✋ This model is not published yet.
You can claim this model if you're @saehoonkim on GitHub. Contact us.
saehoonkim / mindall-e
text-to-image generation
Prediction
saehoonkim/mindall-e:a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256IDnhkvjlm46zfndj4u6bsrvghw3uStatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- "0"
- prompt
- A painting of a monkey with sunglasses in the frame
- num_samples
- "4"
{ "seed": "0", "prompt": "A painting of a monkey with sunglasses in the frame", "num_samples": "4" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "saehoonkim/mindall-e:a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256", { input: { seed: "0", prompt: "A painting of a monkey with sunglasses in the frame", num_samples: "4" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "saehoonkim/mindall-e:a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256", input={ "seed": "0", "prompt": "A painting of a monkey with sunglasses in the frame", "num_samples": "4" } ) # The saehoonkim/mindall-e model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/saehoonkim/mindall-e/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "saehoonkim/mindall-e:a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256", "input": { "seed": "0", "prompt": "A painting of a monkey with sunglasses in the frame", "num_samples": "4" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-12-20T23:55:14.376634Z", "created_at": "2021-12-20T23:54:00.882689Z", "data_removed": false, "error": null, "id": "nhkvjlm46zfndj4u6bsrvghw3u", "input": { "seed": "0", "prompt": "A painting of a monkey with sunglasses in the frame", "num_samples": "4" }, "logs": "\n 0%| | 0/256 [00:00<?, ?it/s]\n 0%| | 1/256 [00:00<01:27, 2.92it/s]\n 1%| | 3/256 [00:00<01:05, 3.89it/s]\n 2%|▏ | 5/256 [00:00<00:49, 5.09it/s]\n 3%|▎ | 7/256 [00:00<00:38, 6.49it/s]\n 4%|▎ | 9/256 [00:00<00:30, 8.06it/s]\n 4%|▍ | 11/256 [00:00<00:25, 9.68it/s]\n 5%|▌ | 13/256 [00:01<00:21, 11.26it/s]\n 6%|▌ | 15/256 [00:01<00:18, 12.71it/s]\n 7%|▋ | 17/256 [00:01<00:17, 13.96it/s]\n 7%|▋ | 19/256 [00:01<00:15, 14.98it/s]\n 8%|▊ | 21/256 [00:01<00:14, 15.75it/s]\n 9%|▉ | 23/256 [00:01<00:14, 16.32it/s]\n 10%|▉ | 25/256 [00:01<00:13, 16.75it/s]\n 11%|█ | 27/256 [00:01<00:13, 17.06it/s]\n 11%|█▏ | 29/256 [00:01<00:13, 17.28it/s]\n 12%|█▏ | 31/256 [00:02<00:19, 11.62it/s]\n 13%|█▎ | 33/256 [00:02<00:17, 12.97it/s]\n 14%|█▎ | 35/256 [00:02<00:15, 14.10it/s]\n 14%|█▍ | 37/256 [00:02<00:14, 15.00it/s]\n 15%|█▌ | 39/256 [00:02<00:13, 15.70it/s]\n 16%|█▌ | 41/256 [00:02<00:13, 16.21it/s]\n 17%|█▋ | 43/256 [00:02<00:12, 16.58it/s]\n 18%|█▊ | 45/256 [00:02<00:12, 16.82it/s]\n 18%|█▊ | 47/256 [00:03<00:12, 16.87it/s]\n 19%|█▉ | 49/256 [00:03<00:12, 16.97it/s]\n 20%|█▉ | 51/256 [00:03<00:12, 17.06it/s]\n 21%|██ | 53/256 [00:03<00:11, 17.10it/s]\n 21%|██▏ | 55/256 [00:03<00:17, 11.78it/s]\n 22%|██▏ | 57/256 [00:03<00:15, 13.00it/s]\n 23%|██▎ | 59/256 [00:03<00:14, 14.02it/s]\n 24%|██▍ | 61/256 [00:04<00:13, 14.81it/s]\n 25%|██▍ | 63/256 [00:04<00:12, 15.41it/s]\n 25%|██▌ | 65/256 [00:04<00:12, 15.86it/s]\n 26%|██▌ | 67/256 [00:04<00:11, 16.17it/s]\n 27%|██▋ | 69/256 [00:04<00:11, 16.30it/s]\n 28%|██▊ | 71/256 [00:04<00:11, 16.39it/s]\n 29%|██▊ | 73/256 [00:04<00:15, 11.61it/s]\n 29%|██▉ | 75/256 [00:05<00:14, 12.79it/s]\n 30%|███ | 77/256 [00:05<00:13, 13.74it/s]\n 31%|███ | 79/256 [00:05<00:12, 14.50it/s]\n 32%|███▏ | 81/256 [00:05<00:11, 15.07it/s]\n 32%|███▏ | 83/256 [00:05<00:11, 15.49it/s]\n 33%|███▎ | 85/256 [00:05<00:10, 15.79it/s]\n 34%|███▍ | 87/256 [00:05<00:10, 15.96it/s]\n 35%|███▍ | 89/256 [00:06<00:14, 11.33it/s]\n 36%|███▌ | 91/256 [00:06<00:13, 12.50it/s]\n 36%|███▋ | 93/256 [00:06<00:12, 13.47it/s]\n 37%|███▋ | 95/256 [00:06<00:11, 14.23it/s]\n 38%|███▊ | 97/256 [00:06<00:10, 14.80it/s]\n 39%|███▊ | 99/256 [00:06<00:10, 15.22it/s]\n 39%|███▉ | 101/256 [00:06<00:09, 15.51it/s]\n 40%|████ | 103/256 [00:07<00:13, 11.27it/s]\n 41%|████ | 105/256 [00:07<00:12, 12.41it/s]\n 42%|████▏ | 107/256 [00:07<00:11, 13.33it/s]\n 43%|████▎ | 109/256 [00:07<00:10, 14.06it/s]\n 43%|████▎ | 111/256 [00:07<00:09, 14.61it/s]\n 44%|████▍ | 113/256 [00:07<00:09, 15.01it/s]\n 45%|████▍ | 115/256 [00:07<00:09, 15.28it/s]\n 46%|████▌ | 117/256 [00:08<00:12, 11.17it/s]\n 46%|████▋ | 119/256 [00:08<00:11, 12.27it/s]\n 47%|████▋ | 121/256 [00:08<00:10, 13.17it/s]\n 48%|████▊ | 123/256 [00:08<00:09, 13.87it/s]\n 49%|████▉ | 125/256 [00:08<00:09, 14.40it/s]\n 50%|████▉ | 127/256 [00:08<00:08, 14.78it/s]\n 50%|█████ | 129/256 [00:09<00:11, 11.05it/s]\n 51%|█████ | 131/256 [00:09<00:10, 12.12it/s]\n 52%|█████▏ | 133/256 [00:09<00:09, 12.98it/s]\n 53%|█████▎ | 135/256 [00:09<00:08, 13.66it/s]\n 54%|█████▎ | 137/256 [00:09<00:08, 14.20it/s]\n 54%|█████▍ | 139/256 [00:09<00:10, 10.88it/s]\n 55%|█████▌ | 141/256 [00:10<00:09, 11.95it/s]\n 56%|█████▌ | 143/256 [00:10<00:08, 12.83it/s]\n 57%|█████▋ | 145/256 [00:10<00:08, 13.50it/s]\n 57%|█████▋ | 147/256 [00:10<00:07, 14.01it/s]\n 58%|█████▊ | 149/256 [00:10<00:07, 14.38it/s]\n 59%|█████▉ | 151/256 [00:10<00:09, 10.83it/s]\n 60%|█████▉ | 153/256 [00:10<00:08, 11.87it/s]\n 61%|██████ | 155/256 [00:11<00:07, 12.72it/s]\n 61%|██████▏ | 157/256 [00:11<00:07, 13.38it/s]\n 62%|██████▏ | 159/256 [00:11<00:06, 13.87it/s]\n 63%|██████▎ | 161/256 [00:11<00:08, 10.66it/s]\n 64%|██████▎ | 163/256 [00:11<00:07, 11.69it/s]\n 64%|██████▍ | 165/256 [00:11<00:07, 12.53it/s]\n 65%|██████▌ | 167/256 [00:12<00:06, 13.18it/s]\n 66%|██████▌ | 169/256 [00:12<00:06, 13.65it/s]\n 67%|██████▋ | 171/256 [00:12<00:08, 10.51it/s]\n 68%|██████▊ | 173/256 [00:12<00:07, 11.53it/s]\n 68%|██████▊ | 175/256 [00:12<00:06, 12.36it/s]\n 69%|██████▉ | 177/256 [00:12<00:06, 13.01it/s]\n 70%|██████▉ | 179/256 [00:13<00:07, 10.24it/s]\n 71%|███████ | 181/256 [00:13<00:06, 11.29it/s]\n 71%|███████▏ | 183/256 [00:13<00:06, 12.14it/s]\n 72%|███████▏ | 185/256 [00:13<00:05, 12.82it/s]\n 73%|███████▎ | 187/256 [00:13<00:05, 13.33it/s]\n 74%|███████▍ | 189/256 [00:14<00:06, 10.42it/s]\n 75%|███████▍ | 191/256 [00:14<00:05, 11.40it/s]\n 75%|███████▌ | 193/256 [00:14<00:05, 12.20it/s]\n 76%|███████▌ | 195/256 [00:14<00:04, 12.83it/s]\n 77%|███████▋ | 197/256 [00:14<00:05, 10.21it/s]\n 78%|███████▊ | 199/256 [00:14<00:05, 11.18it/s]\n 79%|███████▊ | 201/256 [00:14<00:04, 12.00it/s]\n 79%|███████▉ | 203/256 [00:15<00:04, 12.62it/s]\n 80%|████████ | 205/256 [00:15<00:05, 10.11it/s]\n 81%|████████ | 207/256 [00:15<00:04, 11.09it/s]\n 82%|████████▏ | 209/256 [00:15<00:03, 11.91it/s]\n 82%|████████▏ | 211/256 [00:15<00:03, 12.53it/s]\n 83%|████████▎ | 213/256 [00:16<00:04, 10.05it/s]\n 84%|████████▍ | 215/256 [00:16<00:03, 11.02it/s]\n 85%|████████▍ | 217/256 [00:16<00:03, 11.82it/s]\n 86%|████████▌ | 219/256 [00:16<00:02, 12.42it/s]\n 86%|████████▋ | 221/256 [00:16<00:03, 9.93it/s]\n 87%|████████▋ | 223/256 [00:16<00:03, 10.90it/s]\n 88%|████████▊ | 225/256 [00:17<00:02, 11.70it/s]\n 89%|████████▊ | 227/256 [00:17<00:02, 9.74it/s]\n 89%|████████▉ | 229/256 [00:17<00:02, 10.73it/s]\n 90%|█████████ | 231/256 [00:17<00:02, 11.54it/s]\n 91%|█████████ | 233/256 [00:17<00:01, 12.18it/s]\n 92%|█████████▏| 235/256 [00:18<00:02, 9.75it/s]\n 93%|█████████▎| 237/256 [00:18<00:01, 10.71it/s]\n 93%|█████████▎| 239/256 [00:18<00:01, 11.49it/s]\n 94%|█████████▍| 241/256 [00:18<00:01, 9.53it/s]\n 95%|█████████▍| 243/256 [00:18<00:01, 10.52it/s]\n 96%|█████████▌| 245/256 [00:19<00:00, 11.33it/s]\n 96%|█████████▋| 247/256 [00:19<00:00, 9.52it/s]\n 97%|█████████▋| 249/256 [00:19<00:00, 10.49it/s]\n 98%|█████████▊| 251/256 [00:19<00:00, 11.28it/s]\n 99%|█████████▉| 253/256 [00:19<00:00, 9.52it/s]\n100%|█████████▉| 255/256 [00:20<00:00, 10.47it/s]\n100%|██████████| 256/256 [00:20<00:00, 12.73it/s]", "metrics": { "predict_time": 22.519527, "total_time": 73.493945 }, "output": [ { "file": "https://replicate.delivery/mgxm/0b561e91-1b5a-4100-94ba-b31f50d2155d/out.png" } ], "started_at": "2021-12-20T23:54:51.857107Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nhkvjlm46zfndj4u6bsrvghw3u", "cancel": "https://api.replicate.com/v1/predictions/nhkvjlm46zfndj4u6bsrvghw3u/cancel" }, "version": "a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256" }
Generated in0%| | 0/256 [00:00<?, ?it/s] 0%| | 1/256 [00:00<01:27, 2.92it/s] 1%| | 3/256 [00:00<01:05, 3.89it/s] 2%|▏ | 5/256 [00:00<00:49, 5.09it/s] 3%|▎ | 7/256 [00:00<00:38, 6.49it/s] 4%|▎ | 9/256 [00:00<00:30, 8.06it/s] 4%|▍ | 11/256 [00:00<00:25, 9.68it/s] 5%|▌ | 13/256 [00:01<00:21, 11.26it/s] 6%|▌ | 15/256 [00:01<00:18, 12.71it/s] 7%|▋ | 17/256 [00:01<00:17, 13.96it/s] 7%|▋ | 19/256 [00:01<00:15, 14.98it/s] 8%|▊ | 21/256 [00:01<00:14, 15.75it/s] 9%|▉ | 23/256 [00:01<00:14, 16.32it/s] 10%|▉ | 25/256 [00:01<00:13, 16.75it/s] 11%|█ | 27/256 [00:01<00:13, 17.06it/s] 11%|█▏ | 29/256 [00:01<00:13, 17.28it/s] 12%|█▏ | 31/256 [00:02<00:19, 11.62it/s] 13%|█▎ | 33/256 [00:02<00:17, 12.97it/s] 14%|█▎ | 35/256 [00:02<00:15, 14.10it/s] 14%|█▍ | 37/256 [00:02<00:14, 15.00it/s] 15%|█▌ | 39/256 [00:02<00:13, 15.70it/s] 16%|█▌ | 41/256 [00:02<00:13, 16.21it/s] 17%|█▋ | 43/256 [00:02<00:12, 16.58it/s] 18%|█▊ | 45/256 [00:02<00:12, 16.82it/s] 18%|█▊ | 47/256 [00:03<00:12, 16.87it/s] 19%|█▉ | 49/256 [00:03<00:12, 16.97it/s] 20%|█▉ | 51/256 [00:03<00:12, 17.06it/s] 21%|██ | 53/256 [00:03<00:11, 17.10it/s] 21%|██▏ | 55/256 [00:03<00:17, 11.78it/s] 22%|██▏ | 57/256 [00:03<00:15, 13.00it/s] 23%|██▎ | 59/256 [00:03<00:14, 14.02it/s] 24%|██▍ | 61/256 [00:04<00:13, 14.81it/s] 25%|██▍ | 63/256 [00:04<00:12, 15.41it/s] 25%|██▌ | 65/256 [00:04<00:12, 15.86it/s] 26%|██▌ | 67/256 [00:04<00:11, 16.17it/s] 27%|██▋ | 69/256 [00:04<00:11, 16.30it/s] 28%|██▊ | 71/256 [00:04<00:11, 16.39it/s] 29%|██▊ | 73/256 [00:04<00:15, 11.61it/s] 29%|██▉ | 75/256 [00:05<00:14, 12.79it/s] 30%|███ | 77/256 [00:05<00:13, 13.74it/s] 31%|███ | 79/256 [00:05<00:12, 14.50it/s] 32%|███▏ | 81/256 [00:05<00:11, 15.07it/s] 32%|███▏ | 83/256 [00:05<00:11, 15.49it/s] 33%|███▎ | 85/256 [00:05<00:10, 15.79it/s] 34%|███▍ | 87/256 [00:05<00:10, 15.96it/s] 35%|███▍ | 89/256 [00:06<00:14, 11.33it/s] 36%|███▌ | 91/256 [00:06<00:13, 12.50it/s] 36%|███▋ | 93/256 [00:06<00:12, 13.47it/s] 37%|███▋ | 95/256 [00:06<00:11, 14.23it/s] 38%|███▊ | 97/256 [00:06<00:10, 14.80it/s] 39%|███▊ | 99/256 [00:06<00:10, 15.22it/s] 39%|███▉ | 101/256 [00:06<00:09, 15.51it/s] 40%|████ | 103/256 [00:07<00:13, 11.27it/s] 41%|████ | 105/256 [00:07<00:12, 12.41it/s] 42%|████▏ | 107/256 [00:07<00:11, 13.33it/s] 43%|████▎ | 109/256 [00:07<00:10, 14.06it/s] 43%|████▎ | 111/256 [00:07<00:09, 14.61it/s] 44%|████▍ | 113/256 [00:07<00:09, 15.01it/s] 45%|████▍ | 115/256 [00:07<00:09, 15.28it/s] 46%|████▌ | 117/256 [00:08<00:12, 11.17it/s] 46%|████▋ | 119/256 [00:08<00:11, 12.27it/s] 47%|████▋ | 121/256 [00:08<00:10, 13.17it/s] 48%|████▊ | 123/256 [00:08<00:09, 13.87it/s] 49%|████▉ | 125/256 [00:08<00:09, 14.40it/s] 50%|████▉ | 127/256 [00:08<00:08, 14.78it/s] 50%|█████ | 129/256 [00:09<00:11, 11.05it/s] 51%|█████ | 131/256 [00:09<00:10, 12.12it/s] 52%|█████▏ | 133/256 [00:09<00:09, 12.98it/s] 53%|█████▎ | 135/256 [00:09<00:08, 13.66it/s] 54%|█████▎ | 137/256 [00:09<00:08, 14.20it/s] 54%|█████▍ | 139/256 [00:09<00:10, 10.88it/s] 55%|█████▌ | 141/256 [00:10<00:09, 11.95it/s] 56%|█████▌ | 143/256 [00:10<00:08, 12.83it/s] 57%|█████▋ | 145/256 [00:10<00:08, 13.50it/s] 57%|█████▋ | 147/256 [00:10<00:07, 14.01it/s] 58%|█████▊ | 149/256 [00:10<00:07, 14.38it/s] 59%|█████▉ | 151/256 [00:10<00:09, 10.83it/s] 60%|█████▉ | 153/256 [00:10<00:08, 11.87it/s] 61%|██████ | 155/256 [00:11<00:07, 12.72it/s] 61%|██████▏ | 157/256 [00:11<00:07, 13.38it/s] 62%|██████▏ | 159/256 [00:11<00:06, 13.87it/s] 63%|██████▎ | 161/256 [00:11<00:08, 10.66it/s] 64%|██████▎ | 163/256 [00:11<00:07, 11.69it/s] 64%|██████▍ | 165/256 [00:11<00:07, 12.53it/s] 65%|██████▌ | 167/256 [00:12<00:06, 13.18it/s] 66%|██████▌ | 169/256 [00:12<00:06, 13.65it/s] 67%|██████▋ | 171/256 [00:12<00:08, 10.51it/s] 68%|██████▊ | 173/256 [00:12<00:07, 11.53it/s] 68%|██████▊ | 175/256 [00:12<00:06, 12.36it/s] 69%|██████▉ | 177/256 [00:12<00:06, 13.01it/s] 70%|██████▉ | 179/256 [00:13<00:07, 10.24it/s] 71%|███████ | 181/256 [00:13<00:06, 11.29it/s] 71%|███████▏ | 183/256 [00:13<00:06, 12.14it/s] 72%|███████▏ | 185/256 [00:13<00:05, 12.82it/s] 73%|███████▎ | 187/256 [00:13<00:05, 13.33it/s] 74%|███████▍ | 189/256 [00:14<00:06, 10.42it/s] 75%|███████▍ | 191/256 [00:14<00:05, 11.40it/s] 75%|███████▌ | 193/256 [00:14<00:05, 12.20it/s] 76%|███████▌ | 195/256 [00:14<00:04, 12.83it/s] 77%|███████▋ | 197/256 [00:14<00:05, 10.21it/s] 78%|███████▊ | 199/256 [00:14<00:05, 11.18it/s] 79%|███████▊ | 201/256 [00:14<00:04, 12.00it/s] 79%|███████▉ | 203/256 [00:15<00:04, 12.62it/s] 80%|████████ | 205/256 [00:15<00:05, 10.11it/s] 81%|████████ | 207/256 [00:15<00:04, 11.09it/s] 82%|████████▏ | 209/256 [00:15<00:03, 11.91it/s] 82%|████████▏ | 211/256 [00:15<00:03, 12.53it/s] 83%|████████▎ | 213/256 [00:16<00:04, 10.05it/s] 84%|████████▍ | 215/256 [00:16<00:03, 11.02it/s] 85%|████████▍ | 217/256 [00:16<00:03, 11.82it/s] 86%|████████▌ | 219/256 [00:16<00:02, 12.42it/s] 86%|████████▋ | 221/256 [00:16<00:03, 9.93it/s] 87%|████████▋ | 223/256 [00:16<00:03, 10.90it/s] 88%|████████▊ | 225/256 [00:17<00:02, 11.70it/s] 89%|████████▊ | 227/256 [00:17<00:02, 9.74it/s] 89%|████████▉ | 229/256 [00:17<00:02, 10.73it/s] 90%|█████████ | 231/256 [00:17<00:02, 11.54it/s] 91%|█████████ | 233/256 [00:17<00:01, 12.18it/s] 92%|█████████▏| 235/256 [00:18<00:02, 9.75it/s] 93%|█████████▎| 237/256 [00:18<00:01, 10.71it/s] 93%|█████████▎| 239/256 [00:18<00:01, 11.49it/s] 94%|█████████▍| 241/256 [00:18<00:01, 9.53it/s] 95%|█████████▍| 243/256 [00:18<00:01, 10.52it/s] 96%|█████████▌| 245/256 [00:19<00:00, 11.33it/s] 96%|█████████▋| 247/256 [00:19<00:00, 9.52it/s] 97%|█████████▋| 249/256 [00:19<00:00, 10.49it/s] 98%|█████████▊| 251/256 [00:19<00:00, 11.28it/s] 99%|█████████▉| 253/256 [00:19<00:00, 9.52it/s] 100%|█████████▉| 255/256 [00:20<00:00, 10.47it/s] 100%|██████████| 256/256 [00:20<00:00, 12.73it/s]
Prediction
saehoonkim/mindall-e:be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643aIDrmlz3ef5uzeizewx4udlhmxax4StatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- 0
- prompt
- A horse eating a cupcake
- num_samples
- "4"
{ "seed": 0, "prompt": "A horse eating a cupcake", "num_samples": "4" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "saehoonkim/mindall-e:be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643a", { input: { seed: 0, prompt: "A horse eating a cupcake", num_samples: "4" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "saehoonkim/mindall-e:be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643a", input={ "seed": 0, "prompt": "A horse eating a cupcake", "num_samples": "4" } ) # The saehoonkim/mindall-e model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/saehoonkim/mindall-e/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "saehoonkim/mindall-e:be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643a", "input": { "seed": 0, "prompt": "A horse eating a cupcake", "num_samples": "4" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-12-21T00:23:11.742778Z", "created_at": "2021-12-21T00:22:25.577439Z", "data_removed": false, "error": null, "id": "rmlz3ef5uzeizewx4udlhmxax4", "input": { "seed": 0, "prompt": "A horse eating a cupcake", "num_samples": "4" }, "logs": "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\nTo disable this warning, you can either:\n\t- Avoid using `tokenizers` before the fork if possible\n\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\nhuggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\nTo disable this warning, you can either:\n\t- Avoid using `tokenizers` before the fork if possible\n\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n\n 0%| | 0/256 [00:00<?, ?it/s]\n 0%| | 1/256 [00:00<01:31, 2.79it/s]\n 1%| | 3/256 [00:00<01:09, 3.67it/s]\n 2%|▏ | 5/256 [00:00<00:53, 4.71it/s]\n 3%|▎ | 7/256 [00:00<00:42, 5.87it/s]\n 4%|▎ | 9/256 [00:00<00:35, 6.99it/s]\n 4%|▍ | 11/256 [00:01<00:29, 8.17it/s]\n 5%|▌ | 13/256 [00:01<00:26, 9.26it/s]\n 6%|▌ | 15/256 [00:01<00:23, 10.21it/s]\n 7%|▋ | 17/256 [00:01<00:21, 10.97it/s]\n 7%|▋ | 19/256 [00:01<00:20, 11.57it/s]\n 8%|▊ | 21/256 [00:01<00:19, 11.95it/s]\n 9%|▉ | 23/256 [00:02<00:19, 12.19it/s]\n 10%|▉ | 25/256 [00:02<00:18, 12.42it/s]\n 11%|█ | 27/256 [00:02<00:18, 12.56it/s]\n 11%|█▏ | 29/256 [00:02<00:17, 12.65it/s]\n 12%|█▏ | 31/256 [00:02<00:17, 12.66it/s]\n 13%|█▎ | 33/256 [00:02<00:17, 12.64it/s]\n 14%|█▎ | 35/256 [00:02<00:17, 12.54it/s]\n 14%|█▍ | 37/256 [00:03<00:17, 12.50it/s]\n 15%|█▌ | 39/256 [00:03<00:17, 12.46it/s]\n 16%|█▌ | 41/256 [00:03<00:17, 12.44it/s]\n 17%|█▋ | 43/256 [00:03<00:17, 12.38it/s]\n 18%|█▊ | 45/256 [00:03<00:17, 12.28it/s]\n 18%|█▊ | 47/256 [00:03<00:17, 12.15it/s]\n 19%|█▉ | 49/256 [00:04<00:17, 12.10it/s]\n 20%|█▉ | 51/256 [00:04<00:17, 12.04it/s]\n 21%|██ | 53/256 [00:04<00:16, 11.98it/s]\n 21%|██▏ | 55/256 [00:04<00:16, 11.94it/s]\n 22%|██▏ | 57/256 [00:04<00:16, 11.85it/s]\n 23%|██▎ | 59/256 [00:04<00:16, 11.74it/s]\n 24%|██▍ | 61/256 [00:05<00:16, 11.67it/s]\n 25%|██▍ | 63/256 [00:05<00:16, 11.63it/s]\n 25%|██▌ | 65/256 [00:05<00:16, 11.57it/s]\n 26%|██▌ | 67/256 [00:05<00:16, 11.52it/s]\n 27%|██▋ | 69/256 [00:05<00:16, 11.43it/s]\n 28%|██▊ | 71/256 [00:06<00:16, 11.34it/s]\n 29%|██▊ | 73/256 [00:06<00:16, 11.28it/s]\n 29%|██▉ | 75/256 [00:06<00:16, 11.21it/s]\n 30%|███ | 77/256 [00:06<00:16, 11.15it/s]\n 31%|███ | 79/256 [00:06<00:15, 11.08it/s]\n 32%|███▏ | 81/256 [00:06<00:15, 11.01it/s]\n 32%|███▏ | 83/256 [00:07<00:15, 10.94it/s]\n 33%|███▎ | 85/256 [00:07<00:15, 10.89it/s]\n 34%|███▍ | 87/256 [00:07<00:15, 10.85it/s]\n 35%|███▍ | 89/256 [00:07<00:15, 10.81it/s]\n 36%|███▌ | 91/256 [00:07<00:15, 10.73it/s]\n 36%|███▋ | 93/256 [00:08<00:15, 10.68it/s]\n 37%|███▋ | 95/256 [00:08<00:15, 10.62it/s]\n 38%|███▊ | 97/256 [00:08<00:15, 10.58it/s]\n 39%|███▊ | 99/256 [00:08<00:14, 10.51it/s]\n 39%|███▉ | 101/256 [00:08<00:14, 10.46it/s]\n 40%|████ | 103/256 [00:09<00:14, 10.38it/s]\n 41%|████ | 105/256 [00:09<00:14, 10.35it/s]\n 42%|████▏ | 107/256 [00:09<00:14, 10.29it/s]\n 43%|████▎ | 109/256 [00:09<00:14, 10.23it/s]\n 43%|████▎ | 111/256 [00:09<00:14, 10.19it/s]\n 44%|████▍ | 113/256 [00:09<00:14, 10.14it/s]\n 45%|████▍ | 115/256 [00:10<00:13, 10.10it/s]\n 46%|████▌ | 117/256 [00:10<00:13, 10.04it/s]\n 46%|████▋ | 119/256 [00:10<00:13, 9.99it/s]\n 47%|████▋ | 120/256 [00:10<00:13, 9.94it/s]\n 47%|████▋ | 121/256 [00:10<00:13, 9.89it/s]\n 48%|████▊ | 122/256 [00:10<00:13, 9.86it/s]\n 48%|████▊ | 123/256 [00:11<00:13, 9.83it/s]\n 48%|████▊ | 124/256 [00:11<00:13, 9.80it/s]\n 49%|████▉ | 125/256 [00:11<00:13, 9.79it/s]\n 49%|████▉ | 126/256 [00:11<00:13, 9.77it/s]\n 50%|████▉ | 127/256 [00:11<00:13, 9.73it/s]\n 50%|█████ | 128/256 [00:11<00:13, 9.69it/s]\n 50%|█████ | 129/256 [00:11<00:13, 9.66it/s]\n 51%|█████ | 130/256 [00:11<00:13, 9.64it/s]\n 51%|█████ | 131/256 [00:11<00:13, 9.61it/s]\n 52%|█████▏ | 132/256 [00:11<00:12, 9.58it/s]\n 52%|█████▏ | 133/256 [00:12<00:12, 9.57it/s]\n 52%|█████▏ | 134/256 [00:12<00:12, 9.54it/s]\n 53%|█████▎ | 135/256 [00:12<00:12, 9.52it/s]\n 53%|█████▎ | 136/256 [00:12<00:12, 9.49it/s]\n 54%|█████▎ | 137/256 [00:12<00:12, 9.47it/s]\n 54%|█████▍ | 138/256 [00:12<00:12, 9.47it/s]\n 54%|█████▍ | 139/256 [00:12<00:12, 9.42it/s]\n 55%|█████▍ | 140/256 [00:12<00:12, 9.39it/s]\n 55%|█████▌ | 141/256 [00:12<00:12, 9.36it/s]\n 55%|█████▌ | 142/256 [00:13<00:12, 9.33it/s]\n 56%|█████▌ | 143/256 [00:13<00:12, 9.30it/s]\n 56%|█████▋ | 144/256 [00:13<00:12, 9.30it/s]\n 57%|█████▋ | 145/256 [00:13<00:11, 9.29it/s]\n 57%|█████▋ | 146/256 [00:13<00:11, 9.25it/s]\n 57%|█████▋ | 147/256 [00:13<00:11, 9.24it/s]\n 58%|█████▊ | 148/256 [00:13<00:11, 9.21it/s]\n 58%|█████▊ | 149/256 [00:13<00:11, 9.19it/s]\n 59%|█████▊ | 150/256 [00:13<00:11, 9.18it/s]\n 59%|█████▉ | 151/256 [00:13<00:11, 9.15it/s]\n 59%|█████▉ | 152/256 [00:14<00:11, 9.13it/s]\n 60%|█████▉ | 153/256 [00:14<00:11, 9.12it/s]\n 60%|██████ | 154/256 [00:14<00:11, 9.10it/s]\n 61%|██████ | 155/256 [00:14<00:11, 9.07it/s]\n 61%|██████ | 156/256 [00:14<00:11, 9.04it/s]\n 61%|██████▏ | 157/256 [00:14<00:10, 9.04it/s]\n 62%|██████▏ | 158/256 [00:14<00:10, 9.02it/s]\n 62%|██████▏ | 159/256 [00:14<00:10, 9.00it/s]\n 62%|██████▎ | 160/256 [00:14<00:10, 8.98it/s]\n 63%|██████▎ | 161/256 [00:15<00:10, 8.96it/s]\n 63%|██████▎ | 162/256 [00:15<00:10, 8.93it/s]\n 64%|██████▎ | 163/256 [00:15<00:10, 8.89it/s]\n 64%|██████▍ | 164/256 [00:15<00:10, 8.87it/s]\n 64%|██████▍ | 165/256 [00:15<00:10, 8.85it/s]\n 65%|██████▍ | 166/256 [00:15<00:10, 8.84it/s]\n 65%|██████▌ | 167/256 [00:15<00:10, 8.82it/s]\n 66%|██████▌ | 168/256 [00:15<00:10, 8.80it/s]\n 66%|██████▌ | 169/256 [00:16<00:09, 8.79it/s]\n 66%|██████▋ | 170/256 [00:16<00:09, 8.76it/s]\n 