tommoore515
/
material_stable_diffusion
Stable diffusion fork for generating tileable outputs
Prediction
tommoore515/material_stable_diffusion:3b5c0242Input
- width
- 512
- height
- 512
- prompt
- Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k
- num_outputs
- 1
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", { input: { width: 512, height: 512, prompt: "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k", num_outputs: 1, guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", input={ "width": 512, "height": 512, "prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", "input": { "width": 512, "height": 512, "prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449 \ -i 'width=512' \ -i 'height=512' \ -i 'prompt="Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-09-07T01:14:14.906612Z", "created_at": "2022-09-07T01:13:59.677073Z", "data_removed": false, "error": null, "id": "6o5jjvornrcwtadmvv7qkty2z4", "input": { "width": 512, "height": 512, "prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 46183\n\n0it [00:00, ?it/s]\n1it [00:00, 5.73it/s]\n2it [00:00, 4.17it/s]\n3it [00:00, 3.93it/s]\n4it [00:01, 3.83it/s]\n5it [00:01, 3.77it/s]\n6it [00:01, 3.73it/s]\n7it [00:01, 3.70it/s]\n8it [00:02, 3.71it/s]\n9it [00:02, 3.68it/s]\n10it [00:02, 3.68it/s]\n11it [00:02, 3.67it/s]\n12it [00:03, 3.68it/s]\n13it [00:03, 3.66it/s]\n14it [00:03, 3.66it/s]\n15it [00:04, 3.65it/s]\n16it [00:04, 3.65it/s]\n17it [00:04, 3.65it/s]\n18it [00:04, 3.65it/s]\n19it [00:05, 3.65it/s]\n20it [00:05, 3.63it/s]\n21it [00:05, 3.64it/s]\n22it [00:05, 3.63it/s]\n23it [00:06, 3.64it/s]\n24it [00:06, 3.64it/s]\n25it [00:06, 3.65it/s]\n26it [00:07, 3.64it/s]\n27it [00:07, 3.63it/s]\n28it [00:07, 3.63it/s]\n29it [00:07, 3.63it/s]\n30it [00:08, 3.63it/s]\n31it [00:08, 3.63it/s]\n32it [00:08, 3.62it/s]\n33it [00:08, 3.62it/s]\n34it [00:09, 3.62it/s]\n35it [00:09, 3.62it/s]\n36it [00:09, 3.62it/s]\n37it [00:10, 3.61it/s]\n38it [00:10, 3.61it/s]\n39it [00:10, 3.62it/s]\n40it [00:10, 3.62it/s]\n41it [00:11, 3.61it/s]\n42it [00:11, 3.61it/s]\n43it [00:11, 3.61it/s]\n44it [00:12, 3.61it/s]\n45it [00:12, 3.61it/s]\n46it [00:12, 3.62it/s]\n47it [00:12, 3.62it/s]\n48it [00:13, 3.62it/s]\n49it [00:13, 3.61it/s]\n50it [00:13, 3.61it/s]\n50it [00:13, 3.66it/s]", "metrics": { "predict_time": 15.037458, "total_time": 15.229539 }, "output": [ "https://replicate.delivery/mgxm/a5f7f356-99b4-4b7c-85b9-b084960f7552/out-0.png" ], "started_at": "2022-09-07T01:13:59.869154Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6o5jjvornrcwtadmvv7qkty2z4", "cancel": "https://api.replicate.com/v1/predictions/6o5jjvornrcwtadmvv7qkty2z4/cancel" }, "version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9" }
Generated inUsing seed: 46183 0it [00:00, ?it/s] 1it [00:00, 5.73it/s] 2it [00:00, 4.17it/s] 3it [00:00, 3.93it/s] 4it [00:01, 3.83it/s] 5it [00:01, 3.77it/s] 6it [00:01, 3.73it/s] 7it [00:01, 3.70it/s] 8it [00:02, 3.71it/s] 9it [00:02, 3.68it/s] 10it [00:02, 3.68it/s] 11it [00:02, 3.67it/s] 12it [00:03, 3.68it/s] 13it [00:03, 3.66it/s] 14it [00:03, 3.66it/s] 15it [00:04, 3.65it/s] 16it [00:04, 3.65it/s] 17it [00:04, 3.65it/s] 18it [00:04, 3.65it/s] 19it [00:05, 3.65it/s] 20it [00:05, 3.63it/s] 21it [00:05, 3.64it/s] 22it [00:05, 3.63it/s] 23it [00:06, 3.64it/s] 24it [00:06, 3.64it/s] 25it [00:06, 3.65it/s] 26it [00:07, 3.64it/s] 27it [00:07, 3.63it/s] 28it [00:07, 3.63it/s] 29it [00:07, 3.63it/s] 30it [00:08, 3.63it/s] 31it [00:08, 3.63it/s] 32it [00:08, 3.62it/s] 33it [00:08, 3.62it/s] 34it [00:09, 3.62it/s] 35it [00:09, 3.62it/s] 36it [00:09, 3.62it/s] 37it [00:10, 3.61it/s] 38it [00:10, 3.61it/s] 39it [00:10, 3.62it/s] 40it [00:10, 3.62it/s] 41it [00:11, 3.61it/s] 42it [00:11, 3.61it/s] 43it [00:11, 3.61it/s] 44it [00:12, 3.61it/s] 45it [00:12, 3.61it/s] 46it [00:12, 3.62it/s] 47it [00:12, 3.62it/s] 48it [00:13, 3.62it/s] 49it [00:13, 3.61it/s] 50it [00:13, 3.61it/s] 50it [00:13, 3.66it/s]
Prediction
tommoore515/material_stable_diffusion:3b5c0242Input
- width
- 512
- height
- 512
- prompt
- Muddy ground with autumn leaves seamless texture, trending on artstation, base color, albedo, 4k
- num_outputs
- 1
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "Muddy ground with autumn leaves seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", { input: { width: 512, height: 512, prompt: "Muddy ground with autumn leaves seamless texture, trending on artstation, base color, albedo, 4k", num_outputs: 1, guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", input={ "width": 512, "height": 512, "prompt": "Muddy ground with autumn leaves seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", "input": { "width": 512, "height": 512, "prompt": "Muddy ground with autumn leaves seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449 \ -i 'width=512' \ -i 'height=512' \ -i 'prompt="Muddy ground with autumn leaves seamless texture, trending on artstation, base color, albedo, 4k"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "Muddy ground with autumn leaves seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-09-07T01:16:21.696452Z", "created_at": "2022-09-07T01:16:06.098825Z", "data_removed": false, "error": null, "id": "i3dfvgcnezhsra5paq25ucqsn4", "input": { "width": 512, "height": 512, "prompt": "Muddy ground with autumn leaves seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 51368\n\n0it [00:00, ?it/s]\n1it [00:00, 6.29it/s]\n2it [00:00, 4.19it/s]\n3it [00:00, 3.88it/s]\n4it [00:01, 3.75it/s]\n5it [00:01, 3.67it/s]\n6it [00:01, 3.64it/s]\n7it [00:01, 3.62it/s]\n8it [00:02, 3.60it/s]\n9it [00:02, 3.58it/s]\n10it [00:02, 3.58it/s]\n11it [00:02, 3.57it/s]\n12it [00:03, 3.57it/s]\n13it [00:03, 3.56it/s]\n14it [00:03, 3.55it/s]\n15it [00:04, 3.55it/s]\n16it [00:04, 3.54it/s]\n17it [00:04, 3.53it/s]\n18it [00:04, 3.54it/s]\n19it [00:05, 3.54it/s]\n20it [00:05, 3.54it/s]\n21it [00:05, 3.55it/s]\n22it [00:06, 3.55it/s]\n23it [00:06, 3.54it/s]\n24it [00:06, 3.55it/s]\n25it [00:06, 3.54it/s]\n26it [00:07, 3.54it/s]\n27it [00:07, 3.54it/s]\n28it [00:07, 3.53it/s]\n29it [00:08, 3.53it/s]\n30it [00:08, 3.53it/s]\n31it [00:08, 3.53it/s]\n32it [00:08, 3.52it/s]\n33it [00:09, 3.52it/s]\n34it [00:09, 3.51it/s]\n35it [00:09, 3.51it/s]\n36it [00:10, 3.51it/s]\n37it [00:10, 3.51it/s]\n38it [00:10, 3.51it/s]\n39it [00:10, 3.51it/s]\n40it [00:11, 3.51it/s]\n41it [00:11, 3.51it/s]\n42it [00:11, 3.51it/s]\n43it [00:12, 3.50it/s]\n44it [00:12, 3.50it/s]\n45it [00:12, 3.50it/s]\n46it [00:12, 3.50it/s]\n47it [00:13, 3.50it/s]\n48it [00:13, 3.50it/s]\n49it [00:13, 3.50it/s]\n50it [00:14, 3.49it/s]\n50it [00:14, 3.56it/s]", "metrics": { "predict_time": 15.398979, "total_time": 15.597627 }, "output": [ "https://replicate.delivery/mgxm/9b8f4ec9-eef0-437f-a27a-cbd233d22407/out-0.png" ], "started_at": "2022-09-07T01:16:06.297473Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/i3dfvgcnezhsra5paq25ucqsn4", "cancel": "https://api.replicate.com/v1/predictions/i3dfvgcnezhsra5paq25ucqsn4/cancel" }, "version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9" }
Generated inUsing seed: 51368 0it [00:00, ?it/s] 1it [00:00, 6.29it/s] 2it [00:00, 4.19it/s] 3it [00:00, 3.88it/s] 4it [00:01, 3.75it/s] 5it [00:01, 3.67it/s] 6it [00:01, 3.64it/s] 7it [00:01, 3.62it/s] 8it [00:02, 3.60it/s] 9it [00:02, 3.58it/s] 10it [00:02, 3.58it/s] 11it [00:02, 3.57it/s] 12it [00:03, 3.57it/s] 13it [00:03, 3.56it/s] 14it [00:03, 3.55it/s] 15it [00:04, 3.55it/s] 16it [00:04, 3.54it/s] 17it [00:04, 3.53it/s] 18it [00:04, 3.54it/s] 19it [00:05, 3.54it/s] 20it [00:05, 3.54it/s] 21it [00:05, 3.55it/s] 22it [00:06, 3.55it/s] 23it [00:06, 3.54it/s] 24it [00:06, 3.55it/s] 25it [00:06, 3.54it/s] 26it [00:07, 3.54it/s] 27it [00:07, 3.54it/s] 28it [00:07, 3.53it/s] 29it [00:08, 3.53it/s] 30it [00:08, 3.53it/s] 31it [00:08, 3.53it/s] 32it [00:08, 3.52it/s] 33it [00:09, 3.52it/s] 34it [00:09, 3.51it/s] 35it [00:09, 3.51it/s] 36it [00:10, 3.51it/s] 37it [00:10, 3.51it/s] 38it [00:10, 3.51it/s] 39it [00:10, 3.51it/s] 40it [00:11, 3.51it/s] 41it [00:11, 3.51it/s] 42it [00:11, 3.51it/s] 43it [00:12, 3.50it/s] 44it [00:12, 3.50it/s] 45it [00:12, 3.50it/s] 46it [00:12, 3.50it/s] 47it [00:13, 3.50it/s] 48it [00:13, 3.50it/s] 49it [00:13, 3.50it/s] 50it [00:14, 3.49it/s] 50it [00:14, 3.56it/s]
Prediction
tommoore515/material_stable_diffusion:3b5c0242IDbsfkncbtt5fdhoswrh7uy64r2mStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- Ancient carvings trim sheet texture, trending on artstation, sandstone, base color, albedo, 4k
- num_outputs
- 1
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "Ancient carvings trim sheet texture, trending on artstation, sandstone, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", { input: { width: 512, height: 512, prompt: "Ancient carvings trim sheet texture, trending on artstation, sandstone, base color, albedo, 4k", num_outputs: 1, guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", input={ "width": 512, "height": 512, "prompt": "Ancient carvings trim sheet texture, trending on artstation, sandstone, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", "input": { "width": 512, "height": 512, "prompt": "Ancient carvings trim sheet texture, trending on artstation, sandstone, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449 \ -i 'width=512' \ -i 'height=512' \ -i 'prompt="Ancient carvings trim sheet texture, trending on artstation, sandstone, base color, albedo, 4k"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "Ancient carvings trim sheet texture, trending on