stability-ai
/
stable-diffusion-3.5-medium
2.5 billion parameter image model with improved MMDiT-X architecture
Prediction
stability-ai/stable-diffusion-3.5-mediumOfficial modelIDzy5ck93mcxrm20cjv1xbcg41x4StatusSucceededSourceWebTotal durationCreatedInput
- cfg
- 5
- steps
- 40
- prompt
- A photo of beautiful flowery meadow, at sunset
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 90
- prompt_strength
- 0.85
{ "cfg": 5, "steps": 40, "prompt": "A photo of beautiful flowery meadow, at sunset", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const input = { cfg: 5, steps: 40, prompt: "A photo of beautiful flowery meadow, at sunset", aspect_ratio: "1:1", output_format: "webp", output_quality: 90, prompt_strength: 0.85 }; const output = await replicate.run("stability-ai/stable-diffusion-3.5-medium", { input }); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/stable-diffusion-3.5-medium", input={ "cfg": 5, "steps": 40, "prompt": "A photo of beautiful flowery meadow, at sunset", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "input": { "cfg": 5, "steps": 40, "prompt": "A photo of beautiful flowery meadow, at sunset", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 } }' \ https://api.replicate.com/v1/models/stability-ai/stable-diffusion-3.5-medium/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-29T13:32:41.279204Z", "created_at": "2024-10-29T13:32:36.839000Z", "data_removed": false, "error": null, "id": "zy5ck93mcxrm20cjv1xbcg41x4", "input": { "cfg": 5, "steps": 40, "prompt": "A photo of beautiful flowery meadow, at sunset", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 }, "logs": "Seed set to: 4100208928\nRunning workflow\ngot prompt\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 67, title: ConditioningZeroOut, class type: ConditioningZeroOut\nExecuting node 68, title: ConditioningSetTimestepRange, class type: ConditioningSetTimestepRange\nExecuting node 69, title: Conditioning (Combine), class type: ConditioningCombine\nExecuting node 294, title: KSampler, class type: KSampler\n0%| | 0/40 [00:00<?, ?it/s]\n5%|▌ | 2/40 [00:00<00:03, 10.79it/s]\n10%|█ | 4/40 [00:00<00:03, 10.78it/s]\n15%|█▌ | 6/40 [00:00<00:03, 10.78it/s]\n20%|██ | 8/40 [00:00<00:02, 10.79it/s]\n25%|██▌ | 10/40 [00:00<00:02, 10.79it/s]\n30%|███ | 12/40 [00:01<00:02, 10.79it/s]\n35%|███▌ | 14/40 [00:01<00:02, 10.79it/s]\n40%|████ | 16/40 [00:01<00:02, 10.77it/s]\n45%|████▌ | 18/40 [00:01<00:02, 10.78it/s]\n50%|█████ | 20/40 [00:01<00:01, 10.79it/s]\n55%|█████▌ | 22/40 [00:02<00:01, 10.79it/s]\n60%|██████ | 24/40 [00:02<00:01, 10.76it/s]\n65%|██████▌ | 26/40 [00:02<00:01, 10.76it/s]\n70%|███████ | 28/40 [00:02<00:01, 10.76it/s]\n75%|███████▌ | 30/40 [00:02<00:00, 10.76it/s]\n80%|████████ | 32/40 [00:02<00:00, 10.77it/s]\n85%|████████▌ | 34/40 [00:03<00:00, 10.78it/s]\n90%|█████████ | 36/40 [00:03<00:00, 10.77it/s]\n95%|█████████▌| 38/40 [00:03<00:00, 10.78it/s]\n100%|██████████| 40/40 [00:03<00:00, 10.79it/s]\n100%|██████████| 40/40 [00:03<00:00, 10.78it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 309, title: Save Image, class type: SaveImage\nPrompt executed in 4.09 seconds\noutputs: {'309': {'images': [{'filename': 'R8_sd3.5L_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8_sd3.5L_00001_.png", "metrics": { "image_count": 1, "predict_time": 4.435928549, "total_time": 4.440204 }, "output": [ "https://replicate.delivery/yhqm/K6hD2bwf4SyQWaDJ1vP8854v2xG4ihlQBLu2zfQZTj95XprTA/R8_sd3.5L_00001_.webp" ], "started_at": "2024-10-29T13:32:36.843276Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/wcdb-esjfhl6nkbxvvjexfdm7h36zcyazskn5w2mambxzbqynt5xvvo6q", "get": "https://api.replicate.com/v1/predictions/zy5ck93mcxrm20cjv1xbcg41x4", "cancel": "https://api.replicate.com/v1/predictions/zy5ck93mcxrm20cjv1xbcg41x4/cancel" }, "version": "hidden" }