67%|██████▋ | 171/256 [00:16<00:09, 8.73it/s]\n 67%|██████▋ | 172/256 [00:16<00:09, 8.72it/s]\n 68%|██████▊ | 173/256 [00:16<00:09, 8.69it/s]\n 68%|██████▊ | 174/256 [00:16<00:09, 8.66it/s]\n 68%|██████▊ | 175/256 [00:16<00:09, 8.65it/s]\n 69%|██████▉ | 176/256 [00:16<00:09, 8.64it/s]\n 69%|██████▉ | 177/256 [00:16<00:09, 8.63it/s]\n 70%|██████▉ | 178/256 [00:17<00:09, 8.60it/s]\n 70%|██████▉ | 179/256 [00:17<00:08, 8.58it/s]\n 70%|███████ | 180/256 [00:17<00:08, 8.56it/s]\n 71%|███████ | 181/256 [00:17<00:08, 8.53it/s]\n 71%|███████ | 182/256 [00:17<00:08, 8.50it/s]\n 71%|███████▏ | 183/256 [00:17<00:08, 8.48it/s]\n 72%|███████▏ | 184/256 [00:17<00:08, 8.47it/s]\n 72%|███████▏ | 185/256 [00:17<00:08, 8.46it/s]\n 73%|███████▎ | 186/256 [00:17<00:08, 8.46it/s]\n 73%|███████▎ | 187/256 [00:18<00:08, 8.43it/s]\n 73%|███████▎ | 188/256 [00:18<00:08, 8.40it/s]\n 74%|███████▍ | 189/256 [00:18<00:07, 8.39it/s]\n 74%|███████▍ | 190/256 [00:18<00:07, 8.35it/s]\n 75%|███████▍ | 191/256 [00:18<00:07, 8.32it/s]\n 75%|███████▌ | 192/256 [00:18<00:07, 8.31it/s]\n 75%|███████▌ | 193/256 [00:18<00:07, 8.31it/s]\n 76%|███████▌ | 194/256 [00:18<00:07, 8.28it/s]\n 76%|███████▌ | 195/256 [00:19<00:07, 8.27it/s]\n 77%|███████▋ | 196/256 [00:19<00:07, 7.56it/s]\n 77%|███████▋ | 197/256 [00:19<00:07, 7.78it/s]\n 77%|███████▋ | 198/256 [00:19<00:07, 7.91it/s]\n 78%|███████▊ | 199/256 [00:19<00:07, 7.99it/s]\n 78%|███████▊ | 200/256 [00:19<00:06, 8.05it/s]\n 79%|███████▊ | 201/256 [00:19<00:06, 8.09it/s]\n 79%|███████▉ | 202/256 [00:19<00:06, 8.11it/s]\n 79%|███████▉ | 203/256 [00:20<00:06, 8.11it/s]\n 80%|███████▉ | 204/256 [00:20<00:06, 7.94it/s]\n 80%|████████ | 205/256 [00:20<00:06, 7.98it/s]\n 80%|████████ | 206/256 [00:20<00:06, 8.02it/s]\n 81%|████████ | 207/256 [00:20<00:06, 8.04it/s]\n 81%|████████▏ | 208/256 [00:20<00:05, 8.05it/s]\n 82%|████████▏ | 209/256 [00:20<00:05, 8.06it/s]\n 82%|████████▏ | 210/256 [00:20<00:05, 8.02it/s]\n 82%|████████▏ | 211/256 [00:21<00:05, 7.97it/s]\n 83%|████████▎ | 212/256 [00:21<00:05, 7.92it/s]\n 83%|████████▎ | 213/256 [00:21<00:05, 7.91it/s]\n 84%|████████▎ | 214/256 [00:21<00:05, 7.92it/s]\n 84%|████████▍ | 215/256 [00:21<00:05, 7.93it/s]\n 84%|████████▍ | 216/256 [00:21<00:05, 7.93it/s]\n 85%|████████▍ | 217/256 [00:21<00:04, 7.91it/s]\n 85%|████████▌ | 218/256 [00:21<00:04, 7.88it/s]\n 86%|████████▌ | 219/256 [00:22<00:04, 7.82it/s]\n 86%|████████▌ | 220/256 [00:22<00:04, 7.79it/s]\n 86%|████████▋ | 221/256 [00:22<00:04, 7.78it/s]\n 87%|████████▋ | 222/256 [00:22<00:04, 7.80it/s]\n 87%|████████▋ | 223/256 [00:22<00:04, 7.81it/s]\n 88%|████████▊ | 224/256 [00:22<00:04, 7.80it/s]\n 88%|████████▊ | 225/256 [00:22<00:03, 7.80it/s]\n 88%|████████▊ | 226/256 [00:23<00:03, 7.76it/s]\n 89%|████████▊ | 227/256 [00:23<00:03, 7.72it/s]\n 89%|████████▉ | 228/256 [00:23<00:03, 7.68it/s]\n 89%|████████▉ | 229/256 [00:23<00:03, 7.66it/s]\n 90%|████████▉ | 230/256 [00:23<00:03, 7.65it/s]\n 90%|█████████ | 231/256 [00:23<00:03, 7.66it/s]\n 91%|█████████ | 232/256 [00:23<00:03, 7.65it/s]\n 91%|█████████ | 233/256 [00:23<00:03, 7.64it/s]\n 91%|█████████▏| 234/256 [00:24<00:02, 7.61it/s]\n 92%|█████████▏| 235/256 [00:24<00:02, 7.58it/s]\n 92%|█████████▏| 236/256 [00:24<00:02, 7.55it/s]\n 93%|█████████▎| 237/256 [00:24<00:02, 7.54it/s]\n 93%|█████████▎| 238/256 [00:24<00:02, 7.54it/s]\n 93%|█████████▎| 239/256 [00:24<00:02, 7.54it/s]\n 94%|█████████▍| 240/256 [00:24<00:02, 7.55it/s]\n 94%|█████████▍| 241/256 [00:24<00:01, 7.54it/s]\n 95%|█████████▍| 242/256 [00:25<00:01, 7.50it/s]\n 95%|█████████▍| 243/256 [00:25<00:01, 7.46it/s]\n 95%|█████████▌| 244/256 [00:25<00:01, 7.45it/s]\n 96%|█████████▌| 245/256 [00:25<00:01, 7.44it/s]\n 96%|█████████▌| 246/256 [00:25<00:01, 7.43it/s]\n 96%|█████████▋| 247/256 [00:25<00:01, 7.42it/s]\n 97%|█████████▋| 248/256 [00:25<00:01, 7.42it/s]\n 97%|█████████▋| 249/256 [00:26<00:00, 7.40it/s]\n 98%|█████████▊| 250/256 [00:26<00:00, 7.38it/s]\n 98%|█████████▊| 251/256 [00:26<00:00, 7.36it/s]\n 98%|█████████▊| 252/256 [00:26<00:00, 7.34it/s]\n 99%|█████████▉| 253/256 [00:26<00:00, 7.35it/s]\n 99%|█████████▉| 254/256 [00:26<00:00, 7.33it/s]\n100%|█████████▉| 255/256 [00:26<00:00, 7.32it/s]\n100%|██████████| 256/256 [00:27<00:00, 7.30it/s]\n100%|██████████| 256/256 [00:27<00:00, 9.47it/s]", "metrics": { "predict_time": 30.866151, "total_time": 46.165339 }, "output": [ { "file": "https://replicate.delivery/mgxm/49e14eb2-d112-4cb4-919d-63b2283a456c/out.png" } ], "started_at": "2021-12-21T00:22:40.876627Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rmlz3ef5uzeizewx4udlhmxax4", "cancel": "https://api.replicate.com/v1/predictions/rmlz3ef5uzeizewx4udlhmxax4/cancel" }, "version": "be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643a" }
Generated inhuggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) 0%| | 0/256 [00:00<?, ?it/s] 0%| | 1/256 [00:00<01:31, 2.79it/s] 1%| | 3/256 [00:00<01:09, 3.67it/s] 2%|▏ | 5/256 [00:00<00:53, 4.71it/s] 3%|▎ | 7/256 [00:00<00:42, 5.87it/s] 4%|▎ | 9/256 [00:00<00:35, 6.99it/s] 4%|▍ | 11/256 [00:01<00:29, 8.17it/s] 5%|▌ | 13/256 [00:01<00:26, 9.26it/s] 6%|▌ | 15/256 [00:01<00:23, 10.21it/s] 7%|▋ | 17/256 [00:01<00:21, 10.97it/s] 7%|▋ | 19/256 [00:01<00:20, 11.57it/s] 8%|▊ | 21/256 [00:01<00:19, 11.95it/s] 9%|▉ | 23/256 [00:02<00:19, 12.19it/s] 10%|▉ | 25/256 [00:02<00:18, 12.42it/s] 11%|█ | 27/256 [00:02<00:18, 12.56it/s] 11%|█▏ | 29/256 [00:02<00:17, 12.65it/s] 12%|█▏ | 31/256 [00:02<00:17, 12.66it/s] 13%|█▎ | 33/256 [00:02<00:17, 12.64it/s] 14%|█▎ | 35/256 [00:02<00:17, 12.54it/s] 14%|█▍ | 37/256 [00:03<00:17, 12.50it/s] 15%|█▌ | 39/256 [00:03<00:17, 12.46it/s] 16%|█▌ | 41/256 [00:03<00:17, 12.44it/s] 17%|█▋ | 43/256 [00:03<00:17, 12.38it/s] 18%|█▊ | 45/256 [00:03<00:17, 12.28it/s] 18%|█▊ | 47/256 [00:03<00:17, 12.15it/s] 19%|█▉ | 49/256 [00:04<00:17, 12.10it/s] 20%|█▉ | 51/256 [00:04<00:17, 12.04it/s] 21%|██ | 53/256 [00:04<00:16, 11.98it/s] 21%|██▏ | 55/256 [00:04<00:16, 11.94it/s] 22%|██▏ | 57/256 [00:04<00:16, 11.85it/s] 23%|██▎ | 59/256 [00:04<00:16, 11.74it/s] 24%|██▍ | 61/256 [00:05<00:16, 11.67it/s] 25%|██▍ | 63/256 [00:05<00:16, 11.63it/s] 25%|██▌ | 65/256 [00:05<00:16, 11.57it/s] 26%|██▌ | 67/256 [00:05<00:16, 11.52it/s] 27%|██▋ | 69/256 [00:05<00:16, 11.43it/s] 28%|██▊ | 71/256 [00:06<00:16, 11.34it/s] 29%|██▊ | 73/256 [00:06<00:16, 11.28it/s] 29%|██▉ | 75/256 [00:06<00:16, 11.21it/s] 30%|███ | 77/256 [00:06<00:16, 11.15it/s] 31%|███ | 79/256 [00:06<00:15, 11.08it/s] 32%|███▏ | 81/256 [00:06<00:15, 11.01it/s] 32%|███▏ | 83/256 [00:07<00:15, 10.94it/s] 33%|███▎ | 85/256 [00:07<00:15, 10.89it/s] 34%|███▍ | 87/256 [00:07<00:15, 10.85it/s] 35%|███▍ | 89/256 [00:07<00:15, 10.81it/s] 36%|███▌ | 91/256 [00:07<00:15, 10.73it/s] 36%|███▋ | 93/256 [00:08<00:15, 10.68it/s] 37%|███▋ | 95/256 [00:08<00:15, 10.62it/s] 38%|███▊ | 97/256 [00:08<00:15, 10.58it/s] 39%|███▊ | 99/256 [00:08<00:14, 10.51it/s] 39%|███▉ | 101/256 [00:08<00:14, 10.46it/s] 40%|████ | 103/256 [00:09<00:14, 10.38it/s] 41%|████ | 105/256 [00:09<00:14, 10.35it/s] 42%|████▏ | 107/256 [00:09<00:14, 10.29it/s] 43%|████▎ | 109/256 [00:09<00:14, 10.23it/s] 43%|████▎ | 111/256 [00:09<00:14, 10.19it/s] 44%|████▍ | 113/256 [00:09<00:14, 10.14it/s] 45%|████▍ | 115/256 [00:10<00:13, 10.10it/s] 46%|████▌ | 117/256 [00:10<00:13, 10.04it/s] 46%|████▋ | 119/256 [00:10<00:13, 9.99it/s] 47%|████▋ | 120/256 [00:10<00:13, 9.94it/s] 47%|████▋ | 121/256 [00:10<00:13, 9.89it/s] 48%|████▊ | 122/256 [00:10<00:13, 9.86it/s] 48%|████▊ | 123/256 [00:11<00:13, 9.83it/s] 48%|████▊ | 124/256 [00:11<00:13, 9.80it/s] 49%|████▉ | 125/256 [00:11<00:13, 9.79it/s] 49%|████▉ | 126/256 [00:11<00:13, 9.77it/s] 50%|████▉ | 127/256 [00:11<00:13, 9.73it/s] 50%|█████ | 128/256 [00:11<00:13, 9.69it/s] 50%|█████ | 129/256 [00:11<00:13, 9.66it/s] 51%|█████ | 130/256 [00:11<00:13, 9.64it/s] 51%|█████ | 131/256 [00:11<00:13, 9.61it/s] 52%|█████▏ | 132/256 [00:11<00:12, 9.58it/s] 52%|█████▏ | 133/256 [00:12<00:12, 9.57it/s] 52%|█████▏ | 134/256 [00:12<00:12, 9.54it/s] 53%|█████▎ | 135/256 [00:12<00:12, 9.52it/s] 53%|█████▎ | 136/256 [00:12<00:12, 9.49it/s] 54%|█████▎ | 137/256 [00:12<00:12, 9.47it/s] 54%|█████▍ | 138/256 [00:12<00:12, 9.47it/s] 54%|█████▍ | 139/256 [00:12<00:12, 9.42it/s] 55%|█████▍ | 140/256 [00:12<00:12, 9.39it/s] 55%|█████▌ | 141/256 [00:12<00:12, 9.36it/s] 55%|█████▌ | 142/256 [00:13<00:12, 9.33it/s] 56%|█████▌ | 143/256 [00:13<00:12, 9.30it/s] 56%|█████▋ | 144/256 [00:13<00:12, 9.30it/s] 57%|█████▋ | 145/256 [00:13<00:11, 9.29it/s] 57%|█████▋ | 146/256 [00:13<00:11, 9.25it/s] 57%|█████▋ | 147/256 [00:13<00:11, 9.24it/s] 58%|█████▊ | 148/256 [00:13<00:11, 9.21it/s] 58%|█████▊ | 149/256 [00:13<00:11, 9.19it/s] 59%|█████▊ | 150/256 [00:13<00:11, 9.18it/s] 59%|█████▉ | 151/256 [00:13<00:11, 9.15it/s] 59%|█████▉ | 152/256 [00:14<00:11, 9.13it/s] 60%|█████▉ | 153/256 [00:14<00:11, 9.12it/s] 60%|██████ | 154/256 [00:14<00:11, 9.10it/s] 61%|██████ | 155/256 [00:14<00:11, 9.07it/s] 61%|██████ | 156/256 [00:14<00:11, 9.04it/s] 61%|██████▏ | 157/256 [00:14<00:10, 9.04it/s] 62%|██████▏ | 158/256 [00:14<00:10, 9.02it/s] 62%|██████▏ | 159/256 [00:14<00:10, 9.00it/s] 62%|██████▎ | 160/256 [00:14<00:10, 8.98it/s] 63%|██████▎ | 161/256 [00:15<00:10, 8.96it/s] 63%|██████▎ | 162/256 [00:15<00:10, 8.93it/s] 64%|██████▎ | 163/256 [00:15<00:10, 8.89it/s] 64%|██████▍ | 164/256 [00:15<00:10, 8.87it/s] 64%|██████▍ | 165/256 [00:15<00:10, 8.85it/s] 65%|██████▍ | 166/256 [00:15<00:10, 8.84it/s] 65%|██████▌ | 167/256 [00:15<00:10, 8.82it/s] 66%|██████▌ | 168/256 [00:15<00:10, 8.80it/s] 66%|██████▌ | 169/256 [00:16<00:09, 8.79it/s] 66%|██████▋ | 170/256 [00:16<00:09, 8.76it/s] 67%|██████▋ | 171/256 [00:16<00:09, 8.73it/s] 67%|██████▋ | 172/256 [00:16<00:09, 8.72it/s] 68%|██████▊ | 173/256 [00:16<00:09, 8.69it/s] 68%|██████▊ | 174/256 [00:16<00:09, 8.66it/s] 68%|██████▊ | 175/256 [00:16<00:09, 8.65it/s] 69%|██████▉ | 176/256 [00:16<00:09, 8.64it/s] 69%|██████▉ | 177/256 [00:16<00:09, 8.63it/s] 70%|██████▉ | 178/256 [00:17<00:09, 8.60it/s] 70%|██████▉ | 179/256 [00:17<00:08, 8.58it/s] 70%|███████ | 180/256 [00:17<00:08, 8.56it/s] 71%|███████ | 181/256 [00:17<00:08, 8.53it/s] 71%|███████ | 182/256 [00:17<00:08, 8.50it/s] 71%|███████▏ | 183/256 [00:17<00:08, 8.48it/s] 72%|███████▏ | 184/256 [00:17<00:08, 8.47it/s] 72%|███████▏ | 185/256 [00:17<00:08, 8.46it/s] 73%|███████▎ | 186/256 [00:17<00:08, 8.46it/s] 73%|███████▎ | 