Readme
This model doesn't have a readme.
using TOK will sometimes generate images involving @corgi.cam
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run yosun/sdxl-corgicam using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"yosun/sdxl-corgicam:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc",
{
input: {
width: 1024,
height: 1024,
prompt: "TOK on the beach by rembrandt",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run yosun/sdxl-corgicam using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"yosun/sdxl-corgicam:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc",
input={
"width": 1024,
"height": 1024,
"prompt": "TOK on the beach by rembrandt",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run yosun/sdxl-corgicam using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc",
"input": {
"width": 1024,
"height": 1024,
"prompt": "TOK on the beach by rembrandt",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/yosun/sdxl-corgicam@sha256:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="TOK on the beach by rembrandt"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/yosun/sdxl-corgicam@sha256:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "TOK on the beach by rembrandt", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-11-06T08:10:32.457663Z",
"created_at": "2023-11-06T08:10:12.772331Z",
"data_removed": false,
"error": null,
"id": "5tip6e3beu2bcsqzwo2zoz6wku",
"input": {
"width": 1024,
"height": 1024,
"prompt": "TOK on the beach by rembrandt",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 61360\nEnsuring enough disk space...\nFree disk space: 2086475997184\nDownloading weights: https://replicate.delivery/pbxt/DM0MFvafiaWqTCWXZ8MUoNfvRKKB402SyPIrV8tfO9SUsJrjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.258s (720 MB/s)\\nExtracted 186 MB in 0.075s (2.5 GB/s)\\n'\nDownloaded weights in 0.507237434387207 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1> on the beach by rembrandt\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:14, 3.45it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.44it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.44it/s]\n 8%|▊ | 4/50 [00:01<00:13, 3.44it/s]\n 10%|█ | 5/50 [00:01<00:13, 3.44it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.44it/s]\n 14%|█▍ | 7/50 [00:02<00:12, 3.44it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.44it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.44it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.44it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.44it/s]\n 24%|██▍ | 12/50 [00:03<00:11, 3.44it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.44it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.44it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.44it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.44it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.44it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.44it/s]\n 38%|███▊ | 19/50 [00:05<00:09, 3.44it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.44it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.43it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.43it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.43it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.43it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.43it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.43it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.43it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.43it/s]\n 58%|█████▊ | 29/50 [00:08<00:06, 3.43it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.43it/s]\n 62%|██████▏ | 31/50 [00:09<00:05, 3.43it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.42it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.42it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.42it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.42it/s]\n 72%|███████▏ | 36/50 [00:10<00:04, 3.43it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.43it/s]\n 76%|███████▌ | 38/50 [00:11<00:03, 3.43it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.42it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.43it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.43it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.42it/s]\n 86%|████████▌ | 43/50 [00:12<00:02, 3.43it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.43it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 3.42it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.42it/s]\n 94%|█████████▍| 47/50 [00:13<00:00, 3.42it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.42it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.42it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.42it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.43it/s]",
"metrics": {
"predict_time": 18.131045,
"total_time": 19.685332
},
"output": [
"https://replicate.delivery/pbxt/mNe3P2cP7FX6YKri31FETpLI7MsNha0ZzmRCysmG0Zw7iy6IA/out-0.png"
],
"started_at": "2023-11-06T08:10:14.326618Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/5tip6e3beu2bcsqzwo2zoz6wku",
"cancel": "https://api.replicate.com/v1/predictions/5tip6e3beu2bcsqzwo2zoz6wku/cancel"
},
"version": "8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc"
}
Using seed: 61360
Ensuring enough disk space...
Free disk space: 2086475997184
Downloading weights: https://replicate.delivery/pbxt/DM0MFvafiaWqTCWXZ8MUoNfvRKKB402SyPIrV8tfO9SUsJrjA/trained_model.tar
b'Downloaded 186 MB bytes in 0.258s (720 MB/s)\nExtracted 186 MB in 0.075s (2.5 GB/s)\n'