Generated inSeed set to: 4100208928 Running workflow got prompt Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 67, title: ConditioningZeroOut, class type: ConditioningZeroOut Executing node 68, title: ConditioningSetTimestepRange, class type: ConditioningSetTimestepRange Executing node 69, title: Conditioning (Combine), class type: ConditioningCombine Executing node 294, title: KSampler, class type: KSampler 0%| | 0/40 [00:00<?, ?it/s] 5%|▌ | 2/40 [00:00<00:03, 10.79it/s] 10%|█ | 4/40 [00:00<00:03, 10.78it/s] 15%|█▌ | 6/40 [00:00<00:03, 10.78it/s] 20%|██ | 8/40 [00:00<00:02, 10.79it/s] 25%|██▌ | 10/40 [00:00<00:02, 10.79it/s] 30%|███ | 12/40 [00:01<00:02, 10.79it/s] 35%|███▌ | 14/40 [00:01<00:02, 10.79it/s] 40%|████ | 16/40 [00:01<00:02, 10.77it/s] 45%|████▌ | 18/40 [00:01<00:02, 10.78it/s] 50%|█████ | 20/40 [00:01<00:01, 10.79it/s] 55%|█████▌ | 22/40 [00:02<00:01, 10.79it/s] 60%|██████ | 24/40 [00:02<00:01, 10.76it/s] 65%|██████▌ | 26/40 [00:02<00:01, 10.76it/s] 70%|███████ | 28/40 [00:02<00:01, 10.76it/s] 75%|███████▌ | 30/40 [00:02<00:00, 10.76it/s] 80%|████████ | 32/40 [00:02<00:00, 10.77it/s] 85%|████████▌ | 34/40 [00:03<00:00, 10.78it/s] 90%|█████████ | 36/40 [00:03<00:00, 10.77it/s] 95%|█████████▌| 38/40 [00:03<00:00, 10.78it/s] 100%|██████████| 40/40 [00:03<00:00, 10.79it/s] 100%|██████████| 40/40 [00:03<00:00, 10.78it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 309, title: Save Image, class type: SaveImage Prompt executed in 4.09 seconds outputs: {'309': {'images': [{'filename': 'R8_sd3.5L_00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8_sd3.5L_00001_.png
Prediction
stability-ai/stable-diffusion-3.5-mediumOfficial modelID0wx084def9rm20cjv1yb27bb6gStatusSucceededSourceWebTotal durationCreatedInput
- cfg
- 5
- steps
- 40
- prompt
- a captivating anime-style illustration of a woman in a white astronaut suit. She has long, dark wavy hair. Surrounding the astronaut are vibrant orange flowers with yellow centers. The background itself is a mesmerizing night sky filled with countless stars
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 90
- prompt_strength
- 0.85
{ "cfg": 5, "steps": 40, "prompt": "a captivating anime-style illustration of a woman in a white astronaut suit. She has long, dark wavy hair. Surrounding the astronaut are vibrant orange flowers with yellow centers. The background itself is a mesmerizing night sky filled with countless stars", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const input = { cfg: 5, steps: 40, prompt: "a captivating anime-style illustration of a woman in a white astronaut suit. She has long, dark wavy hair. Surrounding the astronaut are vibrant orange flowers with yellow centers. The background itself is a mesmerizing night sky filled with countless stars", aspect_ratio: "1:1", output_format: "webp", output_quality: 90, prompt_strength: 0.85 }; const output = await replicate.run("stability-ai/stable-diffusion-3.5-medium", { input }); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/stable-diffusion-3.5-medium", input={ "cfg": 5, "steps": 40, "prompt": "a captivating anime-style illustration of a woman in a white astronaut suit. She has long, dark wavy hair. Surrounding the astronaut are vibrant orange flowers with yellow centers. The background itself is a mesmerizing night sky filled with countless stars", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "input": { "cfg": 5, "steps": 40, "prompt": "a captivating anime-style illustration of a woman in a white astronaut suit. She has long, dark wavy hair. Surrounding the astronaut are vibrant orange flowers with yellow centers. The background itself is a mesmerizing night sky filled with countless stars", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 } }' \ https://api.replicate.com/v1/models/stability-ai/stable-diffusion-3.5-medium/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-29T13:35:07.173715Z", "created_at": "2024-10-29T13:35:02.778000Z", "data_removed": false, "error": null, "id": "0wx084def9rm20cjv1yb27bb6g", "input": { "cfg": 5, "steps": 40, "prompt": "a captivating anime-style illustration of a woman in a white astronaut suit. She has long, dark wavy hair. Surrounding the astronaut are vibrant orange flowers with yellow centers. The background itself is a mesmerizing night sky filled with countless stars", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 }, "logs": "Seed set to: 3551813581\nRunning workflow\ngot prompt\nExecuting node 294, title: KSampler, class type: KSampler\n0%| | 0/40 [00:00<?, ?it/s]\n5%|▌ | 2/40 [00:00<00:03, 10.76it/s]\n10%|█ | 4/40 [00:00<00:03, 10.78it/s]\n15%|█▌ | 6/40 [00:00<00:03, 10.76it/s]\n20%|██ | 8/40 [00:00<00:02, 10.77it/s]\n25%|██▌ | 10/40 [00:00<00:02, 10.78it/s]\n30%|███ | 12/40 [00:01<00:02, 10.78it/s]\n35%|███▌ | 14/40 [00:01<00:02, 10.78it/s]\n40%|████ | 16/40 [00:01<00:02, 10.78it/s]\n45%|████▌ | 18/40 [00:01<00:02, 10.78it/s]\n50%|█████ | 20/40 [00:01<00:01, 10.79it/s]\n55%|█████▌ | 22/40 [00:02<00:01, 10.77it/s]\n60%|██████ | 24/40 [00:02<00:01, 10.76it/s]\n65%|██████▌ | 26/40 [00:02<00:01, 10.77it/s]\n70%|███████ | 28/40 [00:02<00:01, 10.76it/s]\n75%|███████▌ | 30/40 [00:02<00:00, 10.77it/s]\n80%|████████ | 32/40 [00:02<00:00, 10.76it/s]\n85%|████████▌ | 34/40 [00:03<00:00, 10.76it/s]\n90%|█████████ | 36/40 [00:03<00:00, 10.77it/s]\n95%|█████████▌| 38/40 [00:03<00:00, 10.78it/s]\n100%|██████████| 40/40 [00:03<00:00, 10.79it/s]\n100%|██████████| 40/40 [00:03<00:00, 10.77it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 309, title: Save Image, class type: SaveImage\nPrompt executed in 4.03 seconds\noutputs: {'309': {'images': [{'filename': 'R8_sd3.5L_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8_sd3.5L_00001_.png", "metrics": { "image_count": 1, "predict_time": 4.389376381, "total_time": 4.395715 }, "output": [ "https://replicate.delivery/yhqm/b8ZWW3KneUSuca1q7wzUrSpRsElbIdLtFqXEMaZetgrLaprTA/R8_sd3.5L_00001_.webp" ], "started_at": "2024-10-29T13:35:02.784339Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/wcdb-meh23tz2vbo4lup5tdivjpnvcfwtwvyoupyqu4bhcwmgan7kzytq", "get": "https://api.replicate.com/v1/predictions/0wx084def9rm20cjv1yb27bb6g", "cancel": "https://api.replicate.com/v1/predictions/0wx084def9rm20cjv1yb27bb6g/cancel" }, "version": "hidden" }