187/256 [00:18<00:08, 8.43it/s] 73%|███████▎ | 188/256 [00:18<00:08, 8.40it/s] 74%|███████▍ | 189/256 [00:18<00:07, 8.39it/s] 74%|███████▍ | 190/256 [00:18<00:07, 8.35it/s] 75%|███████▍ | 191/256 [00:18<00:07, 8.32it/s] 75%|███████▌ | 192/256 [00:18<00:07, 8.31it/s] 75%|███████▌ | 193/256 [00:18<00:07, 8.31it/s] 76%|███████▌ | 194/256 [00:18<00:07, 8.28it/s] 76%|███████▌ | 195/256 [00:19<00:07, 8.27it/s] 77%|███████▋ | 196/256 [00:19<00:07, 7.56it/s] 77%|███████▋ | 197/256 [00:19<00:07, 7.78it/s] 77%|███████▋ | 198/256 [00:19<00:07, 7.91it/s] 78%|███████▊ | 199/256 [00:19<00:07, 7.99it/s] 78%|███████▊ | 200/256 [00:19<00:06, 8.05it/s] 79%|███████▊ | 201/256 [00:19<00:06, 8.09it/s] 79%|███████▉ | 202/256 [00:19<00:06, 8.11it/s] 79%|███████▉ | 203/256 [00:20<00:06, 8.11it/s] 80%|███████▉ | 204/256 [00:20<00:06, 7.94it/s] 80%|████████ | 205/256 [00:20<00:06, 7.98it/s] 80%|████████ | 206/256 [00:20<00:06, 8.02it/s] 81%|████████ | 207/256 [00:20<00:06, 8.04it/s] 81%|████████▏ | 208/256 [00:20<00:05, 8.05it/s] 82%|████████▏ | 209/256 [00:20<00:05, 8.06it/s] 82%|████████▏ | 210/256 [00:20<00:05, 8.02it/s] 82%|████████▏ | 211/256 [00:21<00:05, 7.97it/s] 83%|████████▎ | 212/256 [00:21<00:05, 7.92it/s] 83%|████████▎ | 213/256 [00:21<00:05, 7.91it/s] 84%|████████▎ | 214/256 [00:21<00:05, 7.92it/s] 84%|████████▍ | 215/256 [00:21<00:05, 7.93it/s] 84%|████████▍ | 216/256 [00:21<00:05, 7.93it/s] 85%|████████▍ | 217/256 [00:21<00:04, 7.91it/s] 85%|████████▌ | 218/256 [00:21<00:04, 7.88it/s] 86%|████████▌ | 219/256 [00:22<00:04, 7.82it/s] 86%|████████▌ | 220/256 [00:22<00:04, 7.79it/s] 86%|████████▋ | 221/256 [00:22<00:04, 7.78it/s] 87%|████████▋ | 222/256 [00:22<00:04, 7.80it/s] 87%|████████▋ | 223/256 [00:22<00:04, 7.81it/s] 88%|████████▊ | 224/256 [00:22<00:04, 7.80it/s] 88%|████████▊ | 225/256 [00:22<00:03, 7.80it/s] 88%|████████▊ | 226/256 [00:23<00:03, 7.76it/s] 89%|████████▊ | 227/256 [00:23<00:03, 7.72it/s] 89%|████████▉ | 228/256 [00:23<00:03, 7.68it/s] 89%|████████▉ | 229/256 [00:23<00:03, 7.66it/s] 90%|████████▉ | 230/256 [00:23<00:03, 7.65it/s] 90%|█████████ | 231/256 [00:23<00:03, 7.66it/s] 91%|█████████ | 232/256 [00:23<00:03, 7.65it/s] 91%|█████████ | 233/256 [00:23<00:03, 7.64it/s] 91%|█████████▏| 234/256 [00:24<00:02, 7.61it/s] 92%|█████████▏| 235/256 [00:24<00:02, 7.58it/s] 92%|█████████▏| 236/256 [00:24<00:02, 7.55it/s] 93%|█████████▎| 237/256 [00:24<00:02, 7.54it/s] 93%|█████████▎| 238/256 [00:24<00:02, 7.54it/s] 93%|█████████▎| 239/256 [00:24<00:02, 7.54it/s] 94%|█████████▍| 240/256 [00:24<00:02, 7.55it/s] 94%|█████████▍| 241/256 [00:24<00:01, 7.54it/s] 95%|█████████▍| 242/256 [00:25<00:01, 7.50it/s] 95%|█████████▍| 243/256 [00:25<00:01, 7.46it/s] 95%|█████████▌| 244/256 [00:25<00:01, 7.45it/s] 96%|█████████▌| 245/256 [00:25<00:01, 7.44it/s] 96%|█████████▌| 246/256 [00:25<00:01, 7.43it/s] 96%|█████████▋| 247/256 [00:25<00:01, 7.42it/s] 97%|█████████▋| 248/256 [00:25<00:01, 7.42it/s] 97%|█████████▋| 249/256 [00:26<00:00, 7.40it/s] 98%|█████████▊| 250/256 [00:26<00:00, 7.38it/s] 98%|█████████▊| 251/256 [00:26<00:00, 7.36it/s] 98%|█████████▊| 252/256 [00:26<00:00, 7.34it/s] 99%|█████████▉| 253/256 [00:26<00:00, 7.35it/s] 99%|█████████▉| 254/256 [00:26<00:00, 7.33it/s] 100%|█████████▉| 255/256 [00:26<00:00, 7.32it/s] 100%|██████████| 256/256 [00:27<00:00, 7.30it/s] 100%|██████████| 256/256 [00:27<00:00, 9.47it/s]
Prediction
saehoonkim/mindall-e:6c4d732882f90d0fe29ab2f8124f854828e547ecd590f45602621d8f4dcba8b9IDzyf5456hx5h7lhgokhaiomzvmaStatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- "0"
- prompt
- A painting of a monkey with sunglasses in the frame
- num_samples
- "1"
{ "seed": "0", "prompt": "A painting of a monkey with sunglasses in the frame", "num_samples": "1" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "saehoonkim/mindall-e:6c4d732882f90d0fe29ab2f8124f854828e547ecd590f45602621d8f4dcba8b9", { input: { seed: "0", prompt: "A painting of a monkey with sunglasses in the frame", num_samples: "1" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "saehoonkim/mindall-e:6c4d732882f90d0fe29ab2f8124f854828e547ecd590f45602621d8f4dcba8b9", input={ "seed": "0", "prompt": "A painting of a monkey with sunglasses in the frame", "num_samples": "1" } ) # The saehoonkim/mindall-e model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/saehoonkim/mindall-e/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "saehoonkim/mindall-e:6c4d732882f90d0fe29ab2f8124f854828e547ecd590f45602621d8f4dcba8b9", "input": { "seed": "0", "prompt": "A painting of a monkey with sunglasses in the frame", "num_samples": "1" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-12-20T23:05:30.456234Z", "created_at": "2021-12-20T23:03:25.433307Z", "data_removed": false, "error": null, "id": "zyf5456hx5h7lhgokhaiomzvma", "input": { "seed": "0", "prompt": "A painting of a monkey with sunglasses in the frame", "num_samples": "1" }, "logs": "\n 0%| | 0/256 [00:00<?, ?it/s]\n 0%| | 1/256 [00:00<01:19, 3.20it/s]\n 1%| | 3/256 [00:00<01:00, 4.20it/s]\n 2%|▏ | 5/256 [00:00<00:45, 5.46it/s]\n 3%|▎ | 7/256 [00:00<00:35, 6.92it/s]\n 4%|▎ | 9/256 [00:00<00:29, 8.51it/s]\n 4%|▍ | 11/256 [00:00<00:24, 10.14it/s]\n 5%|▌ | 13/256 [00:00<00:20, 11.71it/s]\n 6%|▌ | 15/256 [00:01<00:18, 13.12it/s]\n 7%|▋ | 17/256 [00:01<00:16, 14.33it/s]\n 7%|▋ | 19/256 [00:01<00:15, 15.29it/s]\n 8%|▊ | 21/256 [00:01<00:14, 16.01it/s]\n 9%|▉ | 23/256 [00:01<00:14, 16.54it/s]\n 10%|▉ | 25/256 [00:01<00:13, 16.93it/s]\n 11%|█ | 27/256 [00:01<00:13, 17.20it/s]\n 11%|█▏ | 29/256 [00:01<00:13, 17.41it/s]\n 12%|█▏ | 31/256 [00:02<00:19, 11.68it/s]\n 13%|█▎ | 33/256 [00:02<00:17, 13.03it/s]\n 14%|█▎ | 35/256 [00:02<00:15, 14.16it/s]\n 14%|█▍ | 37/256 [00:02<00:14, 15.07it/s]\n 15%|█▌ | 39/256 [00:02<00:13, 15.75it/s]\n 16%|█▌ | 41/256 [00:02<00:13, 16.26it/s]\n 17%|█▋ | 43/256 [00:02<00:12, 16.63it/s]\n 18%|█▊ | 45/256 [00:02<00:12, 16.89it/s]\n 18%|█▊ | 47/256 [00:03<00:12, 17.01it/s]\n 19%|█▉ | 49/256 [00:03<00:12, 17.10it/s]\n 20%|█▉ | 51/256 [00:03<00:11, 17.17it/s]\n 21%|██ | 53/256 [00:03<00:11, 17.20it/s]\n 21%|██▏ | 55/256 [00:03<00:17, 11.71it/s]\n 22%|██▏ | 57/256 [00:03<00:15, 12.96it/s]\n 23%|██▎ | 59/256 [00:03<00:14, 13.99it/s]\n 24%|██▍ | 61/256 [00:04<00:13, 14.81it/s]\n 25%|██▍ | 63/256 [00:04<00:12, 15.43it/s]\n 25%|██▌ | 65/256 [00:04<00:12, 15.90it/s]\n 26%|██▌ | 67/256 [00:04<00:11, 16.22it/s]\n 27%|██▋ | 69/256 [00:04<00:11, 16.42it/s]\n 28%|██▊ | 71/256 [00:04<00:11, 16.52it/s]\n 29%|██▊ | 73/256 [00:04<00:15, 11.45it/s]\n 29%|██▉ | 75/256 [00:05<00:14, 12.67it/s]\n 30%|███ | 77/256 [00:05<00:13, 13.69it/s]\n 31%|███ | 79/256 [00:05<00:12, 14.49it/s]\n 32%|███▏ | 81/256 [00:05<00:11, 15.10it/s]\n 32%|███▏ | 83/256 [00:05<00:11, 15.55it/s]\n 33%|███▎ | 85/256 [00:05<00:10, 15.87it/s]\n 34%|███▍ | 87/256 [00:05<00:10, 16.09it/s]\n 35%|███▍ | 89/256 [00:06<00:14, 11.52it/s]\n 36%|███▌ | 91/256 [00:06<00:13, 12.69it/s]\n 36%|███▋ | 93/256 [00:06<00:11, 13.63it/s]\n 37%|███▋ | 95/256 [00:06<00:11, 14.38it/s]\n 38%|███▊ | 97/256 [00:06<00:10, 14.94it/s]\n 39%|███▊ | 99/256 [00:06<00:10, 15.34it/s]\n 39%|███▉ | 101/256 [00:06<00:09, 15.63it/s]\n 40%|████ | 103/256 [00:07<00:13, 11.45it/s]\n 41%|████ | 105/256 [00:07<00:12, 12.57it/s]\n 42%|████▏ | 107/256 [00:07<00:11, 13.47it/s]\n 43%|████▎ | 109/256 [00:07<00:10, 14.18it/s]\n 43%|████▎ | 111/256 [00:07<00:09, 14.72it/s]\n 44%|████▍ | 113/256 [00:07<00:09, 15.11it/s]\n 45%|████▍ | 115/256 [00:07<00:09, 15.38it/s]\n 46%|████▌ | 117/256 [00:08<00:12, 11.22it/s]\n 46%|████▋ | 119/256 [00:08<00:11, 12.32it/s]\n 47%|████▋ | 121/256 [00:08<00:10, 13.23it/s]\n 48%|████▊ | 123/256 [00:08<00:09, 13.94it/s]\n 49%|████▉ | 125/256 [00:08<00:09, 14.48it/s]\n 50%|████▉ | 127/256 [00:08<00:08, 14.79it/s]\n 50%|█████ | 129/256 [00:09<00:11, 11.03it/s]\n 51%|█████ | 131/256 [00:09<00:10, 12.12it/s]\n 52%|█████▏ | 133/256 [00:09<00:09, 13.02it/s]\n 53%|█████▎ | 135/256 [00:09<00:08, 13.72it/s]\n 54%|█████▎ | 137/256 [00:09<00:08, 14.25it/s]\n 54%|█████▍ | 139/256 [00:09<00:10, 10.86it/s]\n 55%|█████▌ | 141/256 [00:09<00:09, 11.95it/s]\n 56%|█████▌ | 143/256 [00:10<00:08, 12.84it/s]\n 57%|█████▋ | 145/256 [00:10<00:08, 13.54it/s]\n 57%|█████▋ | 147/256 [00:10<00:07, 14.07it/s]\n 58%|█████▊ | 149/256 [00:10<00:07, 14.45it/s]\n 59%|█████▉ | 151/256 [00:10<00:09, 10.88it/s]\n 60%|█████▉ | 153/256 [00:10<00:08, 11.92it/s]\n 61%|██████ | 155/256 [00:11<00:07, 12.78it/s]\n 61%|██████▏ | 157/256 [00:11<00:07, 13.44it/s]\n 62%|██████▏ | 159/256 [00:11<00:06, 13.94it/s]\n 63%|██████▎ | 161/256 [00:11<00:08, 10.67it/s]\n 64%|██████▎ | 163/256 [00:11<00:07, 11.71it/s]\n 64%|██████▍ | 165/256 [00:11<00:07, 12.56it/s]\n 65%|██████▌ | 167/256 [00:11<00:06, 13.23it/s]\n 66%|██████▌ | 169/256 [00:12<00:06, 13.71it/s]\n 67%|██████▋ | 171/256 [00:12<00:08, 10.55it/s]\n 68%|██████▊ | 173/256 [00:12<00:07, 11.58it/s]\n 68%|██████▊ | 175/256 [00:12<00:06, 12.42it/s]\n 69%|██████▉ | 177/256 [00:12<00:06, 13.09it/s]\n 70%|██████▉ | 179/256 [00:13<00:07, 10.40it/s]\n 71%|███████ | 181/256 [00:13<00:06, 11.44it/s]\n 71%|███████▏ | 183/256 [00:13<00:05, 12.29it/s]\n 72%|███████▏ | 185/256 [00:13<00:05, 12.95it/s]\n 73%|███████▎ | 187/256 [00:13<00:05, 13.45it/s]\n 74%|███████▍ | 189/256 [00:13<00:06, 10.44it/s]\n 75%|███████▍ | 191/256 [00:14<00:05, 11.43it/s]\n 75%|███████▌ | 193/256 [00:14<00:05, 12.25it/s]\n 76%|███████▌ | 195/256 [00:14<00:04, 12.88it/s]\n 77%|███████▋ | 197/256 [00:14<00:05, 10.32it/s]\n 78%|███████▊ | 199/256 [00:14<00:05, 11.30it/s]\n 79%|███████▊ | 201/256 [00:14<00:04, 12.11it/s]\n 79%|███████▉ | 203/256 [00:15<00:04, 12.74it/s]\n 80%|████████ | 205/256 [00:15<00:04, 10.20it/s]\n 81%|████████ | 207/256 [00:15<00:04, 11.18it/s]\n 82%|████████▏ | 209/256 [00:15<00:03, 12.00it/s]\n 82%|████████▏ | 211/256 [00:15<00:03, 12.62it/s]\n 83%|████████▎ | 213/256 [00:16<00:04, 10.09it/s]\n 84%|████████▍ | 215/256 [00:16<00:03, 11.07it/s]\n 85%|████████▍ | 217/256 [00:16<00:03, 11.87it/s]\n 86%|████████▌ | 219/256 [00:16<00:02, 12.48it/s]\n 86%|████████▋ | 221/256 [00:16<00:03, 10.01it/s]\n 87%|████████▋ | 223/256 [00:16<00:03, 10.99it/s]\n 88%|████████▊ | 225/256 [00:17<00:02, 11.79it/s]\n 89%|████████▊ | 227/256 [00:17<00:02, 9.78it/s]\n 89%|████████▉ | 229/256 [00:17<00:02, 10.77it/s]\n 90%|█████████ | 231/256 [00:17<00:02, 11.58it/s]\n 91%|█████████ | 233/256 [00:17<00:01, 12.23it/s]\n 92%|█████████▏| 235/256 [00:18<00:02, 9.77it/s]\n 93%|█████████▎| 237/256 [00:18<00:01, 10.74it/s]\n 93%|█████████▎| 239/256 [00:18<00:01, 11.53it/s]\n 94%|█████████▍| 241/256 [00:18<00:01, 9.58it/s]\n 95%|█████████▍| 243/256 [00:18<00:01, 10.57it/s]\n 96%|█████████▌| 245/256 [00:18<00:00, 11.39it/s]\n 96%|█████████▋| 247/256 [00:19<00:00, 9.59it/s]\n 97%|█████████▋| 249/256 [00:19<00:00, 10.56it/s]\n 98%|█████████▊| 251/256 [00:19<00:00, 11.36it/s]\n 99%|█████████▉| 253/256 [00:19<00:00, 9.44it/s]\n100%|█████████▉| 255/256 [00:19<00:00, 10.42it/s]\n100%|██████████| 256/256 [00:19<00:00, 12.80it/s]", "metrics": { "predict_time": 21.475619, "total_time": 125.022927 }, "output": [ { "file": "https://replicate.delivery/mgxm/1ffe8197-9fa7-44ad-975f-7800fd635a64/out.png" } ], "started_at": "2021-12-20T23:05:08.980615Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zyf5456hx5h7lhgokhaiomzvma", "cancel": "https://api.replicate.com/v1/predictions/zyf5456hx5h7lhgokhaiomzvma/cancel" }, "version": "6c4d732882f90d0fe29ab2f8124f854828e547ecd590f45602621d8f4dcba8b9" }