artstation, sandstone, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-09-07T01:18:36.223262Z", "created_at": "2022-09-07T01:18:19.794958Z", "data_removed": false, "error": null, "id": "bsfkncbtt5fdhoswrh7uy64r2m", "input": { "width": 512, "height": 512, "prompt": "Ancient carvings trim sheet texture, trending on artstation, sandstone, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 50474\n\n0it [00:00, ?it/s]\n1it [00:00, 5.77it/s]\n2it [00:00, 4.14it/s]\n3it [00:00, 3.79it/s]\n4it [00:01, 3.63it/s]\n5it [00:01, 3.50it/s]\n6it [00:01, 3.48it/s]\n7it [00:01, 3.46it/s]\n8it [00:02, 3.42it/s]\n9it [00:02, 3.42it/s]\n10it [00:02, 3.42it/s]\n11it [00:03, 3.40it/s]\n12it [00:03, 3.39it/s]\n13it [00:03, 3.39it/s]\n14it [00:04, 3.39it/s]\n15it [00:04, 3.37it/s]\n16it [00:04, 3.38it/s]\n17it [00:04, 3.38it/s]\n18it [00:05, 3.38it/s]\n19it [00:05, 3.37it/s]\n20it [00:05, 3.37it/s]\n21it [00:06, 3.37it/s]\n22it [00:06, 3.37it/s]\n23it [00:06, 3.37it/s]\n24it [00:06, 3.35it/s]\n25it [00:07, 3.36it/s]\n26it [00:07, 3.35it/s]\n27it [00:07, 3.35it/s]\n28it [00:08, 3.34it/s]\n29it [00:08, 3.33it/s]\n30it [00:08, 3.33it/s]\n31it [00:09, 3.32it/s]\n32it [00:09, 3.31it/s]\n33it [00:09, 3.31it/s]\n34it [00:09, 3.32it/s]\n35it [00:10, 3.32it/s]\n36it [00:10, 3.31it/s]\n37it [00:10, 3.31it/s]\n38it [00:11, 3.31it/s]\n39it [00:11, 3.31it/s]\n40it [00:11, 3.30it/s]\n41it [00:12, 3.31it/s]\n42it [00:12, 3.30it/s]\n43it [00:12, 3.29it/s]\n44it [00:13, 3.30it/s]\n45it [00:13, 3.30it/s]\n46it [00:13, 3.30it/s]\n47it [00:13, 3.29it/s]\n48it [00:14, 3.28it/s]\n49it [00:14, 3.28it/s]\n50it [00:14, 3.28it/s]\n50it [00:14, 3.37it/s]", "metrics": { "predict_time": 16.268535, "total_time": 16.428304 }, "output": [ "https://replicate.delivery/mgxm/147f2329-db56-4a6a-a950-7a358f731fb7/out-0.png" ], "started_at": "2022-09-07T01:18:19.954727Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bsfkncbtt5fdhoswrh7uy64r2m", "cancel": "https://api.replicate.com/v1/predictions/bsfkncbtt5fdhoswrh7uy64r2m/cancel" }, "version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9" }
Generated inUsing seed: 50474 0it [00:00, ?it/s] 1it [00:00, 5.77it/s] 2it [00:00, 4.14it/s] 3it [00:00, 3.79it/s] 4it [00:01, 3.63it/s] 5it [00:01, 3.50it/s] 6it [00:01, 3.48it/s] 7it [00:01, 3.46it/s] 8it [00:02, 3.42it/s] 9it [00:02, 3.42it/s] 10it [00:02, 3.42it/s] 11it [00:03, 3.40it/s] 12it [00:03, 3.39it/s] 13it [00:03, 3.39it/s] 14it [00:04, 3.39it/s] 15it [00:04, 3.37it/s] 16it [00:04, 3.38it/s] 17it [00:04, 3.38it/s] 18it [00:05, 3.38it/s] 19it [00:05, 3.37it/s] 20it [00:05, 3.37it/s] 21it [00:06, 3.37it/s] 22it [00:06, 3.37it/s] 23it [00:06, 3.37it/s] 24it [00:06, 3.35it/s] 25it [00:07, 3.36it/s] 26it [00:07, 3.35it/s] 27it [00:07, 3.35it/s] 28it [00:08, 3.34it/s] 29it [00:08, 3.33it/s] 30it [00:08, 3.33it/s] 31it [00:09, 3.32it/s] 32it [00:09, 3.31it/s] 33it [00:09, 3.31it/s] 34it [00:09, 3.32it/s] 35it [00:10, 3.32it/s] 36it [00:10, 3.31it/s] 37it [00:10, 3.31it/s] 38it [00:11, 3.31it/s] 39it [00:11, 3.31it/s] 40it [00:11, 3.30it/s] 41it [00:12, 3.31it/s] 42it [00:12, 3.30it/s] 43it [00:12, 3.29it/s] 44it [00:13, 3.30it/s] 45it [00:13, 3.30it/s] 46it [00:13, 3.30it/s] 47it [00:13, 3.29it/s] 48it [00:14, 3.28it/s] 49it [00:14, 3.28it/s] 50it [00:14, 3.28it/s] 50it [00:14, 3.37it/s]
Prediction
