zelenioncode / dreambooth_sdxl

  • Public
  • 151 runs

Run zelenioncode/dreambooth_sdxl with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
gender
string (enum)
woman

Options:

woman, man

Gender of person in training photo ( woman or man )
name_model
string
Dreambooth_sdxl
Give name for your .safetensors model
send_to_huggingface
boolean
False
Send folder have .safetensors model direct to your huggingface account
token_huggingface
string
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
If you use huggingface, enter your API TOKEN
repo_id_huggingface
string
WGlint/SafetensorsFromReplicate
If you use huggingface, enter repo_id to one of your project
folder_huggingface
string
Enter a path to download your .safetensors model. Default = ./
input
string
https://huggingface.co/WGlint/SafetensorsFromReplicate/resolve/main/input.zip
Direct link download with training picture (Only .zip file and picture in 1024px/1024px !)
repeat_input
integer
100

Min: 1

Max: 1000

Repeat of time GPU look training data ( e.g. 15 pictures * 100 repeat = 1500 steps )
use_class_reg
boolean
False
Use regulat classification picture
repeat_class_reg
integer
1

Min: 1

Max: 1000

Repeat of time GPU look class reg picture ( e.g. 5000 pictures * 2 repeat = 10000 steps cache latents )
class_reg
string
Direct link download for regular classification picture ( Default = class image of gender you use )
model_sdxl
string (enum)
Stable Diffusion XL

Options:

Stable Diffusion XL, RealVisXL_2, RealVisXL_3

Choice a model pretrained can run for SDXL training with dreambooth
num_cpu_threads_per_process
integer
4

Min: 1

Max: 10

Number CPU thread use with accelerate module
resolution
string
1024,1024
Resolution of your training picture data. WARNING ! Write in this formet : width,height ( e.g. 1024,1024 )
vae
string
stabilityai/sdxl-vae
VAE use for create model training
lr_scheduler_num_cycles
integer
1

Min: 1

Max: 1000

Num learning rate cycles for your training
max_data_loader_n_workers
integer
0

Max: 100

Maximun data loader for n workers you set
learning_rate_te1
number
0.00001
Value for learning_rate te1
learning_rate_te2
number
0.00001
Value for learning_rate te2
learning_rate
number
0.00001
Value for learning_rate
lr_scheduler
string (enum)
constant

Options:

constant, linear, cosine, cosine_with_restarts, polynomial, constant_with_warmup, adafactor

Method use for learning rate scheduler
train_batch_size
integer
1

Min: 1

Max: 64

Select value for device max train step and speed the generation, WARINING ! High value = High value to have CUDA Memory
max_train_steps
integer
3000

Max: 25000

Number of step you want for your training, and in average 1000 steps = 10 minutes
save_every_n_epochs
integer
1

Min: 1

Max: 64

Number of epochs model you want
mixed_precision
string (enum)
fp16

Options:

no, fp16, bf16

Select if you want to use miwed precision
save_precision
string (enum)
fp16

Options:

no, fp16, bf16

Select if you want to use save precision
optimizer_type
string (enum)
AdaFactor

Options:

AdamW, AdamW8bit, PagedAdamW, PagedAdamW8bit, PagedAdamW32bit, Lion8bit, PagedLion8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation, DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, AdaFactor

Select a optimiser type
scale_parameter
boolean
False
Use scale parameter
relative_step
boolean
False
Use relative step
warmup_init
boolean
False
Use warmup init
weight_decay
number
0.01
Give a float value for weight decay
bucket_reso_steps
integer
64

Min: 1

Max: 1000

Give a int value for bucket reso steps
save_every_n_steps
integer
1

Min: 1

Max: 5

Number of .safetensors model you want, if you select 2 with 2000 max train steps, you well get 2 .safetensors. 1 with 1000 steps and 1 with 2000 steps
noise_offset
number
0
Give a float value for noise offset
max_grad_norm
number
0
Give a float value for max grad norm
cache_latents_to_disk
boolean
True
None
cache_latents
boolean
True
None
mem_eff_attn
boolean
True
None
gradient_checkpointing
boolean
True
None
full_fp16
boolean
True
None
xformers
boolean
True
None
bucket_no_upscale
boolean
True
None
no_half_vae
boolean
True
None
train_text_encoder
boolean
True
None
learning_rate_te1_bool
number
0.000003
value for learning rate te1 bool
learning_rate_te2_bool
number
0
value for learning rate te2 bool

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "string",
  "title": "Output",
  "format": "uri"
}