Downloaded weights in 0.507237434387207 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: <s0><s1> on the beach by rembrandt
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:14, 3.45it/s]
4%|▍ | 2/50 [00:00<00:13, 3.44it/s]
6%|▌ | 3/50 [00:00<00:13, 3.44it/s]
8%|▊ | 4/50 [00:01<00:13, 3.44it/s]
10%|█ | 5/50 [00:01<00:13, 3.44it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.44it/s]
14%|█▍ | 7/50 [00:02<00:12, 3.44it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.44it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.44it/s]
20%|██ | 10/50 [00:02<00:11, 3.44it/s]
22%|██▏ | 11/50 [00:03<00:11, 3.44it/s]
24%|██▍ | 12/50 [00:03<00:11, 3.44it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.44it/s]
28%|██▊ | 14/50 [00:04<00:10, 3.44it/s]
30%|███ | 15/50 [00:04<00:10, 3.44it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.44it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.44it/s]
36%|███▌ | 18/50 [00:05<00:09, 3.44it/s]
38%|███▊ | 19/50 [00:05<00:09, 3.44it/s]
40%|████ | 20/50 [00:05<00:08, 3.44it/s]
42%|████▏ | 21/50 [00:06<00:08, 3.43it/s]
44%|████▍ | 22/50 [00:06<00:08, 3.43it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.43it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.43it/s]
50%|█████ | 25/50 [00:07<00:07, 3.43it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.43it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.43it/s]
56%|█████▌ | 28/50 [00:08<00:06, 3.43it/s]
58%|█████▊ | 29/50 [00:08<00:06, 3.43it/s]
60%|██████ | 30/50 [00:08<00:05, 3.43it/s]
62%|██████▏ | 31/50 [00:09<00:05, 3.43it/s]
64%|██████▍ | 32/50 [00:09<00:05, 3.42it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.42it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.42it/s]
70%|███████ | 35/50 [00:10<00:04, 3.42it/s]
72%|███████▏ | 36/50 [00:10<00:04, 3.43it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.43it/s]
76%|███████▌ | 38/50 [00:11<00:03, 3.43it/s]
78%|███████▊ | 39/50 [00:11<00:03, 3.42it/s]
80%|████████ | 40/50 [00:11<00:02, 3.43it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.43it/s]
84%|████████▍ | 42/50 [00:12<00:02, 3.42it/s]
86%|████████▌ | 43/50 [00:12<00:02, 3.43it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.43it/s]
90%|█████████ | 45/50 [00:13<00:01, 3.42it/s]
92%|█████████▏| 46/50 [00:13<00:01, 3.42it/s]
94%|█████████▍| 47/50 [00:13<00:00, 3.42it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.42it/s]
98%|█████████▊| 49/50 [00:14<00:00, 3.42it/s]
100%|██████████| 50/50 [00:14<00:00, 3.42it/s]
100%|██████████| 50/50 [00:14<00:00, 3.43it/s]
This model runs on Nvidia L40S GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 61360
Ensuring enough disk space...
Free disk space: 2086475997184
Downloading weights: https://replicate.delivery/pbxt/DM0MFvafiaWqTCWXZ8MUoNfvRKKB402SyPIrV8tfO9SUsJrjA/trained_model.tar
b'Downloaded 186 MB bytes in 0.258s (720 MB/s)\nExtracted 186 MB in 0.075s (2.5 GB/s)\n'
Downloaded weights in 0.507237434387207 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: <s0><s1> on the beach by rembrandt
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:14, 3.45it/s]
4%|▍ | 2/50 [00:00<00:13, 3.44it/s]
6%|▌ | 3/50 [00:00<00:13, 3.44it/s]
8%|▊ | 4/50 [00:01<00:13, 3.44it/s]
10%|█ | 5/50 [00:01<00:13, 3.44it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.44it/s]
14%|█▍ | 7/50 [00:02<00:12, 3.44it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.44it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.44it/s]
20%|██ | 10/50 [00:02<00:11, 3.44it/s]
22%|██▏ | 11/50 [00:03<00:11, 3.44it/s]
24%|██▍ | 12/50 [00:03<00:11, 3.44it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.44it/s]
28%|██▊ | 14/50 [00:04<00:10, 3.44it/s]
30%|███ | 15/50 [00:04<00:10, 3.44it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.44it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.44it/s]
36%|███▌ | 18/50 [00:05<00:09, 3.44it/s]
38%|███▊ | 19/50 [00:05<00:09, 3.44it/s]
40%|████ | 20/50 [00:05<00:08, 3.44it/s]
42%|████▏ | 21/50 [00:06<00:08, 3.43it/s]
44%|████▍ | 22/50 [00:06<00:08, 3.43it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.43it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.43it/s]
50%|█████ | 25/50 [00:07<00:07, 3.43it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.43it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.43it/s]
56%|█████▌ | 28/50 [00:08<00:06, 3.43it/s]
58%|█████▊ | 29/50 [00:08<00:06, 3.43it/s]
60%|██████ | 30/50 [00:08<00:05, 3.43it/s]
62%|██████▏ | 31/50 [00:09<00:05, 3.43it/s]
64%|██████▍ | 32/50 [00:09<00:05, 3.42it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.42it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.42it/s]
70%|███████ | 35/50 [00:10<00:04, 3.42it/s]
72%|███████▏ | 36/50 [00:10<00:04, 3.43it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.43it/s]
76%|███████▌ | 38/50 [00:11<00:03, 3.43it/s]
78%|███████▊ | 39/50 [00:11<00:03, 3.42it/s]
80%|████████ | 40/50 [00:11<00:02, 3.43it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.43it/s]
84%|████████▍ | 42/50 [00:12<00:02, 3.42it/s]
86%|████████▌ | 43/50 [00:12<00:02, 3.43it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.43it/s]
90%|█████████ | 45/50 [00:13<00:01, 3.42it/s]
92%|█████████▏| 46/50 [00:13<00:01, 3.42it/s]
94%|█████████▍| 47/50 [00:13<00:00, 3.42it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.42it/s]
98%|█████████▊| 49/50 [00:14<00:00, 3.42it/s]
100%|██████████| 50/50 [00:14<00:00, 3.42it/s]
100%|██████████| 50/50 [00:14<00:00, 3.43it/s]