v2.0 expected, i.e. 'LegrandFrederic/dual-setup'
|
|
hugging_face_token |
string
|
Hugging Face API token (used to upload your trained model to your HF profile), find yours here: https://huggingface.co/settings/token
|
|
hf_model_name |
string
|
|
Hugging Face model name, the name of the model to be created, i.e. 'trained-act-replicate'
|
wandb_api_key |
string
|
|
Weights & Biases API key (optional, to track the online training), find yours here: https://wandb.ai/authorize
|
wandb_project |
string
|
ACT-Replicate
|
Weights & Biases project name
|
job_name |
string
|
replicate_training
|
Name for this training job
|
steps |
integer
|
100000
Min: 1 Max: 200000 |
Number of steps to train for
|
batch_size |
integer
|
32
Min: 1 Max: 128 |
Batch size for training
|
{
"type": "object",
"title": "Input",
"required": [
"dataset_repo_id",
"hugging_face_token"
],
"properties": {
"steps": {
"type": "integer",
"title": "Steps",
"default": 100000,
"maximum": 200000,
"minimum": 1,
"x-order": 6,
"description": "Number of steps to train for"
},
"job_name": {
"type": "string",
"title": "Job Name",
"default": "replicate_training",
"x-order": 5,
"description": "Name for this training job"
},
"batch_size": {
"type": "integer",
"title": "Batch Size",
"default": 32,
"maximum": 128,
"minimum": 1,
"x-order": 7,
"description": "Batch size for training"
},
"hf_model_name": {
"type": "string",
"title": "Hf Model Name",
"default": "",
"x-order": 2,
"description": "Hugging Face model name, the name of the model to be created, i.e. 'trained-act-replicate'"
},
"wandb_api_key": {
"type": "string",
"title": "Wandb Api Key",
"format": "password",
"default": "",
"x-order": 3,
"description": "Weights & Biases API key (optional, to track the online training), find yours here: https://wandb.ai/authorize",
"x-cog-secret": true
},
"wandb_project": {
"type": "string",
"title": "Wandb Project",
"default": "ACT-Replicate",
"x-order": 4,
"description": "Weights & Biases project name"
},
"dataset_repo_id": {
"type": "string",
"title": "Dataset Repo Id",
"x-order": 0,
"description": "Hugging Face dataset ID to train on, LeRobot format > v2.0 expected, i.e. 'LegrandFrederic/dual-setup'"
},
"hugging_face_token": {
"type": "string",
"title": "Hugging Face Token",
"format": "password",
"x-order": 1,
"description": "Hugging Face API token (used to upload your trained model to your HF profile), find yours here: https://huggingface.co/settings/token",
"x-cog-secret": true
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{
"type": "string",
"title": "Output",
"format": "uri"
}