Generated in0%| | 0/256 [00:00<?, ?it/s] 0%| | 1/256 [00:00<01:19, 3.20it/s] 1%| | 3/256 [00:00<01:00, 4.20it/s] 2%|▏ | 5/256 [00:00<00:45, 5.46it/s] 3%|▎ | 7/256 [00:00<00:35, 6.92it/s] 4%|▎ | 9/256 [00:00<00:29, 8.51it/s] 4%|▍ | 11/256 [00:00<00:24, 10.14it/s] 5%|▌ | 13/256 [00:00<00:20, 11.71it/s] 6%|▌ | 15/256 [00:01<00:18, 13.12it/s] 7%|▋ | 17/256 [00:01<00:16, 14.33it/s] 7%|▋ | 19/256 [00:01<00:15, 15.29it/s] 8%|▊ | 21/256 [00:01<00:14, 16.01it/s] 9%|▉ | 23/256 [00:01<00:14, 16.54it/s] 10%|▉ | 25/256 [00:01<00:13, 16.93it/s] 11%|█ | 27/256 [00:01<00:13, 17.20it/s] 11%|█▏ | 29/256 [00:01<00:13, 17.41it/s] 12%|█▏ | 31/256 [00:02<00:19, 11.68it/s] 13%|█▎ | 33/256 [00:02<00:17, 13.03it/s] 14%|█▎ | 35/256 [00:02<00:15, 14.16it/s] 14%|█▍ | 37/256 [00:02<00:14, 15.07it/s] 15%|█▌ | 39/256 [00:02<00:13, 15.75it/s] 16%|█▌ | 41/256 [00:02<00:13, 16.26it/s] 17%|█▋ | 43/256 [00:02<00:12, 16.63it/s] 18%|█▊ | 45/256 [00:02<00:12, 16.89it/s] 18%|█▊ | 47/256 [00:03<00:12, 17.01it/s] 19%|█▉ | 49/256 [00:03<00:12, 17.10it/s] 20%|█▉ | 51/256 [00:03<00:11, 17.17it/s] 21%|██ | 53/256 [00:03<00:11, 17.20it/s] 21%|██▏ | 55/256 [00:03<00:17, 11.71it/s] 22%|██▏ | 57/256 [00:03<00:15, 12.96it/s] 23%|██▎ | 59/256 [00:03<00:14, 13.99it/s] 24%|██▍ | 61/256 [00:04<00:13, 14.81it/s] 25%|██▍ | 63/256 [00:04<00:12, 15.43it/s] 25%|██▌ | 65/256 [00:04<00:12, 15.90it/s] 26%|██▌ | 67/256 [00:04<00:11, 16.22it/s] 27%|██▋ | 69/256 [00:04<00:11, 16.42it/s] 28%|██▊ | 71/256 [00:04<00:11, 16.52it/s] 29%|██▊ | 73/256 [00:04<00:15, 11.45it/s] 29%|██▉ | 75/256 [00:05<00:14, 12.67it/s] 30%|███ | 77/256 [00:05<00:13, 13.69it/s] 31%|███ | 79/256 [00:05<00:12, 14.49it/s] 32%|███▏ | 81/256 [00:05<00:11, 15.10it/s] 32%|███▏ | 83/256 [00:05<00:11, 15.55it/s] 33%|███▎ | 85/256 [00:05<00:10, 15.87it/s] 34%|███▍ | 87/256 [00:05<00:10, 16.09it/s] 35%|███▍ | 89/256 [00:06<00:14, 11.52it/s] 36%|███▌ | 91/256 [00:06<00:13, 12.69it/s] 36%|███▋ | 93/256 [00:06<00:11, 13.63it/s] 37%|███▋ | 95/256 [00:06<00:11, 14.38it/s] 38%|███▊ | 97/256 [00:06<00:10, 14.94it/s] 39%|███▊ | 99/256 [00:06<00:10, 15.34it/s] 39%|███▉ | 101/256 [00:06<00:09, 15.63it/s] 40%|████ | 103/256 [00:07<00:13, 11.45it/s] 41%|████ | 105/256 [00:07<00:12, 12.57it/s] 42%|████▏ | 107/256 [00:07<00:11, 13.47it/s] 43%|████▎ | 109/256 [00:07<00:10, 14.18it/s] 43%|████▎ | 111/256 [00:07<00:09, 14.72it/s] 44%|████▍ | 113/256 [00:07<00:09, 15.11it/s] 45%|████▍ | 115/256 [00:07<00:09, 15.38it/s] 46%|████▌ | 117/256 [00:08<00:12, 11.22it/s] 46%|████▋ | 119/256 [00:08<00:11, 12.32it/s] 47%|████▋ | 121/256 [00:08<00:10, 13.23it/s] 48%|████▊ | 123/256 [00:08<00:09, 13.94it/s] 49%|████▉ | 125/256 [00:08<00:09, 14.48it/s] 50%|████▉ | 127/256 [00:08<00:08, 14.79it/s] 50%|█████ | 129/256 [00:09<00:11, 11.03it/s] 51%|█████ | 131/256 [00:09<00:10, 12.12it/s] 52%|█████▏ | 133/256 [00:09<00:09, 13.02it/s] 53%|█████▎ | 135/256 [00:09<00:08, 13.72it/s] 54%|█████▎ | 137/256 [00:09<00:08, 14.25it/s] 54%|█████▍ | 139/256 [00:09<00:10, 10.86it/s] 55%|█████▌ | 141/256 [00:09<00:09, 11.95it/s] 56%|█████▌ | 143/256 [00:10<00:08, 12.84it/s] 57%|█████▋ | 145/256 [00:10<00:08, 13.54it/s] 57%|█████▋ | 147/256 [00:10<00:07, 14.07it/s] 58%|█████▊ | 149/256 [00:10<00:07, 14.45it/s] 59%|█████▉ | 151/256 [00:10<00:09, 10.88it/s] 60%|█████▉ | 153/256 [00:10<00:08, 11.92it/s] 61%|██████ | 155/256 [00:11<00:07, 12.78it/s] 61%|██████▏ | 157/256 [00:11<00:07, 13.44it/s] 62%|██████▏ | 159/256 [00:11<00:06, 13.94it/s] 63%|██████▎ | 161/256 [00:11<00:08, 10.67it/s] 64%|██████▎ | 163/256 [00:11<00:07, 11.71it/s] 64%|██████▍ | 165/256 [00:11<00:07, 12.56it/s] 65%|██████▌ | 167/256 [00:11<00:06, 13.23it/s] 66%|██████▌ | 169/256 [00:12<00:06, 13.71it/s] 67%|██████▋ | 171/256 [00:12<00:08, 10.55it/s] 68%|██████▊ | 173/256 [00:12<00:07, 11.58it/s] 68%|██████▊ | 175/256 [00:12<00:06, 12.42it/s] 69%|██████▉ | 177/256 [00:12<00:06, 13.09it/s] 70%|██████▉ | 179/256 [00:13<00:07, 10.40it/s] 71%|███████ | 181/256 [00:13<00:06, 11.44it/s] 71%|███████▏ | 183/256 [00:13<00:05, 12.29it/s] 72%|███████▏ | 185/256 [00:13<00:05, 12.95it/s] 73%|███████▎ | 187/256 [00:13<00:05, 13.45it/s] 74%|███████▍ | 189/256 [00:13<00:06, 10.44it/s] 75%|███████▍ | 191/256 [00:14<00:05, 11.43it/s] 75%|███████▌ | 193/256 [00:14<00:05, 12.25it/s] 76%|███████▌ | 195/256 [00:14<00:04, 12.88it/s] 77%|███████▋ | 197/256 [00:14<00:05, 10.32it/s] 78%|███████▊ | 199/256 [00:14<00:05, 11.30it/s] 79%|███████▊ | 201/256 [00:14<00:04, 12.11it/s] 79%|███████▉ | 203/256 [00:15<00:04, 12.74it/s] 80%|████████ | 205/256 [00:15<00:04, 10.20it/s] 81%|████████ | 207/256 [00:15<00:04, 11.18it/s] 82%|████████▏ | 209/256 [00:15<00:03, 12.00it/s] 82%|████████▏ | 211/256 [00:15<00:03, 12.62it/s] 83%|████████▎ | 213/256 [00:16<00:04, 10.09it/s] 84%|████████▍ | 215/256 [00:16<00:03, 11.07it/s] 85%|████████▍ | 217/256 [00:16<00:03, 11.87it/s] 86%|████████▌ | 219/256 [00:16<00:02, 12.48it/s] 86%|████████▋ | 221/256 [00:16<00:03, 10.01it/s] 87%|████████▋ | 223/256 [00:16<00:03, 10.99it/s] 88%|████████▊ | 225/256 [00:17<00:02, 11.79it/s] 89%|████████▊ | 227/256 [00:17<00:02, 9.78it/s] 89%|████████▉ | 229/256 [00:17<00:02, 10.77it/s] 90%|█████████ | 231/256 [00:17<00:02, 11.58it/s] 91%|█████████ | 233/256 [00:17<00:01, 12.23it/s] 92%|█████████▏| 235/256 [00:18<00:02, 9.77it/s] 93%|█████████▎| 237/256 [00:18<00:01, 10.74it/s] 93%|█████████▎| 239/256 [00:18<00:01, 11.53it/s] 94%|█████████▍| 241/256 [00:18<00:01, 9.58it/s] 95%|█████████▍| 243/256 [00:18<00:01, 10.57it/s] 96%|█████████▌| 245/256 [00:18<00:00, 11.39it/s] 96%|█████████▋| 247/256 [00:19<00:00, 9.59it/s] 97%|█████████▋| 249/256 [00:19<00:00, 10.56it/s] 98%|█████████▊| 251/256 [00:19<00:00, 11.36it/s] 99%|█████████▉| 253/256 [00:19<00:00, 9.44it/s] 100%|█████████▉| 255/256 [00:19<00:00, 10.42it/s] 100%|██████████| 256/256 [00:19<00:00, 12.80it/s]
Prediction
saehoonkim/mindall-e:a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256IDdwuutlqnozdspcjlxsry3ceai4StatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- "0"
- prompt
- Eiffel tower on a desert
- num_samples
- "6"
{ "seed": "0", "prompt": "Eiffel tower on a desert", "num_samples": "6" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "saehoonkim/mindall-e:a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256", { input: { seed: "0", prompt: "Eiffel tower on a desert", num_samples: "6" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "saehoonkim/mindall-e:a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256", input={ "seed": "0", "prompt": "Eiffel tower on a desert", "num_samples": "6" } ) # The saehoonkim/mindall-e model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/saehoonkim/mindall-e/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "saehoonkim/mindall-e:a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256", "input": { "seed": "0", "prompt": "Eiffel tower on a desert", "num_samples": "6" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-12-20T23:56:54.716775Z", "created_at": "2021-12-20T23:56:35.576307Z", "data_removed": false, "error": null, "id": "dwuutlqnozdspcjlxsry3ceai4", "input": { "seed": "0", "prompt": "Eiffel tower on a desert", "num_samples": "6" }, "logs": "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\nTo disable this warning, you can either:\n\t- Avoid using `tokenizers` before the fork if possible\n\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\nhuggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\nTo disable this warning, you can either:\n\t- Avoid using `tokenizers` before the fork if possible\n\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n\n 0%| | 0/256 [00:00<?, ?it/s]\n 0%| | 1/256 [00:00<00:49, 5.17it/s]\n 1%| | 3/256 [00:00<00:38, 6.57it/s]\n 2%|▏ | 5/256 [00:00<00:30, 8.13it/s]\n 3%|▎ | 7/256 [00:00<00:25, 9.75it/s]\n 4%|▎ | 9/256 [00:00<00:21, 11.33it/s]\n 4%|▍ | 11/256 [00:00<00:19, 12.78it/s]\n 5%|▌ | 13/256 [00:00<00:17, 14.02it/s]\n 6%|▌ | 15/256 [00:00<00:16, 15.03it/s]\n 7%|▋ | 17/256 [00:01<00:15, 15.82it/s]\n 7%|▋ | 19/256 [00:01<00:14, 16.37it/s]\n 8%|▊ | 21/256 [00:01<00:14, 16.74it/s]\n 9%|▉ | 23/256 [00:01<00:13, 17.03it/s]\n 10%|▉ | 25/256 [00:01<00:13, 17.25it/s]\n 11%|█ | 27/256 [00:01<00:13, 17.40it/s]\n 11%|█▏ | 29/256 [00:01<00:12, 17.51it/s]\n 12%|█▏ | 31/256 [00:01<00:12, 17.57it/s]\n 13%|█▎ | 33/256 [00:01<00:12, 17.59it/s]\n 14%|█▎ | 35/256 [00:02<00:12, 17.58it/s]\n 14%|█▍ | 37/256 [00:02<00:12, 17.53it/s]\n 15%|█▌ | 39/256 [00:02<00:12, 17.47it/s]\n 16%|█▌ | 41/256 [00:02<00:12, 17.43it/s]\n 17%|█▋ | 43/256 [00:02<00:12, 17.42it/s]\n 18%|█▊ | 45/256 [00:02<00:12, 17.41it/s]\n 18%|█▊ | 47/256 [00:02<00:12, 17.39it/s]\n 19%|█▉ | 49/256 [00:02<00:11, 17.36it/s]\n 20%|█▉ | 51/256 [00:03<00:11, 17.32it/s]\n 21%|██ | 53/256 [00:03<00:11, 17.25it/s]\n 21%|██▏ | 55/256 [00:03<00:11, 17.17it/s]\n 22%|██▏ | 57/256 [00:03<00:11, 17.12it/s]\n 23%|██▎ | 59/256 [00:03<00:11, 17.07it/s]\n 24%|██▍ | 61/256 [00:03<00:11, 17.06it/s]\n 25%|██▍ | 63/256 [00:03<00:11, 17.04it/s]\n 25%|██▌ | 65/256 [00:03<00:11, 17.02it/s]\n 26%|██▌ | 67/256 [00:03<00:11, 16.98it/s]\n 27%|██▋ | 69/256 [00:04<00:11, 16.94it/s]\n 28%|██▊ | 71/256 [00:04<00:10, 16.87it/s]\n 29%|██▊ | 73/256 [00:04<00:10, 16.83it/s]\n 29%|██▉ | 75/256 [00:04<00:10, 16.75it/s]\n 30%|███ | 77/256 [00:04<00:10, 16.70it/s]\n 31%|███ | 79/256 [00:04<00:10, 16.68it/s]\n 32%|███▏ | 81/256 [00:04<00:10, 16.67it/s]\n 32%|███▏ | 