Generated inSeed set to: 3551813581 Running workflow got prompt Executing node 294, title: KSampler, class type: KSampler 0%| | 0/40 [00:00<?, ?it/s] 5%|▌ | 2/40 [00:00<00:03, 10.76it/s] 10%|█ | 4/40 [00:00<00:03, 10.78it/s] 15%|█▌ | 6/40 [00:00<00:03, 10.76it/s] 20%|██ | 8/40 [00:00<00:02, 10.77it/s] 25%|██▌ | 10/40 [00:00<00:02, 10.78it/s] 30%|███ | 12/40 [00:01<00:02, 10.78it/s] 35%|███▌ | 14/40 [00:01<00:02, 10.78it/s] 40%|████ | 16/40 [00:01<00:02, 10.78it/s] 45%|████▌ | 18/40 [00:01<00:02, 10.78it/s] 50%|█████ | 20/40 [00:01<00:01, 10.79it/s] 55%|█████▌ | 22/40 [00:02<00:01, 10.77it/s] 60%|██████ | 24/40 [00:02<00:01, 10.76it/s] 65%|██████▌ | 26/40 [00:02<00:01, 10.77it/s] 70%|███████ | 28/40 [00:02<00:01, 10.76it/s] 75%|███████▌ | 30/40 [00:02<00:00, 10.77it/s] 80%|████████ | 32/40 [00:02<00:00, 10.76it/s] 85%|████████▌ | 34/40 [00:03<00:00, 10.76it/s] 90%|█████████ | 36/40 [00:03<00:00, 10.77it/s] 95%|█████████▌| 38/40 [00:03<00:00, 10.78it/s] 100%|██████████| 40/40 [00:03<00:00, 10.79it/s] 100%|██████████| 40/40 [00:03<00:00, 10.77it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 309, title: Save Image, class type: SaveImage Prompt executed in 4.03 seconds outputs: {'309': {'images': [{'filename': 'R8_sd3.5L_00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8_sd3.5L_00001_.png
Prediction
stability-ai/stable-diffusion-3.5-mediumOfficial modelIDdz66ferp39rm20cjv1zskn3tmwStatusSucceededSourceWebTotal durationCreatedInput
- cfg
- 5
- steps
- 40
- prompt
- a portrait of a man standing in front of a white wall. He is looking up towards something beyond the frame, fine art photography with dappled light
- aspect_ratio
- 1:1
- output_format
- webp
- output_quality
- 90
- prompt_strength
- 0.85
{ "cfg": 5, "steps": 40, "prompt": "a portrait of a man standing in front of a white wall. He is looking up towards something beyond the frame, fine art photography with dappled light", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const input = { cfg: 5, steps: 40, prompt: "a portrait of a man standing in front of a white wall. He is looking up towards something beyond the frame, fine art photography with dappled light", aspect_ratio: "1:1", output_format: "webp", output_quality: 90, prompt_strength: 0.85 }; const output = await replicate.run("stability-ai/stable-diffusion-3.5-medium", { input }); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "stability-ai/stable-diffusion-3.5-medium", input={ "cfg": 5, "steps": 40, "prompt": "a portrait of a man standing in front of a white wall. He is looking up towards something beyond the frame, fine art photography with dappled light", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run stability-ai/stable-diffusion-3.5-medium using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "input": { "cfg": 5, "steps": 40, "prompt": "a portrait of a man standing in front of a white wall. He is looking up towards something beyond the frame, fine art photography with dappled light", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 } }' \ https://api.replicate.com/v1/models/stability-ai/stable-diffusion-3.5-medium/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-29T13:37:44.529970Z", "created_at": "2024-10-29T13:37:40.378000Z", "data_removed": false, "error": null, "id": "dz66ferp39rm20cjv1zskn3tmw", "input": { "cfg": 5, "steps": 40, "prompt": "a portrait of a man standing in front of a white wall. He is looking up towards something beyond the frame, fine