zelenioncode / dreambooth_sdxl

  • Public
  • 155 runs
  • A100 (80GB)
Iterate in playground

Input

string

Gender of person in training photo ( woman or man )

Default: "woman"

string
Shift + Return to add a new line

Give name for your .safetensors model

Default: "Dreambooth_sdxl"

boolean

Send folder have .safetensors model direct to your huggingface account

Default: false

string
Shift + Return to add a new line

If you use huggingface, enter your API TOKEN

Default: "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"

string
Shift + Return to add a new line

If you use huggingface, enter repo_id to one of your project

Default: "WGlint/SafetensorsFromReplicate"

string
Shift + Return to add a new line

Enter a path to download your .safetensors model. Default = ./

Default: ""

string
Shift + Return to add a new line

Direct link download with training picture (Only .zip file and picture in 1024px/1024px !)

Default: "https://huggingface.co/WGlint/SafetensorsFromReplicate/resolve/main/input.zip"

integer
(minimum: 1, maximum: 1000)

Repeat of time GPU look training data ( e.g. 15 pictures * 100 repeat = 1500 steps )

Default: 100

boolean

Use regulat classification picture

Default: false

integer
(minimum: 1, maximum: 1000)

Repeat of time GPU look class reg picture ( e.g. 5000 pictures * 2 repeat = 10000 steps cache latents )

Default: 1

string
Shift + Return to add a new line

Direct link download for regular classification picture ( Default = class image of gender you use )

Default: ""

string

Choice a model pretrained can run for SDXL training with dreambooth

Default: "Stable Diffusion XL"

integer
(minimum: 1, maximum: 10)

Number CPU thread use with accelerate module

Default: 4

string
Shift + Return to add a new line

Resolution of your training picture data. WARNING ! Write in this formet : width,height ( e.g. 1024,1024 )

Default: "1024,1024"

string
Shift + Return to add a new line

VAE use for create model training

Default: "stabilityai/sdxl-vae"

integer
(minimum: 1, maximum: 1000)

Num learning rate cycles for your training

Default: 1

integer
(minimum: 0, maximum: 100)

Maximun data loader for n workers you set

Default: 0

number

Value for learning_rate te1

Default: 0.00001

number

Value for learning_rate te2

Default: 0.00001

number

Value for learning_rate

Default: 0.00001

string

Method use for learning rate scheduler

Default: "constant"

integer
(minimum: 1, maximum: 64)

Select value for device max train step and speed the generation, WARINING ! High value = High value to have CUDA Memory

Default: 1

integer
(minimum: 0, maximum: 25000)

Number of step you want for your training, and in average 1000 steps = 10 minutes

Default: 3000

integer
(minimum: 1, maximum: 64)

Number of epochs model you want

Default: 1

string

Select if you want to use miwed precision

Default: "fp16"

string

Select if you want to use save precision

Default: "fp16"

string

Select a optimiser type

Default: "AdaFactor"

boolean

Use scale parameter

Default: false

boolean

Use relative step

Default: false

boolean

Use warmup init

Default: false

number

Give a float value for weight decay

Default: 0.01

integer
(minimum: 1, maximum: 1000)

Give a int value for bucket reso steps

Default: 64

integer
(minimum: 1, maximum: 5)

Number of .safetensors model you want, if you select 2 with 2000 max train steps, you well get 2 .safetensors. 1 with 1000 steps and 1 with 2000 steps

Default: 1

number

Give a float value for noise offset

Default: 0

number

Give a float value for max grad norm

Default: 0

boolean

Default: true

boolean

Default: true

boolean

Default: true

boolean

Default: true

boolean

Default: true

boolean

Default: true

boolean

Default: true

boolean

Default: true

boolean

Default: true

number

value for learning rate te1 bool

Default: 0.000003

number

value for learning rate te2 bool

Default: 0

Output

No output yet! Press "Submit" to start a prediction.

Run time and cost

This model runs on Nvidia A100 (80GB) GPU hardware. We don't yet have enough runs of this model to provide performance information.

Readme

This model doesn't have a readme.