tommoore515/material_stable_diffusion:3b5c0242ID7z63mz2dzfdajg3wbbtailuehmStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- Lunar surface seamless texture, trending on artstation, base color, albedo, 4k
- num_outputs
- 1
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "Lunar surface seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", { input: { width: 512, height: 512, prompt: "Lunar surface seamless texture, trending on artstation, base color, albedo, 4k", num_outputs: 1, guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", input={ "width": 512, "height": 512, "prompt": "Lunar surface seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", "input": { "width": 512, "height": 512, "prompt": "Lunar surface seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449 \ -i 'width=512' \ -i 'height=512' \ -i 'prompt="Lunar surface seamless texture, trending on artstation, base color, albedo, 4k"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "Lunar surface seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-09-07T01:17:26.190848Z", "created_at": "2022-09-07T01:17:10.170479Z", "data_removed": false, "error": null, "id": "7z63mz2dzfdajg3wbbtailuehm", "input": { "width": 512, "height": 512, "prompt": "Lunar surface seamless texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 7061\n\n0it [00:00, ?it/s]\n1it [00:00, 5.65it/s]\n2it [00:00, 4.04it/s]\n3it [00:00, 3.77it/s]\n4it [00:01, 3.64it/s]\n5it [00:01, 3.57it/s]\n6it [00:01, 3.54it/s]\n7it [00:01, 3.51it/s]\n8it [00:02, 3.49it/s]\n9it [00:02, 3.49it/s]\n10it [00:02, 3.48it/s]\n11it [00:03, 3.48it/s]\n12it [00:03, 3.47it/s]\n13it [00:03, 3.47it/s]\n14it [00:03, 3.46it/s]\n15it [00:04, 3.45it/s]\n16it [00:04, 3.44it/s]\n17it [00:04, 3.45it/s]\n18it [00:05, 3.45it/s]\n19it [00:05, 3.45it/s]\n20it [00:05, 3.44it/s]\n21it [00:05, 3.44it/s]\n22it [00:06, 3.45it/s]\n23it [00:06, 3.43it/s]\n24it [00:06, 3.44it/s]\n25it [00:07, 3.44it/s]\n26it [00:07, 3.43it/s]\n27it [00:07, 3.43it/s]\n28it [00:08, 3.42it/s]\n29it [00:08, 3.42it/s]\n30it [00:08, 3.43it/s]\n31it [00:08, 3.43it/s]\n32it [00:09, 3.42it/s]\n33it [00:09, 3.43it/s]\n34it [00:09, 3.43it/s]\n35it [00:10, 3.43it/s]\n36it [00:10, 3.43it/s]\n37it [00:10, 3.42it/s]\n38it [00:10, 3.41it/s]\n39it [00:11, 3.41it/s]\n40it [00:11, 3.41it/s]\n41it [00:11, 3.41it/s]\n42it [00:12, 3.41it/s]\n43it [00:12, 3.41it/s]\n44it [00:12, 3.41it/s]\n45it [00:12, 3.41it/s]\n46it [00:13, 3.40it/s]\n47it [00:13, 3.41it/s]\n48it [00:13, 3.39it/s]\n49it [00:14, 3.40it/s]\n50it [00:14, 3.39it/s]\n50it [00:14, 3.46it/s]", "metrics": { "predict_time": 15.802695, "total_time": 16.020369 }, "output": [ "https://replicate.delivery/mgxm/8f75db20-72d9-4917-bc86-db4ca5d73c35/out-0.png" ], "started_at": "2022-09-07T01:17:10.388153Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7z63mz2dzfdajg3wbbtailuehm", "cancel": "https://api.replicate.com/v1/predictions/7z63mz2dzfdajg3wbbtailuehm/cancel" }, "version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9" }