art photography with dappled light", "aspect_ratio": "1:1", "output_format": "webp", "output_quality": 90, "prompt_strength": 0.85 }, "logs": "Seed set to: 3405743627\nRunning workflow\ngot prompt\nExecuting node 294, title: KSampler, class type: KSampler\n0%| | 0/40 [00:00<?, ?it/s]\n5%|▌ | 2/40 [00:00<00:03, 10.66it/s]\n10%|█ | 4/40 [00:00<00:03, 10.71it/s]\n15%|█▌ | 6/40 [00:00<00:03, 10.70it/s]\n20%|██ | 8/40 [00:00<00:02, 10.70it/s]\n25%|██▌ | 10/40 [00:00<00:02, 10.70it/s]\n30%|███ | 12/40 [00:01<00:02, 10.68it/s]\n35%|███▌ | 14/40 [00:01<00:02, 10.69it/s]\n40%|████ | 16/40 [00:01<00:02, 10.71it/s]\n45%|████▌ | 18/40 [00:01<00:02, 10.72it/s]\n50%|█████ | 20/40 [00:01<00:01, 10.72it/s]\n55%|█████▌ | 22/40 [00:02<00:01, 10.72it/s]\n60%|██████ | 24/40 [00:02<00:01, 10.73it/s]\n65%|██████▌ | 26/40 [00:02<00:01, 10.73it/s]\n70%|███████ | 28/40 [00:02<00:01, 10.73it/s]\n75%|███████▌ | 30/40 [00:02<00:00, 10.74it/s]\n80%|████████ | 32/40 [00:02<00:00, 10.73it/s]\n85%|████████▌ | 34/40 [00:03<00:00, 10.73it/s]\n90%|█████████ | 36/40 [00:03<00:00, 10.74it/s]\n95%|█████████▌| 38/40 [00:03<00:00, 10.75it/s]\n100%|██████████| 40/40 [00:03<00:00, 10.76it/s]\n100%|██████████| 40/40 [00:03<00:00, 10.73it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 309, title: Save Image, class type: SaveImage\nPrompt executed in 4.00 seconds\noutputs: {'309': {'images': [{'filename': 'R8_sd3.5L_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8_sd3.5L_00001_.png", "metrics": { "image_count": 1, "predict_time": 4.146679204, "total_time": 4.15197 }, "output": [ "https://replicate.delivery/yhqm/fa78p5ERflveDIl2hXnB8TRgjbozUcX2BeEWDL7lUSGiyluOB/R8_sd3.5L_00001_.webp" ], "started_at": "2024-10-29T13:37:40.383290Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/wcdb-awlahmf27q6wdumdozolydio6zhoukcj3iw7vpmt3gptonkvkmlq", "get": "https://api.replicate.com/v1/predictions/dz66ferp39rm20cjv1zskn3tmw", "cancel": "https://api.replicate.com/v1/predictions/dz66ferp39rm20cjv1zskn3tmw/cancel" }, "version": "hidden" }
Generated inSeed set to: 3405743627 Running workflow got prompt Executing node 294, title: KSampler, class type: KSampler 0%| | 0/40 [00:00<?, ?it/s] 5%|▌ | 2/40 [00:00<00:03, 10.66it/s] 10%|█ | 4/40 [00:00<00:03, 10.71it/s] 15%|█▌ | 6/40 [00:00<00:03, 10.70it/s] 20%|██ | 8/40 [00:00<00:02, 10.70it/s] 25%|██▌ | 10/40 [00:00<00:02, 10.70it/s] 30%|███ | 12/40 [00:01<00:02, 10.68it/s] 35%|███▌ | 14/40 [00:01<00:02, 10.69it/s] 40%|████ | 16/40 [00:01<00:02, 10.71it/s] 45%|████▌ | 18/40 [00:01<00:02, 10.72it/s] 50%|█████ | 20/40 [00:01<00:01, 10.72it/s] 55%|█████▌ | 22/40 [00:02<00:01, 10.72it/s] 60%|██████ | 24/40 [00:02<00:01, 10.73it/s] 65%|██████▌ | 26/40 [00:02<00:01, 10.73it/s] 70%|███████ | 28/40 [00:02<00:01, 10.73it/s] 75%|███████▌ | 30/40 [00:02<00:00, 10.74it/s] 80%|████████ | 32/40 [00:02<00:00, 10.73it/s] 85%|████████▌ | 34/40 [00:03<00:00, 10.73it/s] 90%|█████████ | 36/40 [00:03<00:00, 10.74it/s] 95%|█████████▌| 38/40 [00:03<00:00, 10.75it/s] 100%|██████████| 40/40 [00:03<00:00, 10.76it/s] 100%|██████████| 40/40 [00:03<00:00, 10.73it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 309, title: Save Image, class type: SaveImage Prompt executed in 4.00 seconds outputs: {'309': {'images': [{'filename': 'R8_sd3.5L_00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8_sd3.5L_00001_.png
Want to make some of these yourself?
Run this model