83/256 [00:04<00:10, 16.64it/s]\n 33%|███▎ | 85/256 [00:05<00:10, 16.60it/s]\n 34%|███▍ | 87/256 [00:05<00:10, 16.55it/s]\n 35%|███▍ | 89/256 [00:05<00:10, 16.49it/s]\n 36%|███▌ | 91/256 [00:05<00:10, 16.42it/s]\n 36%|███▋ | 93/256 [00:05<00:09, 16.38it/s]\n 37%|███▋ | 95/256 [00:05<00:09, 16.36it/s]\n 38%|███▊ | 97/256 [00:05<00:09, 16.35it/s]\n 39%|███▊ | 99/256 [00:05<00:09, 16.31it/s]\n 39%|███▉ | 101/256 [00:06<00:09, 16.27it/s]\n 40%|████ | 103/256 [00:06<00:09, 16.21it/s]\n 41%|████ | 105/256 [00:06<00:09, 16.17it/s]\n 42%|████▏ | 107/256 [00:06<00:09, 16.10it/s]\n 43%|████▎ | 109/256 [00:06<00:09, 16.07it/s]\n 43%|████▎ | 111/256 [00:06<00:09, 16.05it/s]\n 44%|████▍ | 113/256 [00:06<00:08, 16.02it/s]\n 45%|████▍ | 115/256 [00:06<00:08, 15.99it/s]\n 46%|████▌ | 117/256 [00:07<00:08, 15.95it/s]\n 46%|████▋ | 119/256 [00:07<00:08, 15.90it/s]\n 47%|████▋ | 121/256 [00:07<00:08, 15.86it/s]\n 48%|████▊ | 123/256 [00:07<00:08, 15.79it/s]\n 49%|████▉ | 125/256 [00:07<00:08, 15.77it/s]\n 50%|████▉ | 127/256 [00:07<00:08, 15.75it/s]\n 50%|█████ | 129/256 [00:07<00:08, 15.71it/s]\n 51%|█████ | 131/256 [00:07<00:07, 15.69it/s]\n 52%|█████▏ | 133/256 [00:08<00:07, 15.65it/s]\n 53%|█████▎ | 135/256 [00:08<00:07, 15.60it/s]\n 54%|█████▎ | 137/256 [00:08<00:07, 15.55it/s]\n 54%|█████▍ | 139/256 [00:08<00:07, 15.48it/s]\n 55%|█████▌ | 141/256 [00:08<00:07, 15.46it/s]\n 56%|█████▌ | 143/256 [00:08<00:07, 15.43it/s]\n 57%|█████▋ | 145/256 [00:08<00:07, 15.41it/s]\n 57%|█████▋ | 147/256 [00:08<00:07, 15.38it/s]\n 58%|█████▊ | 149/256 [00:09<00:06, 15.34it/s]\n 59%|█████▉ | 151/256 [00:09<00:06, 15.28it/s]\n 60%|█████▉ | 153/256 [00:09<00:06, 15.19it/s]\n 61%|██████ | 155/256 [00:09<00:06, 15.16it/s]\n 61%|██████▏ | 157/256 [00:09<00:06, 15.15it/s]\n 62%|██████▏ | 159/256 [00:09<00:06, 15.13it/s]\n 63%|██████▎ | 161/256 [00:09<00:06, 15.13it/s]\n 64%|██████▎ | 163/256 [00:10<00:06, 15.12it/s]\n 64%|██████▍ | 165/256 [00:10<00:06, 15.07it/s]\n 65%|██████▌ | 167/256 [00:10<00:05, 15.03it/s]\n 66%|██████▌ | 169/256 [00:10<00:05, 14.97it/s]\n 67%|██████▋ | 171/256 [00:10<00:05, 14.92it/s]\n 68%|██████▊ | 173/256 [00:10<00:05, 14.89it/s]\n 68%|██████▊ | 175/256 [00:10<00:05, 14.87it/s]\n 69%|██████▉ | 177/256 [00:10<00:05, 14.84it/s]\n 70%|██████▉ | 179/256 [00:11<00:05, 14.82it/s]\n 71%|███████ | 181/256 [00:11<00:05, 14.77it/s]\n 71%|███████▏ | 183/256 [00:11<00:04, 14.73it/s]\n 72%|███████▏ | 185/256 [00:11<00:04, 14.68it/s]\n 73%|███████▎ | 187/256 [00:11<00:04, 14.64it/s]\n 74%|███████▍ | 189/256 [00:11<00:04, 14.62it/s]\n 75%|███████▍ | 191/256 [00:11<00:04, 14.59it/s]\n 75%|███████▌ | 193/256 [00:12<00:04, 14.59it/s]\n 76%|███████▌ | 195/256 [00:12<00:04, 14.55it/s]\n 77%|███████▋ | 197/256 [00:12<00:04, 14.50it/s]\n 78%|███████▊ | 199/256 [00:12<00:03, 14.48it/s]\n 79%|███████▊ | 201/256 [00:12<00:03, 14.45it/s]\n 79%|███████▉ | 203/256 [00:12<00:03, 14.42it/s]\n 80%|████████ | 205/256 [00:12<00:03, 14.38it/s]\n 81%|████████ | 207/256 [00:13<00:03, 14.36it/s]\n 82%|████████▏ | 209/256 [00:13<00:03, 14.36it/s]\n 82%|████████▏ | 211/256 [00:13<00:03, 14.31it/s]\n 83%|████████▎ | 213/256 [00:13<00:03, 14.27it/s]\n 84%|████████▍ | 215/256 [00:13<00:02, 14.25it/s]\n 85%|████████▍ | 217/256 [00:13<00:02, 14.22it/s]\n 86%|████████▌ | 219/256 [00:13<00:02, 14.18it/s]\n 86%|████████▋ | 221/256 [00:14<00:02, 14.17it/s]\n 87%|████████▋ | 223/256 [00:14<00:02, 14.13it/s]\n 88%|████████▊ | 225/256 [00:14<00:02, 14.09it/s]\n 89%|████████▊ | 227/256 [00:14<00:02, 14.06it/s]\n 89%|████████▉ | 229/256 [00:14<00:01, 14.03it/s]\n 90%|█████████ | 231/256 [00:14<00:01, 13.99it/s]\n 91%|█████████ | 233/256 [00:14<00:01, 13.97it/s]\n 92%|█████████▏| 235/256 [00:15<00:01, 13.94it/s]\n 93%|█████████▎| 237/256 [00:15<00:01, 13.90it/s]\n 93%|█████████▎| 239/256 [00:15<00:01, 13.87it/s]\n 94%|█████████▍| 241/256 [00:15<00:01, 13.85it/s]\n 95%|█████████▍| 243/256 [00:15<00:00, 13.82it/s]\n 96%|█████████▌| 245/256 [00:15<00:00, 13.78it/s]\n 96%|█████████▋| 247/256 [00:15<00:00, 13.77it/s]\n 97%|█████████▋| 249/256 [00:16<00:00, 13.73it/s]\n 98%|█████████▊| 251/256 [00:16<00:00, 13.71it/s]\n 99%|█████████▉| 253/256 [00:16<00:00, 13.67it/s]\n100%|█████████▉| 255/256 [00:16<00:00, 13.65it/s]\n100%|██████████| 256/256 [00:16<00:00, 15.47it/s]", "metrics": { "predict_time": 18.917878, "total_time": 19.140468 }, "output": [ { "file": "https://replicate.delivery/mgxm/b511d2b3-53bb-4eb7-a6ef-c833a53a9315/out.png" } ], "started_at": "2021-12-20T23:56:35.798897Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/dwuutlqnozdspcjlxsry3ceai4", "cancel": "https://api.replicate.com/v1/predictions/dwuutlqnozdspcjlxsry3ceai4/cancel" }, "version": "a8c0116d5009a4a7034b6c26cb9bbf460185150e8479968d93e2a01ffb139256" }
Generated inhuggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) 0%| | 0/256 [00:00<?, ?it/s] 0%| | 1/256 [00:00<00:49, 5.17it/s] 1%| | 3/256 [00:00<00:38, 6.57it/s] 2%|▏ | 5/256 [00:00<00:30, 8.13it/s] 3%|▎ | 7/256 [00:00<00:25, 9.75it/s] 4%|▎ | 9/256 [00:00<00:21, 11.33it/s] 4%|▍ | 11/256 [00:00<00:19, 12.78it/s] 5%|▌ | 13/256 [00:00<00:17, 14.02it/s] 6%|▌ | 15/256 [00:00<00:16, 15.03it/s] 7%|▋ | 17/256 [00:01<00:15, 15.82it/s] 7%|▋ | 19/256 [00:01<00:14, 16.37it/s] 8%|▊ | 21/256 [00:01<00:14, 16.74it/s] 9%|▉ | 23/256 [00:01<00:13, 17.03it/s] 10%|▉ | 25/256 [00:01<00:13, 17.25it/s] 11%|█ | 27/256 [00:01<00:13, 17.40it/s] 11%|█▏ | 29/256 [00:01<00:12, 17.51it/s] 12%|█▏ | 31/256 [00:01<00:12, 17.57it/s] 13%|█▎ | 33/256 [00:01<00:12, 17.59it/s] 14%|█▎ | 35/256 [00:02<00:12, 17.58it/s] 14%|█▍ | 37/256 [00:02<00:12, 17.53it/s] 15%|█▌ | 39/256 [00:02<00:12, 17.47it/s] 16%|█▌ | 41/256 [00:02<00:12, 17.43it/s] 17%|█▋ | 43/256 [00:02<00:12, 17.42it/s] 18%|█▊ | 45/256 [00:02<00:12, 17.41it/s] 18%|█▊ | 47/256 [00:02<00:12, 17.39it/s] 19%|█▉ | 49/256 [00:02<00:11, 17.36it/s] 20%|█▉ | 51/256 [00:03<00:11, 17.32it/s] 21%|██ | 53/256 [00:03<00:11, 17.25it/s] 21%|██▏ | 55/256 [00:03<00:11, 17.17it/s] 22%|██▏ | 57/256 [00:03<00:11, 17.12it/s] 23%|██▎ | 59/256 [00:03<00:11, 17.07it/s] 24%|██▍ | 61/256 [00:03<00:11, 17.06it/s] 25%|██▍ | 63/256 [00:03<00:11, 17.04it/s] 25%|██▌ | 65/256 [00:03<00:11, 17.02it/s] 26%|██▌ | 67/256 [00:03<00:11, 16.98it/s] 27%|██▋ | 69/256 [00:04<00:11, 16.94it/s] 28%|██▊ | 71/256 [00:04<00:10, 16.87it/s] 29%|██▊ | 73/256 [00:04<00:10, 16.83it/s] 29%|██▉ | 75/256 [00:04<00:10, 16.75it/s] 30%|███ | 77/256 [00:04<00:10, 16.70it/s] 31%|███ | 79/256 [00:04<00:10, 16.68it/s] 32%|███▏ | 81/256 [00:04<00:10, 16.67it/s] 32%|███▏ | 83/256 [00:04<00:10, 16.64it/s] 33%|███▎ | 85/256 [00:05<00:10, 16.60it/s] 34%|███▍ | 87/256 [00:05<00:10, 16.55it/s] 35%|███▍ | 89/256 [00:05<00:10, 16.49it/s] 36%|███▌ | 91/256 [00:05<00:10, 16.42it/s] 36%|███▋ | 93/256 [00:05<00:09, 16.38it/s] 37%|███▋ | 95/256 [00:05<00:09, 16.36it/s] 38%|███▊ | 97/256 [00:05<00:09, 16.35it/s] 39%|███▊ | 99/256 [00:05<00:09, 16.31it/s] 39%|███▉ | 101/256 [00:06<00:09, 16.27it/s] 40%|████ | 103/256 [00:06<00:09, 16.21it/s] 41%|████ | 105/256 [00:06<00:09, 16.17it/s] 42%|████▏ | 107/256 [00:06<00:09, 16.10it/s] 43%|████▎ | 109/256 [00:06<00:09, 16.07it/s] 43%|████▎ | 111/256 [00:06<00:09, 16.05it/s] 44%|████▍ | 113/256 [00:06<00:08, 16.02it/s] 45%|████▍ | 115/256 [00:06<00:08, 15.99it/s] 46%|████▌ | 117/256 [00:07<00:08, 15.95it/s] 46%|████▋ | 119/256 [00:07<00:08, 15.90it/s] 47%|████▋ | 121/256 [00:07<00:08, 15.86it/s] 48%|████▊ | 123/256 [00:07<00:08, 15.79it/s] 49%|████▉ | 125/256 [00:07<00:08, 15.77it/s] 50%|████▉ | 127/256 [00:07<00:08, 15.75it/s] 50%|█████ | 129/256 [00:07<00:08, 15.71it/s] 51%|█████ | 131/256 [00:07<00:07, 15.69it/s] 52%|█████▏ | 133/256 [00:08<00:07, 15.65it/s] 53%|█████▎ | 135/256 [00:08<00:07, 15.60it/s] 54%|█████▎ | 137/256 [00:08<00:07, 15.55it/s] 54%|█████▍ | 139/256 [00:08<00:07, 15.48it/s] 55%|█████▌ | 141/256 [00:08<00:07, 15.46it/s] 56%|█████▌ | 143/256 [00:08<00:07, 15.43it/s] 57%|█████▋ | 145/256 [00:08<00:07, 15.41it/s] 57%|█████▋ | 147/256 [00:08<00:07, 15.38it/s] 58%|█████▊ | 149/256 [00:09<00:06, 15.34it/s] 59%|█████▉ | 151/256 [00:09<00:06, 15.28it/s] 60%|█████▉ | 153/256 [00:09<00:06, 15.19it/s] 61%|██████ | 155/256 [00:09<00:06, 15.16it/s] 61%|██████▏ | 157/256 [00:09<00:06, 15.15it/s] 62%|██████▏ | 159/256 [00:09<00:06, 15.13it/s] 63%|██████▎ | 161/256 [00:09<00:06, 15.13it/s] 64%|██████▎ | 163/256 [00:10<00:06, 15.12it/s] 64%|██████▍ | 165/256 [00:10<00:06, 15.07it/s] 65%|██████▌ | 167/256 [00:10<00:05, 15.03it/s] 66%|██████▌ | 169/256 [00:10<00:05, 14.97it/s] 67%|██████▋ | 171/256 [00:10<00:05, 14.92it/s] 68%|██████▊ | 173/256 [00:10<00:05, 14.89it/s] 68%|██████▊ | 175/256 [00:10<00:05, 14.87it/s] 69%|██████▉ | 177/256 [00:10<00:05, 14.84it/s] 70%|██████▉ | 179/256 [00:11<00:05, 14.82it/s] 71%|███████ | 181/256 [00:11<00:05, 14.77it/s] 71%|███████▏ | 183/256 [00:11<00:04, 14.73it/s] 72%|███████▏ | 185/256 [00:11<00:04, 14.68it/s] 73%|███████▎ | 187/256 [00:11<00:04, 14.64it/s] 74%|███████▍ | 189/256 [00:11<00:04, 14.62it/s] 75%|███████▍ | 191/256 [00:11<00:04, 14.59it/s] 75%|███████▌ | 193/256 [00:12<00:04, 14.59it/s] 76%|███████▌ | 195/256 [00:12<00:04, 14.55it/s] 77%|███████▋ | 197/256 [00:12<00:04, 14.50it/s] 78%|███████▊ | 199/256 [00:12<00:03, 14.48it/s] 79%|███████▊ | 201/256 [00:12<00:03, 14.45it/s] 79%|███████▉ | 203/256 [00:12<00:03, 14.42it/s] 80%|████████ | 205/256 [00:12<00:03, 14.38it/s] 81%|████████ | 207/256 [00:13<00:03, 14.36it/s] 82%|████████▏ | 209/256 [00:13<00:03, 14.36it/s] 82%|████████▏ | 211/256 [00:13<00:03, 14.31it/s] 83%|████████▎ | 213/256 [00:13<00:03, 14.27it/s] 84%|████████▍ | 215/256 [00:13<00:02, 14.25it/s] 85%|████████▍ | 217/256 [00:13<00:02, 14.22it/s] 86%|████████▌ | 219/256 [00:13<00:02, 14.18it/s] 86%|████████▋ | 221/256 [00:14<00:02, 14.17it/s] 87%|████████▋ | 223/256 [00:14<00:02, 14.13it/s] 88%|████████▊ | 225/256 [00:14<00:02, 14.09it/s] 89%|████████▊ | 227/256 [00:14<00:02, 14.06it/s] 89%|████████▉ | 229/256 [00:14<00:01, 14.03it/s] 90%|█████████ | 231/256 [00:14<00:01, 13.99it/s] 91%|█████████ | 233/256 [00:14<00:01, 13.97it/s] 92%|█████████▏| 235/256 [00:15<00:01, 13.94it/s] 93%|█████████▎| 237/256 [00:15<00:01, 13.90it/s] 93%|█████████▎| 239/256 [00:15<00:01, 13.87it/s] 94%|█████████▍| 241/256 [00:15<00:01, 13.85it/s] 95%|█████████▍| 243/256 [00:15<00:00, 13.82it/s] 96%|█████████▌| 245/256 [00:15<00:00, 13.78it/s] 96%|█████████▋| 247/256 [00:15<00:00, 13.77it/s] 97%|█████████▋| 249/256 [00:16<00:00, 13.73it/s] 98%|█████████▊| 251/256 [00:16<00:00, 13.71it/s] 99%|█████████▉| 253/256 [00:16<00:00, 13.67it/s] 100%|█████████▉| 255/256 [00:16<00:00, 13.65it/s] 100%|██████████| 256/256 [00:16<00:00, 15.47it/s]