Generated inUsing seed: 7061 0it [00:00, ?it/s] 1it [00:00, 5.65it/s] 2it [00:00, 4.04it/s] 3it [00:00, 3.77it/s] 4it [00:01, 3.64it/s] 5it [00:01, 3.57it/s] 6it [00:01, 3.54it/s] 7it [00:01, 3.51it/s] 8it [00:02, 3.49it/s] 9it [00:02, 3.49it/s] 10it [00:02, 3.48it/s] 11it [00:03, 3.48it/s] 12it [00:03, 3.47it/s] 13it [00:03, 3.47it/s] 14it [00:03, 3.46it/s] 15it [00:04, 3.45it/s] 16it [00:04, 3.44it/s] 17it [00:04, 3.45it/s] 18it [00:05, 3.45it/s] 19it [00:05, 3.45it/s] 20it [00:05, 3.44it/s] 21it [00:05, 3.44it/s] 22it [00:06, 3.45it/s] 23it [00:06, 3.43it/s] 24it [00:06, 3.44it/s] 25it [00:07, 3.44it/s] 26it [00:07, 3.43it/s] 27it [00:07, 3.43it/s] 28it [00:08, 3.42it/s] 29it [00:08, 3.42it/s] 30it [00:08, 3.43it/s] 31it [00:08, 3.43it/s] 32it [00:09, 3.42it/s] 33it [00:09, 3.43it/s] 34it [00:09, 3.43it/s] 35it [00:10, 3.43it/s] 36it [00:10, 3.43it/s] 37it [00:10, 3.42it/s] 38it [00:10, 3.41it/s] 39it [00:11, 3.41it/s] 40it [00:11, 3.41it/s] 41it [00:11, 3.41it/s] 42it [00:12, 3.41it/s] 43it [00:12, 3.41it/s] 44it [00:12, 3.41it/s] 45it [00:12, 3.41it/s] 46it [00:13, 3.40it/s] 47it [00:13, 3.41it/s] 48it [00:13, 3.39it/s] 49it [00:14, 3.40it/s] 50it [00:14, 3.39it/s] 50it [00:14, 3.46it/s]
Prediction
tommoore515/material_stable_diffusion:3b5c0242IDv2dsko5lc5aglm4osf4tvvsfsmStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k
- num_outputs
- 1
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", { input: { width: 512, height: 512, prompt: "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k", num_outputs: 1, guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", input={ "width": 512, "height": 512, "prompt": "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", "input": { "width": 512, "height": 512, "prompt": "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449 \ -i 'width=512' \ -i 'height=512' \ -i 'prompt="Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-09-07T01:20:57.808362Z", "created_at": "2022-09-07T01:20:41.996288Z", "data_removed": false, "error": null, "id": "v2dsko5lc5aglm4osf4tvvsfsm", "input": { "width": 512, "height": 512, "prompt": "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 62103\n\n0it [00:00, ?it/s]\n1it [00:00, 5.73it/s]\n2it [00:00, 4.03it/s]\n3it [00:00, 3.76it/s]\n4it [00:01, 3.64it/s]\n5it [00:01, 3.56it/s]\n6it [00:01, 3.54it/s]\n7it [00:01, 3.52it/s]\n8it [00:02, 3.50it/s]\n9it [00:02, 3.49it/s]\n10it [00:02, 3.49it/s]\n11it [00:03, 3.49it/s]\n12it [00:03, 3.47it/s]\n13it [00:03, 3.48it/s]\n14it [00:03, 3.47it/s]\n15it [00:04, 3.47it/s]\n16it [00:04, 3.47it/s]\n17it [00:04, 3.47it/s]\n18it [00:05, 3.46it/s]\n19it [00:05, 3.45it/s]\n20it [00:05, 3.45it/s]\n21it [00:05, 3.45it/s]\n22it [00:06, 3.45it/s]\n23it [00:06, 3.44it/s]\n24it [00:06, 3.44it/s]\n25it [00:07, 3.45it/s]\n26it [00:07, 3.44it/s]\n27it [00:07, 3.44it/s]\n28it [00:07, 3.44it/s]\n29it [00:08, 3.43it/s]\n30it [00:08, 3.43it/s]\n31it [00:08, 3.42it/s]\n32it [00:09, 3.43it/s]\n33it [00:09, 3.42it/s]\n34it [00:09, 3.42it/s]\n35it [00:10, 3.42it/s]\n36it [00:10, 3.43it/s]\n37it [00:10, 3.42it/s]\n38it [00:10, 3.42it/s]\n39it [00:11, 3.42it/s]\n40it [00:11, 3.42it/s]\n41it [00:11, 3.42it/s]\n42it [00:12, 3.41it/s]\n43it [00:12, 3.41it/s]\n44it [00:12, 3.41it/s]\n45it [00:12, 3.41it/s]\n46it [00:13, 3.41it/s]\n47it [00:13, 3.41it/s]\n48it [00:13, 3.40it/s]\n49it [00:14, 3.40it/s]\n50it [00:14, 3.40it/s]\n50it [00:14, 3.46it/s]", "metrics": { "predict_time": 15.611519, "total_time": 15.812074 }, "output": [ "https://replicate.delivery/mgxm/7d3bc46c-612f-42cb-9347-317b2db1d3d6/out-0.png" ], "started_at": "2022-09-07T01:20:42.196843Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/v2dsko5lc5aglm4osf4tvvsfsm", "cancel": "https://api.replicate.com/v1/predictions/v2dsko5lc5aglm4osf4tvvsfsm/cancel" }, "version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9" }