Prediction
saehoonkim/mindall-e:be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643aID7kjnsjxulndzjjl7zrwmjri35eStatusSucceededSourceWebHardware–Total durationCreatedInput
- seed
- "0"
- prompt
- A painting of a cat with sunglasses in the frame
- num_samples
- "4"
{ "seed": "0", "prompt": "A painting of a cat with sunglasses in the frame", "num_samples": "4" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "saehoonkim/mindall-e:be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643a", { input: { seed: "0", prompt: "A painting of a cat with sunglasses in the frame", num_samples: "4" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "saehoonkim/mindall-e:be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643a", input={ "seed": "0", "prompt": "A painting of a cat with sunglasses in the frame", "num_samples": "4" } ) # The saehoonkim/mindall-e model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/saehoonkim/mindall-e/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run saehoonkim/mindall-e using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "saehoonkim/mindall-e:be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643a", "input": { "seed": "0", "prompt": "A painting of a cat with sunglasses in the frame", "num_samples": "4" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-12-21T00:17:14.073557Z", "created_at": "2021-12-21T00:14:31.814809Z", "data_removed": false, "error": null, "id": "7kjnsjxulndzjjl7zrwmjri35e", "input": { "seed": "0", "prompt": "A painting of a cat with sunglasses in the frame", "num_samples": "4" }, "logs": "\n 0%| | 0/256 [00:00<?, ?it/s]\n 0%| | 1/256 [00:00<02:03, 2.06it/s]\n 1%| | 3/256 [00:00<01:31, 2.77it/s]\n 2%|▏ | 5/256 [00:00<01:08, 3.65it/s]\n 3%|▎ | 7/256 [00:00<00:53, 4.70it/s]\n 4%|▎ | 9/256 [00:01<00:42, 5.87it/s]\n 4%|▍ | 11/256 [00:01<00:40, 6.05it/s]\n 5%|▌ | 13/256 [00:01<00:33, 7.28it/s]\n 6%|▌ | 15/256 [00:01<00:28, 8.48it/s]\n 7%|▋ | 17/256 [00:01<00:24, 9.57it/s]\n 7%|▋ | 19/256 [00:02<00:27, 8.49it/s]\n 8%|▊ | 21/256 [00:02<00:24, 9.56it/s]\n 9%|▉ | 23/256 [00:02<00:22, 10.47it/s]\n 10%|▉ | 25/256 [00:02<00:26, 8.85it/s]\n 11%|█ | 27/256 [00:02<00:23, 9.83it/s]\n 11%|█▏ | 29/256 [00:02<00:21, 10.64it/s]\n 12%|█▏ | 31/256 [00:03<00:20, 11.23it/s]\n 13%|█▎ | 33/256 [00:03<00:24, 9.29it/s]\n 14%|█▎ | 35/256 [00:03<00:21, 10.14it/s]\n 14%|█▍ | 37/256 [00:03<00:20, 10.82it/s]\n 15%|█▌ | 39/256 [00:04<00:23, 9.14it/s]\n 16%|█▌ | 41/256 [00:04<00:21, 9.98it/s]\n 17%|█▋ | 43/256 [00:04<00:20, 10.63it/s]\n 18%|█▊ | 45/256 [00:04<00:23, 8.98it/s]\n 18%|█▊ | 47/256 [00:04<00:21, 9.79it/s]\n 19%|█▉ | 49/256 [00:05<00:24, 8.60it/s]\n 20%|█▉ | 51/256 [00:05<00:21, 9.46it/s]\n 21%|██ | 53/256 [00:05<00:19, 10.15it/s]\n 21%|██▏ | 55/256 [00:05<00:23, 8.58it/s]\n 22%|██▏ | 57/256 [00:05<00:21, 9.39it/s]\n 23%|██▎ | 59/256 [00:06<00:24, 8.14it/s]\n 24%|██▍ | 61/256 [00:06<00:21, 9.00it/s]\n 25%|██▍ | 63/256 [00:06<00:24, 8.02it/s]\n 25%|██▌ | 65/256 [00:06<00:21, 8.88it/s]\n 26%|██▌ | 67/256 [00:07<00:24, 7.86it/s]\n 27%|██▋ | 69/256 [00:07<00:21, 8.71it/s]\n 28%|██▊ | 71/256 [00:07<00:24, 7.71it/s]\n 29%|██▊ | 73/256 [00:07<00:21, 8.56it/s]\n 29%|██▉ | 75/256 [00:08<00:23, 7.68it/s]\n 30%|███ | 77/256 [00:08<00:21, 8.50it/s]\n 31%|███ | 79/256 [00:08<00:23, 7.68it/s]\n 32%|███▏ | 81/256 [00:08<00:20, 8.50it/s]\n 32%|███▏ | 83/256 [00:09<00:22, 7.67it/s]\n 33%|███▎ | 85/256 [00:09<00:20, 8.46it/s]\n 34%|███▍ | 87/256 [00:09<00:22, 7.61it/s]\n 35%|███▍ | 89/256 [00:09<00:19, 8.39it/s]\n 35%|███▌ | 90/256 [00:10<00:24, 6.65it/s]\n 36%|███▌ | 92/256 [00:10<00:21, 7.52it/s]\n 36%|███▋ | 93/256 [00:10<00:26, 6.24it/s]\n 37%|███▋ | 95/256 [00:10<00:22, 7.14it/s]\n 38%|███▊ | 96/256 [00:10<00:26, 6.08it/s]\n 38%|███▊ | 98/256 [00:11<00:22, 6.98it/s]\n 39%|███▊ | 99/256 [00:11<00:26, 5.94it/s]\n 39%|███▉ | 101/256 [00:11<00:22, 6.84it/s]\n 40%|███▉ | 102/256 [00:11<00:26, 5.77it/s]\n 41%|████ | 104/256 [00:11<00:22, 6.67it/s]\n 41%|████ | 105/256 [00:12<00:26, 5.73it/s]\n 42%|████▏ | 107/256 [00:12<00:22, 6.62it/s]\n 42%|████▏ | 108/256 [00:12<00:25, 5.71it/s]\n 43%|████▎ | 110/256 [00:12<00:22, 6.59it/s]\n 43%|████▎ | 111/256 [00:13<00:25, 5.67it/s]\n 44%|████▍ | 113/256 [00:13<00:21, 6.54it/s]\n 45%|████▍ | 114/256 [00:13<00:25, 5.61it/s]\n 45%|████▌ | 116/256 [00:13<00:21, 6.48it/s]\n 46%|████▌ | 117/256 [00:13<00:25, 5.53it/s]\n 46%|████▋ | 119/256 [00:14<00:21, 6.39it/s]\n 47%|████▋ | 120/256 [00:14<00:24, 5.52it/s]\n 48%|████▊ | 122/256 [00:14<00:21, 6.38it/s]\n 48%|████▊ | 123/256 [00:14<00:24, 5.50it/s]\n 49%|████▉ | 125/256 [00:15<00:20, 6.36it/s]\n 49%|████▉ | 126/256 [00:15<00:23, 5.49it/s]\n 50%|████▉ | 127/256 [00:15<00:20, 6.34it/s]\n 50%|█████ | 128/256 [00:15<00:23, 5.54it/s]\n 50%|█████ | 129/256 [00:15<00:19, 6.38it/s]\n 51%|█████ | 130/256 [00:15<00:22, 5.53it/s]\n 51%|█████ | 131/256 [00:16<00:19, 6.37it/s]\n 52%|█████▏ | 132/256 [00:16<00:22, 5.51it/s]\n 52%|█████▏ | 133/256 [00:16<00:19, 6.34it/s]\n 52%|█████▏ | 134/256 [00:16<00:22, 5.50it/s]\n 53%|█████▎ | 135/256 [00:16<00:19, 6.32it/s]\n 53%|█████▎ | 136/256 [00:16<00:21, 5.48it/s]\n 54%|█████▎ | 137/256 [00:17<00:18, 6.30it/s]\n 54%|█████▍ | 138/256 [00:17<00:21, 5.45it/s]\n 54%|█████▍ | 139/256 [00:17<00:18, 6.26it/s]\n 55%|█████▍ | 140/256 [00:17<00:21, 5.43it/s]\n 55%|█████▌ | 141/256 [00:17<00:18, 6.24it/s]\n 55%|█████▌ | 142/256 [00:18<00:21, 5.39it/s]\n 56%|█████▌ | 143/256 [00:18<00:18, 6.20it/s]\n 56%|█████▋ | 144/256 [00:18<00:21, 5.31it/s]\n 57%|█████▋ | 145/256 [00:18<00:18, 6.11it/s]\n 57%|█████▋ | 146/256 [00:18<00:20, 5.27it/s]\n 57%|█████▋ | 147/256 [00:18<00:17, 6.07it/s]\n 58%|█████▊ | 148/256 [00:19<00:20, 5.22it/s]\n 58%|█████▊ | 149/256 [00:19<00:17, 6.02it/s]\n 59%|█████▊ | 150/256 [00:19<00:20, 5.19it/s]\n 59%|█████▉ | 151/256 [00:19<00:17, 5.99it/s]\n 59%|█████▉ | 152/256 [00:19<00:20, 5.17it/s]\n 60%|█████▉ | 153/256 [00:19<00:17, 5.97it/s]\n 60%|██████ | 154/256 [00:20<00:19, 5.15it/s]\n 61%|██████ | 155/256 [00:20<00:16, 5.95it/s]\n 61%|██████ | 156/256 [00:20<00:19, 5.13it/s]\n 61%|██████▏ | 157/256 [00:20<00:16, 5.91it/s]\n 62%|██████▏ | 158/256 [00:20<00:19, 5.10it/s]\n 62%|██████▏ | 159/256 [00:21<00:16, 5.88it/s]\n 62%|██████▎ | 160/256 [00:21<00:18, 5.07it/s]\n 63%|██████▎ | 161/256 [00:21<00:16, 5.83it/s]\n 63%|██████▎ | 162/256 [00:21<00:17, 5.30it/s]\n 64%|██████▎ | 163/256 [00:21<00:15, 6.04it/s]\n 64%|██████▍ | 164/256 [00:21<00:17, 5.39it/s]\n 64%|██████▍ | 165/256 [00:22<00:14, 6.11it/s]\n 65%|██████▍ | 166/256 [00:22<00:16, 5.44it/s]\n 65%|██████▌ | 167/256 [00:22<00:17, 5.05it/s]\n 66%|██████▌ | 168/256 [00:22<00:18, 4.81it/s]\n 66%|██████▌ | 169/256 [00:22<00:18, 4.66it/s]\n 66%|██████▋ | 170/256 [00:23<00:18, 4.54it/s]\n 67%|██████▋ | 171/256 [00:23<00:19, 4.46it/s]\n 67%|██████▋ | 172/256 [00:23<00:19, 4.41it/s]\n 68%|██████▊ | 173/256 [00:23<00:19, 4.36it/s]\n 68%|██████▊ | 174/256 [00:24<00:19, 4.28it/s]\n 68%|██████▊ | 175/256 [00:24<00:18, 4.28it/s]\n 69%|██████▉ | 176/256 [00:24<00:18, 4.28it/s]\n 69%|██████▉ | 177/256 [00:24<00:18, 4.26it/s]\n 70%|██████▉ | 178/256 [00:25<00:18, 4.25it/s]\n 70%|██████▉ | 179/256 [00:25<00:18, 4.24it/s]\n 70%|███████ | 180/256 [00:25<00:17, 4.23it/s]\n 71%|███████ | 181/256 [00:25<00:17, 4.22it/s]\n 71%|███████ | 182/256 [00:26<00:17, 4.21it/s]\n 71%|███████▏ | 183/256 [00:26<00:17, 4.21it/s]\n 72%|███████▏ | 184/256 [00:26<00:17, 4.21it/s]\n 72%|███████▏ | 185/256 [00:26<00:16, 4.20it/s]\n 73%|███████▎ | 186/256 [00:27<00:16, 4.19it/s]\n 73%|███████▎ | 187/256 [00:27<00:16, 4.18it/s]\n 73%|███████▎ | 188/256 [00:27<00:16, 4.18it/s]\n 74%|███████▍ | 189/256 [00:27<00:15, 4.23it/s]\n 74%|███████▍ | 190/256 [00:27<00:15, 4.24it/s]\n 75%|███████▍ | 191/256 [00:28<00:15, 4.26it/s]\n 75%|███████▌ | 192/256 [00:28<00:14, 4.27it/s]\n 75%|███████▌ | 193/256 [00:28<00:14, 4.28it/s]\n 76%|███████▌ | 194/256 [00:28<00:14, 4.27it/s]\n 76%|███████▌ | 195/256 [00:29<00:14, 4.27it/s]\n 77%|███████▋ | 196/256 [00:29<00:14, 4.27it/s]\n 77%|███████▋ | 197/256 [00:29<00:13, 4.25it/s]\n 77%|███████▋ | 198/256 [00:29<00:13, 4.25it/s]\n 78%|███████▊ | 199/256 [00:30<00:13, 4.24it/s]\n 78%|███████▊ | 200/256 [00:30<00:13, 4.24it/s]\n 79%|███████▊ | 201/256 [00:30<00:13, 4.23it/s]\n 79%|███████▉ | 202/256 [00:30<00:12, 4.22it/s]\n 79%|███████▉ | 203/256 [00:31<00:12, 4.21it/s]\n 80%|███████▉ | 204/256 [00:31<00:12, 4.19it/s]\n 80%|████████ | 205/256 [00:31<00:12, 4.19it/s]\n 80%|████████ | 206/256 [00:31<00:11, 4.18it/s]\n 81%|████████ | 207/256 [00:31<00:11, 4.17it/s]\n 81%|████████▏ | 208/256 [00:32<00:11, 4.17it/s]\n 82%|████████▏ | 209/256 [00:32<00:11, 4.16it/s]\n 82%|████████▏ | 210/256 [00:32<00:11, 4.15it/s]\n 82%|████████▏ | 211/256 [00:32<00:10, 4.12it/s]\n 83%|████████▎ | 212/256 [00:33<00:10, 4.09it/s]\n 83%|████████▎ | 213/256 [00:33<00:10, 4.08it/s]\n 84%|████████▎ | 214/256 [00:33<00:10, 4.06it/s]\n 84%|████████▍ | 215/256 [00:33<00:10, 4.04it/s]\n 84%|████████▍ | 216/256 [00:34<00:09, 4.03it/s]\n 85%|████████▍ | 217/256 [00:34<00:09, 4.02it/s]\n 85%|████████▌ | 218/256 [00:34<00:09, 4.02it/s]\n 86%|████████▌ | 219/256 [00:34<00:09, 4.01it/s]\n 86%|████████▌ | 220/256 [00:35<00:08, 4.00it/s]\n 86%|████████▋ | 221/256 [00:35<00:08, 4.00it/s]\n 87%|████████▋ | 222/256 [00:35<00:08, 3.93it/s]\n 87%|████████▋ | 223/256 [00:35<00:08, 3.93it/s]\n 88%|████████▊ | 224/256 [00:36<00:08, 3.93it/s]\n 88%|████████▊ | 225/256 [00:36<00:07, 3.93it/s]\n 88%|████████▊ | 226/256 [00:36<00:07, 3.93it/s]\n 89%|████████▊ | 227/256 [00:36<00:07, 3.93it/s]\n 89%|████████▉ | 228/256 [00:37<00:07, 3.92it/s]\n 89%|████████▉ | 229/256 [00:37<00:06, 3.93it/s]\n 90%|████████▉ | 230/256 [00:37<00:06, 3.92it/s]\n 90%|█████████ | 231/256 [00:38<00:06, 3.90it/s]\n 91%|█████████ | 232/256 [00:38<00:06, 3.90it/s]\n 91%|█████████ | 233/256 [00:38<00:05, 3.89it/s]\n 91%|█████████▏| 234/256 [00:38<00:05, 3.87it/s]\n 92%|█████████▏| 235/256 [00:39<00:05, 3.85it/s]\n 92%|█████████▏| 236/256 [00:39<00:05, 3.84it/s]\n 93%|█████████▎| 237/256 [00:39<00:04, 3.83it/s]\n 93%|█████████▎| 238/256 [00:39<00:04, 3.81it/s]\n 93%|█████████▎| 239/256 [00:40<00:04, 3.80it/s]\n 94%|█████████▍| 240/256 [00:40<00:04, 3.79it/s]\n 94%|█████████▍| 241/256 [00:40<00:03, 3.79it/s]\n 95%|█████████▍| 242/256 [00:40<00:03, 3.79it/s]\n 95%|█████████▍| 243/256 [00:41<00:03, 3.79it/s]\n 95%|█████████▌| 244/256 [00:41<00:03, 3.79it/s]\n 96%|█████████▌| 245/256 [00:41<00:02, 3.78it/s]\n 96%|█████████▌| 246/256 [00:41<00:02, 3.78it/s]\n 96%|█████████▋| 247/256 [00:42<00:02, 3.76it/s]\n 97%|█████████▋| 248/256 [00:42<00:02, 3.75it/s]\n 97%|█████████▋| 249/256 [00:42<00:01, 3.74it/s]\n 98%|█████████▊| 250/256 [00:43<00:01, 3.74it/s]\n 98%|█████████▊| 251/256 [00:43<00:01, 3.73it/s]\n 98%|█████████▊| 252/256 [00:43<00:01, 3.73it/s]\n 99%|█████████▉| 253/256 [00:43<00:00, 3.73it/s]\n 99%|█████████▉| 254/256 [00:44<00:00, 3.73it/s]\n100%|█████████▉| 255/256 [00:44<00:00, 3.72it/s]\n100%|██████████| 256/256 [00:44<00:00, 3.72it/s]\n100%|██████████| 256/256 [00:44<00:00, 5.73it/s]", "metrics": { "predict_time": 49.590729, "total_time": 162.258748 }, "output": [ { "file": "https://replicate.delivery/mgxm/2a980d63-a373-4fbf-be75-8ad6649a7a61/out.png" } ], "started_at": "2021-12-21T00:16:24.482828Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7kjnsjxulndzjjl7zrwmjri35e", "cancel": "https://api.replicate.com/v1/predictions/7kjnsjxulndzjjl7zrwmjri35e/cancel" }, "version": "be9816fa6f8177ec9304981d70d7f08d151b650f5073b58a240b62f9d36a643a" }
Generated in0%| | 0/256 [00:00<?, ?it/s] 0%| | 1/256 [00:00<02:03, 2.06it/s] 1%| | 3/256 [00:00<01:31, 2.77it/s] 2%|▏ | 5/256 [00:00<01:08, 3.65it/s] 3%|▎ | 7/256 [00:00<00:53, 4.70it/s] 4%|▎ | 9/256 [00:01<00:42, 5.87it/s] 4%|▍ | 11/256 [00:01<00:40, 6.05it/s] 5%|▌ | 13/256 [00:01<00:33, 7.28it/s] 6%|▌ | 15/256 [00:01<00:28, 8.48it/s] 7%|▋ | 17/256 [00:01<00:24, 9.57it/s] 7%|▋ | 19/256 [00:02<00:27, 8.49it/s] 8%|▊ | 21/256 [00:02<00:24, 9.56it/s] 9%|▉ | 23/256 [00:02<00:22, 10.47it/s] 10%|▉ | 25/256 [00:02<00:26, 8.85it/s] 11%|█ | 27/256 [00:02<00:23, 9.83it/s] 11%|█▏ | 29/256 [00:02<00:21, 10.64it/s] 12%|█▏ | 31/256 [00:03<00:20, 11.23it/s] 13%|█▎ | 33/256 [00:03<00:24, 9.29it/s] 14%|█▎ | 35/256 [00:03<00:21, 10.14it/s] 14%|█▍ | 37/256 [00:03<00:20, 10.82it/s] 15%|█▌ | 39/256 [00:04<00:23, 9.14it/s] 16%|█▌ | 41/256 [00:04<00:21, 9.98it/s] 17%|█▋ | 43/256 [00:04<00:20, 10.63it/s] 18%|█▊ | 45/256 [00:04<00:23, 8.98it/s] 18%|█▊ | 47/256 [00:04<00:21, 9.79it/s] 19%|█▉ | 49/256 [00:05<00:24, 8.60it/s] 20%|█▉ | 51/256 [00:05<00:21, 9.46it/s] 21%|██ | 53/256 [00:05<00:19, 10.15it/s] 21%|██▏ | 55/256 [00:05<00:23, 8.58it/s] 22%|██▏ | 57/256 [00:05<00:21, 9.39it/s] 23%|██▎ | 59/256 [00:06<00:24, 8.14it/s] 24%|██▍ | 61/256 [00:06<00:21, 9.00it/s] 25%|██▍ | 63/256 [00:06<00:24, 8.02it/s] 25%|██▌ | 65/256 [00:06<00:21, 8.88it/s] 26%|██▌ | 67/256 [00:07<00:24, 7.86it/s] 27%|██▋ | 69/256 [00:07<00:21, 8.71it/s] 28%|██▊ | 71/256 [00:07<00:24, 7.71it/s] 29%|██▊ | 73/256 [00:07<00:21, 8.56it/s] 29%|██▉ | 75/256 [00:08<00:23, 7.68it/s] 30%|███ | 77/256 [00:08<00:21, 8.50it/s] 31%|███ | 79/256 [00:08<00:23, 7.68it/s] 32%|███▏ | 81/256 [00:08<00:20, 8.50it/s] 32%|███▏ | 83/256 [00:09<00:22, 7.67it/s] 33%|███▎ | 85/256 [00:09<00:20, 8.46it/s] 34%|███▍ | 87/256 [00:09<00:22, 7.61it/s] 35%|███▍ | 89/256 [00:09<00:19, 8.39it/s] 35%|███▌ | 90/256 [00:10<00:24, 6.65it/s] 36%|███▌ | 92/256 [00:10<00:21, 7.52it/s] 36%|███▋ | 93/256 [00:10<00:26, 6.24it/s] 37%|███▋ | 95/256 [00:10<00:22, 7.14it/s] 38%|███▊ | 96/256 [00:10<00:26, 6.08it/s] 38%|███▊ | 98/256 [00:11<00:22, 6.98it/s] 39%|███▊ | 99/256 [00:11<00:26, 5.94it/s] 39%|███▉ | 101/256 [00:11<00:22, 6.84it/s] 40%|███▉ | 102/256 [00:11<00:26, 5.77it/s] 41%|████ | 104/256 [00:11<00:22, 6.67it/s] 41%|████ | 105/256 [00:12<00:26, 5.73it/s] 42%|████▏ | 107/256 [00:12<00:22, 6.62it/s] 42%|████▏ | 108/256 [00:12<00:25, 5.71it/s] 43%|████▎ | 110/256 [00:12<00:22, 6.59it/s] 43%|████▎ | 111/256 [00:13<00:25, 5.67it/s] 44%|████▍ | 113/256 [00:13<00:21, 6.54it/s] 45%|████▍ | 114/256 [00:13<00:25, 5.61it/s] 45%|████▌ | 116/256 [00:13<00:21, 6.48it/s] 46%|████▌ | 117/256 [00:13<00:25, 5.53it/s] 46%|████▋ | 119/256 [00:14<00:21, 6.39it/s] 47%|████▋ | 120/256 [00:14<00:24, 5.52it/s] 48%|████▊ | 122/256 [00:14<00:21, 6.38it/s] 48%|████▊ | 123/256 [00:14<00:24, 5.50it/s] 49%|████▉ | 125/256 [00:15<00:20, 6.36it/s] 49%|████▉ | 126/256 [00:15<00:23, 5.49it/s] 50%|████▉ | 127/256 [00:15<00:20, 6.34it/s] 50%|█████ | 128/256 [00:15<00:23, 5.54it/s] 50%|█████ | 129/256 [00:15<00:19, 6.38it/s] 51%|█████ | 130/256 [00:15<00:22, 5.53it/s] 51%|█████ | 131/256 [00:16<00:19, 6.37it/s] 52%|█████▏ | 132/256 [00:16<00:22, 5.51it/s] 52%|█████▏ | 133/256 [00:16<00:19, 6.34it/s] 52%|█████▏ | 134/256 [00:16<00:22, 5.50it/s] 53%|█████▎ | 135/256 [00:16<00:19, 6.32it/s] 53%|█████▎ | 136/256 [00:16<00:21, 5.48it/s] 54%|█████▎ | 137/256 [00:17<00:18, 6.30it/s] 54%|█████▍ | 138/256 [00:17<00:21, 5.45it/s] 54%|█████▍ | 139/256 [00:17<00:18, 6.26it/s] 55%|█████▍ | 140/256 [00:17<00:21, 5.43it/s] 55%|█████▌ | 141/256 [00:17<00:18, 6.24it/s] 55%|█████▌ | 142/256 [00:18<00:21, 5.39it/s] 56%|█████▌ | 143/256 [00:18<00:18, 6.20it/s] 56%|█████▋ | 144/256 [00:18<00:21, 5.31it/s] 57%|█████▋ | 145/256 [00:18<00:18, 6.11it/s] 57%|█████▋ | 146/256 [00:18<00:20, 5.27it/s] 57%|█████▋ | 147/256 [00:18<00:17, 6.07it/s] 58%|█████▊ | 148/256 [00:19<00:20, 5.22it/s] 58%|█████▊ | 149/256 [00:19<00:17, 6.02it/s] 59%|█████▊ | 150/256 [00:19<00:20, 5.19it/s] 59%|█████▉ | 151/256 [00:19<00:17, 5.99it/s] 59%|█████▉ | 152/256 [00:19<00:20, 5.17it/s] 60%|█████▉ | 153/256 [00:19<00:17, 5.97it/s] 60%|██████ | 154/256 [00:20<00:19, 5.15it/s] 61%|██████ | 155/256 [00:20<00:16, 5.95it/s] 61%|██████ | 156/256 [00:20<00:19, 5.13it/s] 61%|██████▏ | 157/256 [00:20<00:16, 5.91it/s] 62%|██████▏ | 158/256 [00:20<00:19, 5.10it/s] 62%|██████▏ | 159/256 [00:21<00:16, 5.88it/s] 62%|██████▎ | 160/256 [00:21<00:18, 5.07it/s] 63%|██████▎ | 161/256 [00:21<00:16, 5.83it/s] 63%|██████▎ | 162/256 [00:21<00:17, 5.30it/s] 64%|██████▎ | 163/256 [00:21<00:15, 6.04it/s] 64%|██████▍ | 164/256 [00:21<00:17, 5.39it/s] 64%|██████▍ | 165/256 [00:22<00:14, 6.11it/s] 65%|██████▍ | 166/256 [00:22<00:16, 5.44it/s] 65%|██████▌ | 167/256 [00:22<00:17, 5.05it/s] 66%|██████▌ | 168/256 [00:22<00:18, 4.81it/s] 66%|██████▌ | 169/256 [00:22<00:18, 4.66it/s] 66%|██████▋ | 170/256 [00:23<00:18, 4.54it/s] 67%|██████▋ | 171/256 [00:23<00:19, 4.46it/s] 67%|██████▋ | 172/256 [00:23<00:19, 4.41it/s] 68%|██████▊ | 173/256 [00:23<00:19, 4.36it/s] 68%|██████▊ | 174/256 [00:24<00:19, 4.28it/s] 68%|██████▊ | 175/256 [00:24<00:18, 4.28it/s] 69%|██████▉ | 176/256 [00:24<00:18, 4.28it/s] 69%|██████▉ | 177/256 [00:24<00:18, 4.26it/s] 70%|██████▉ | 178/256 [00:25<00:18, 4.25it/s] 70%|██████▉ | 179/256 [00:25<00:18, 4.24it/s] 70%|███████ | 180/256 [00:25<00:17, 4.23it/s] 71%|███████ | 181/256 [00:25<00:17, 4.22it/s] 71%|███████ | 182/256 [00:26<00:17, 4.21it/s] 71%|███████▏ | 183/256 [00:26<00:17, 4.21it/s] 72%|███████▏ | 184/256 [00:26<00:17, 4.21it/s] 72%|███████▏ | 185/256 [00:26<00:16, 4.20it/s] 73%|███████▎ | 186/256 [00:27<00:16, 4.19it/s] 73%|███████▎ | 187/256 [00:27<00:16, 4.18it/s] 73%|███████▎ | 188/256 [00:27<00:16, 4.18it/s] 74%|███████▍ | 189/256 [00:27<00:15, 4.23it/s] 74%|███████▍ | 190/256 [00:27<00:15, 4.24it/s] 75%|███████▍ | 191/256 [00:28<00:15, 4.26it/s] 75%|███████▌ | 192/256 [00:28<00:14, 4.27it/s] 75%|███████▌ | 193/256 [00:28<00:14, 4.28it/s] 76%|███████▌ | 194/256 [00:28<00:14, 4.27it/s] 76%|███████▌ | 195/256 [00:29<00:14, 4.27it/s] 77%|███████▋ | 196/256 [00:29<00:14, 4.27it/s] 77%|███████▋ | 197/256 [00:29<00:13, 4.25it/s] 77%|███████▋ | 198/256 [00:29<00:13, 4.25it/s] 78%|███████▊ | 199/256 [00:30<00:13, 4.24it/s] 78%|███████▊ | 200/256 [00:30<00:13, 4.24it/s] 79%|███████▊ | 201/256 [00:30<00:13, 4.23it/s] 79%|███████▉ | 202/256 [00:30<00:12, 4.22it/s] 79%|███████▉ | 203/256 [00:31<00:12, 4.21it/s] 80%|███████▉ | 204/256 [00:31<00:12, 4.19it/s] 80%|████████ | 205/256 [00:31<00:12, 4.19it/s] 80%|████████ | 206/256 [00:31<00:11, 4.18it/s] 81%|████████ | 207/256 [00:31<00:11, 4.17it/s] 81%|████████▏ | 208/256 [00:32<00:11, 4.17it/s] 82%|████████▏ | 209/256 [00:32<00:11, 4.16it/s] 82%|████████▏ | 210/256 [00:32<00:11, 4.15it/s] 82%|████████▏ | 211/256 [00:32<00:10, 4.12it/s] 83%|████████▎ | 212/256 [00:33<00:10, 4.09it/s] 83%|████████▎ | 213/256 [00:33<00:10, 4.08it/s] 84%|████████▎ | 214/256 [00:33<00:10, 4.06it/s] 84%|████████▍ | 215/256 [00:33<00:10, 4.04it/s] 84%|████████▍ | 216/256 [00:34<00:09, 4.03it/s] 85%|████████▍ | 217/256 [00:34<00:09, 4.02it/s] 85%|████████▌ | 218/256 [00:34<00:09, 4.02it/s] 86%|████████▌ | 219/256 [00:34<00:09, 4.01it/s] 86%|████████▌ | 220/256 [00:35<00:08, 4.00it/s] 86%|████████▋ | 221/256 [00:35<00:08, 4.00it/s] 87%|████████▋ | 222/256 [00:35<00:08, 3.93it/s] 87%|████████▋ | 223/256 [00:35<00:08, 3.93it/s] 88%|████████▊ | 224/256 [00:36<00:08, 3.93it/s] 88%|████████▊ | 225/256 [00:36<00:07, 3.93it/s] 88%|████████▊ | 226/256 [00:36<00:07, 3.93it/s] 89%|████████▊ | 227/256 [00:36<00:07, 3.93it/s] 89%|████████▉ | 228/256 [00:37<00:07, 3.92it/s] 89%|████████▉ | 229/256 [00:37<00:06, 3.93it/s] 90%|████████▉ | 230/256 [00:37<00:06, 3.92it/s] 90%|█████████ | 231/256 [00:38<00:06, 3.90it/s] 91%|█████████ | 232/256 [00:38<00:06, 3.90it/s] 91%|█████████ | 233/256 [00:38<00:05, 3.89it/s] 91%|█████████▏| 234/256 [00:38<00:05, 3.87it/s] 92%|█████████▏| 235/256 [00:39<00:05, 3.85it/s] 92%|█████████▏| 236/256 [00:39<00:05, 3.84it/s] 93%|█████████▎| 237/256 [00:39<00:04, 3.83it/s] 93%|█████████▎| 238/256 [00:39<00:04, 3.81it/s] 93%|█████████▎| 239/256 [00:40<00:04, 3.80it/s] 94%|█████████▍| 240/256 [00:40<00:04, 3.79it/s] 94%|█████████▍| 241/256 [00:40<00:03, 3.79it/s] 95%|█████████▍| 242/256 [00:40<00:03, 3.79it/s] 95%|█████████▍| 243/256 [00:41<00:03, 3.79it/s] 95%|█████████▌| 244/256 [00:41<00:03, 3.79it/s] 96%|█████████▌| 245/256 [00:41<00:02, 3.78it/s] 96%|█████████▌| 246/256 [00:41<00:02, 3.78it/s] 96%|█████████▋| 247/256 [00:42<00:02, 3.76it/s] 97%|█████████▋| 248/256 [00:42<00:02, 3.75it/s] 97%|█████████▋| 249/256 [00:42<00:01, 3.74it/s] 98%|█████████▊| 250/256 [00:43<00:01, 3.74it/s] 98%|█████████▊| 251/256 [00:43<00:01, 3.73it/s] 98%|█████████▊| 252/256 [00:43<00:01, 3.73it/s] 99%|█████████▉| 253/256 [00:43<00:00, 3.73it/s] 99%|█████████▉| 254/256 [00:44<00:00, 3.73it/s] 100%|█████████▉| 255/256 [00:44<00:00, 3.72it/s] 100%|██████████| 256/256 [00:44<00:00, 3.72it/s] 100%|██████████| 256/256 [00:44<00:00, 5.73it/s]
Want to make some of these yourself?
Run this model