Generated inUsing seed: 62103 0it [00:00, ?it/s] 1it [00:00, 5.73it/s] 2it [00:00, 4.03it/s] 3it [00:00, 3.76it/s] 4it [00:01, 3.64it/s] 5it [00:01, 3.56it/s] 6it [00:01, 3.54it/s] 7it [00:01, 3.52it/s] 8it [00:02, 3.50it/s] 9it [00:02, 3.49it/s] 10it [00:02, 3.49it/s] 11it [00:03, 3.49it/s] 12it [00:03, 3.47it/s] 13it [00:03, 3.48it/s] 14it [00:03, 3.47it/s] 15it [00:04, 3.47it/s] 16it [00:04, 3.47it/s] 17it [00:04, 3.47it/s] 18it [00:05, 3.46it/s] 19it [00:05, 3.45it/s] 20it [00:05, 3.45it/s] 21it [00:05, 3.45it/s] 22it [00:06, 3.45it/s] 23it [00:06, 3.44it/s] 24it [00:06, 3.44it/s] 25it [00:07, 3.45it/s] 26it [00:07, 3.44it/s] 27it [00:07, 3.44it/s] 28it [00:07, 3.44it/s] 29it [00:08, 3.43it/s] 30it [00:08, 3.43it/s] 31it [00:08, 3.42it/s] 32it [00:09, 3.43it/s] 33it [00:09, 3.42it/s] 34it [00:09, 3.42it/s] 35it [00:10, 3.42it/s] 36it [00:10, 3.43it/s] 37it [00:10, 3.42it/s] 38it [00:10, 3.42it/s] 39it [00:11, 3.42it/s] 40it [00:11, 3.42it/s] 41it [00:11, 3.42it/s] 42it [00:12, 3.41it/s] 43it [00:12, 3.41it/s] 44it [00:12, 3.41it/s] 45it [00:12, 3.41it/s] 46it [00:13, 3.41it/s] 47it [00:13, 3.41it/s] 48it [00:13, 3.40it/s] 49it [00:14, 3.40it/s] 50it [00:14, 3.40it/s] 50it [00:14, 3.46it/s]
Prediction
tommoore515/material_stable_diffusion:3b5c0242Input
- width
- 512
- height
- 512
- prompt
- Wall made from chocolate bars seamless texture, trending on artstation, tasty, base color, albedo, 4k
- num_outputs
- 1
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 512, "height": 512, "prompt": "Wall made from chocolate bars seamless texture, trending on artstation, tasty, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", { input: { width: 512, height: 512, prompt: "Wall made from chocolate bars seamless texture, trending on artstation, tasty, base color, albedo, 4k", num_outputs: 1, guidance_scale: 7.5, prompt_strength: 0.8, num_inference_steps: 50 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", input={ "width": 512, "height": 512, "prompt": "Wall made from chocolate bars seamless texture, trending on artstation, tasty, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449", "input": { "width": 512, "height": 512, "prompt": "Wall made from chocolate bars seamless texture, trending on artstation, tasty, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449 \ -i 'width=512' \ -i 'height=512' \ -i 'prompt="Wall made from chocolate bars seamless texture, trending on artstation, tasty, base color, albedo, 4k"' \ -i 'num_outputs=1' \ -i 'guidance_scale=7.5' \ -i 'prompt_strength=0.8' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "Wall made from chocolate bars seamless texture, trending on artstation, tasty, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-09-07T01:43:25.543516Z", "created_at": "2022-09-07T01:42:23.220340Z", "data_removed": false, "error": null, "id": "umjv6lbdvjaeldlcghpyjebquu", "input": { "width": 512, "height": 512, "prompt": "Wall made from chocolate bars seamless texture, trending on artstation, tasty, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 61281\n\n0it [00:00, ?it/s]\n1it [00:03, 3.12s/it]\n2it [00:03, 1.45s/it]\n3it [00:03, 1.09it/s]\n4it [00:03, 1.51it/s]\n5it [00:04, 1.91it/s]\n6it [00:04, 2.27it/s]\n7it [00:04, 2.60it/s]\n8it [00:05, 2.85it/s]\n9it [00:05, 3.04it/s]\n10it [00:05, 3.20it/s]\n11it [00:05, 3.32it/s]\n12it [00:06, 3.39it/s]\n13it [00:06, 3.46it/s]\n14it [00:06, 3.50it/s]\n15it [00:07, 3.53it/s]\n16it [00:07, 3.55it/s]\n17it [00:07, 3.57it/s]\n18it [00:07, 3.58it/s]\n19it [00:08, 3.58it/s]\n20it [00:08, 3.59it/s]\n21it [00:08, 3.59it/s]\n22it [00:08, 3.59it/s]\n23it [00:09, 3.58it/s]\n24it [00:09, 3.58it/s]\n25it [00:09, 3.59it/s]\n26it [00:10, 3.59it/s]\n27it [00:10, 3.57it/s]\n28it [00:10, 3.58it/s]\n29it [00:10, 3.58it/s]\n30it [00:11, 3.57it/s]\n31it [00:11, 3.56it/s]\n32it [00:11, 3.57it/s]\n33it [00:12, 3.57it/s]\n34it [00:12, 3.57it/s]\n35it [00:12, 3.57it/s]\n36it [00:12, 3.56it/s]\n37it [00:13, 3.57it/s]\n38it [00:13, 3.56it/s]\n39it [00:13, 3.56it/s]\n40it [00:13, 3.56it/s]\n41it [00:14, 3.56it/s]\n42it [00:14, 3.55it/s]\n43it [00:14, 3.55it/s]\n44it [00:15, 3.56it/s]\n45it [00:15, 3.55it/s]\n46it [00:15, 3.55it/s]\n47it [00:15, 3.55it/s]\n48it [00:16, 3.55it/s]\n49it [00:16, 3.54it/s]\n50it [00:16, 3.54it/s]\n50it [00:16, 2.97it/s]", "metrics": { "predict_time": 20.87728, "total_time": 62.323176 }, "output": [ "https://replicate.delivery/mgxm/9c645c58-82e8-4d88-bb7d-972472978698/out-0.png" ], "started_at": "2022-09-07T01:43:04.666236Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/umjv6lbdvjaeldlcghpyjebquu", "cancel": "https://api.replicate.com/v1/predictions/umjv6lbdvjaeldlcghpyjebquu/cancel" }, "version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9" }
Generated inUsing seed: 61281 0it [00:00, ?it/s] 1it [00:03, 3.12s/it] 2it [00:03, 1.45s/it] 3it [00:03, 1.09it/s] 4it [00:03, 1.51it/s] 5it [00:04, 1.91it/s] 6it [00:04, 2.27it/s] 7it [00:04, 2.60it/s] 8it [00:05, 2.85it/s] 9it [00:05, 3.04it/s] 10it [00:05, 3.20it/s] 11it [00:05, 3.32it/s] 12it [00:06, 3.39it/s] 13it [00:06, 3.46it/s] 14it [00:06, 3.50it/s] 15it [00:07, 3.53it/s] 16it [00:07, 3.55it/s] 17it [00:07, 3.57it/s] 18it [00:07, 3.58it/s] 19it [00:08, 3.58it/s] 20it [00:08, 3.59it/s] 21it [00:08, 3.59it/s] 22it [00:08, 3.59it/s] 23it [00:09, 3.58it/s] 24it [00:09, 3.58it/s] 25it [00:09, 3.59it/s] 26it [00:10, 3.59it/s] 27it [00:10, 3.57it/s] 28it [00:10, 3.58it/s] 29it [00:10, 3.58it/s] 30it [00:11, 3.57it/s] 31it [00:11, 3.56it/s] 32it [00:11, 3.57it/s] 33it [00:12, 3.57it/s] 34it [00:12, 3.57it/s] 35it [00:12, 3.57it/s] 36it [00:12, 3.56it/s] 37it [00:13, 3.57it/s] 38it [00:13, 3.56it/s] 39it [00:13, 3.56it/s] 40it [00:13, 3.56it/s] 41it [00:14, 3.56it/s] 42it [00:14, 3.55it/s] 43it [00:14, 3.55it/s] 44it [00:15, 3.56it/s] 45it [00:15, 3.55it/s] 46it [00:15, 3.55it/s] 47it [00:15, 3.55it/s] 48it [00:16, 3.55it/s] 49it [00:16, 3.54it/s] 50it [00:16, 3.54it/s] 50it [00:16, 2.97it/s]
Want to make some of these yourself?
Run this model