lucataco / stable-diffusion-3.5-large-lora
Stable Diffusion 3.5 Large - LoRA Explorer
Prediction
lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eefIDhqhtjjrwsdrj20cjrhbt6w57yrStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- a fisherman nearby river, Chinese line art
- hf_lora
- https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors
- lora_scale
- 0.8
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "a fisherman nearby river, Chinese line art", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", { input: { prompt: "a fisherman nearby river, Chinese line art", hf_lora: "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors", lora_scale: 0.8, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", input={ "prompt": "a fisherman nearby river, Chinese line art", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", "input": { "prompt": "a fisherman nearby river, Chinese line art", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-25T15:41:51.810821Z", "created_at": "2024-10-25T15:41:36.331000Z", "data_removed": false, "error": null, "id": "hqhtjjrwsdrj20cjrhbt6w57yr", "input": { "prompt": "a fisherman nearby river, Chinese line art", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 53192\nPrompt: a fisherman nearby river, Chinese line art\ntxt2img mode\nfree=2965974638592\nDownloading weights\n2024-10-25T15:41:36Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/9e627a859c53b1c4 url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors\n2024-10-25T15:41:36Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/a1/b5/a1b520a427f02642b881b06fb29a2714916363db2061865083fea93239f58431/1444c88f4bd6bb0e8d4b4db027a91966756cea486c81036c3f7fc50f7eb23f67?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27SD35-lora-Chinese-Line-Art.safetensors%3B+filename%3D%22SD35-lora-Chinese-Line-Art.safetensors%22%3B&Expires=1730130096&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDEzMDA5Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zL2ExL2I1L2ExYjUyMGE0MjdmMDI2NDJiODgxYjA2ZmIyOWEyNzE0OTE2MzYzZGIyMDYxODY1MDgzZmVhOTMyMzlmNTg0MzEvMTQ0NGM4OGY0YmQ2YmIwZThkNGI0ZGIwMjdhOTE5NjY3NTZjZWE0ODZjODEwMzZjM2Y3ZmM1MGY3ZWIyM2Y2Nz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=IhA%7EypEqQzlw30mE7Tzc07VZX6wBuHDkuZHl3SPGFfXK0iGXoxbnp2BE%7Ee4DEAFqPL4VF6u79k7L7DOlWldK9pmR6VmqetVYL8Ws2GOPr2kdGgfNrtS28tlssrjukCdAg6FnvtAM1N9bOF7f7y-NgCvIrgWbQY8gyubKsf5zn-a8EWqJGqy6RI52ZLL7KY-DMKGi7CXWQJtsukvtMVnGa3h4QcBm-CMaBikSXLqWImcre5Y7atbacqcSywOL4D-rPEY1BY1sWxdZBkiQdhXrmcd-VhUSRQmgNqTqTmgvw%7EUWGdTud9p5H1D-knfEn6-FBsyO0xMEvFQwlRVq9ZuGag__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors\n2024-10-25T15:41:37Z | INFO | [ Complete ] dest=/src/weights-cache/9e627a859c53b1c4 size=\"24 MB\" total_elapsed=1.014s url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors\nDownloaded weights in 1.03s\nLoading LoRA took: 1.39 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:13, 2.05it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.40it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.23it/s]\n 14%|█▍ | 4/28 [00:01<00:11, 2.16it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.08it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.07it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.06it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.06it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.06it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.05it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.05it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.05it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.05it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.05it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 2.05it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.05it/s]\n 82%|████████▏ | 23/28 [00:11<00:02, 2.05it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.05it/s]\n 89%|████████▉ | 25/28 [00:12<00:01, 2.05it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.05it/s]\n 96%|█████████▋| 27/28 [00:13<00:00, 2.05it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.05it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.07it/s]", "metrics": { "predict_time": 15.472772893, "total_time": 15.479821 }, "output": [ "https://replicate.delivery/yhqm/FEf3UN5WNkQ9E6FwVjdkRAreHucYS6cyLJSDCOGOF9cfxtUnA/out-0.webp" ], "started_at": "2024-10-25T15:41:36.338048Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-onzq4urxdkoocgz35bniopgeeulnwxqhyywn3usrvp52ifhvymzq", "get": "https://api.replicate.com/v1/predictions/hqhtjjrwsdrj20cjrhbt6w57yr", "cancel": "https://api.replicate.com/v1/predictions/hqhtjjrwsdrj20cjrhbt6w57yr/cancel" }, "version": "e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef" }
Generated inUsing seed: 53192 Prompt: a fisherman nearby river, Chinese line art txt2img mode free=2965974638592 Downloading weights 2024-10-25T15:41:36Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/9e627a859c53b1c4 url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors 2024-10-25T15:41:36Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/a1/b5/a1b520a427f02642b881b06fb29a2714916363db2061865083fea93239f58431/1444c88f4bd6bb0e8d4b4db027a91966756cea486c81036c3f7fc50f7eb23f67?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27SD35-lora-Chinese-Line-Art.safetensors%3B+filename%3D%22SD35-lora-Chinese-Line-Art.safetensors%22%3B&Expires=1730130096&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDEzMDA5Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zL2ExL2I1L2ExYjUyMGE0MjdmMDI2NDJiODgxYjA2ZmIyOWEyNzE0OTE2MzYzZGIyMDYxODY1MDgzZmVhOTMyMzlmNTg0MzEvMTQ0NGM4OGY0YmQ2YmIwZThkNGI0ZGIwMjdhOTE5NjY3NTZjZWE0ODZjODEwMzZjM2Y3ZmM1MGY3ZWIyM2Y2Nz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=IhA%7EypEqQzlw30mE7Tzc07VZX6wBuHDkuZHl3SPGFfXK0iGXoxbnp2BE%7Ee4DEAFqPL4VF6u79k7L7DOlWldK9pmR6VmqetVYL8Ws2GOPr2kdGgfNrtS28tlssrjukCdAg6FnvtAM1N9bOF7f7y-NgCvIrgWbQY8gyubKsf5zn-a8EWqJGqy6RI52ZLL7KY-DMKGi7CXWQJtsukvtMVnGa3h4QcBm-CMaBikSXLqWImcre5Y7atbacqcSywOL4D-rPEY1BY1sWxdZBkiQdhXrmcd-VhUSRQmgNqTqTmgvw%7EUWGdTud9p5H1D-knfEn6-FBsyO0xMEvFQwlRVq9ZuGag__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors 2024-10-25T15:41:37Z | INFO | [ Complete ] dest=/src/weights-cache/9e627a859c53b1c4 size="24 MB" total_elapsed=1.014s url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art/resolve/main/SD35-lora-Chinese-Line-Art.safetensors Downloaded weights in 1.03s Loading LoRA took: 1.39 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:13, 2.05it/s] 7%|▋ | 2/28 [00:00<00:10, 2.40it/s] 11%|█ | 3/28 [00:01<00:11, 2.23it/s] 14%|█▍ | 4/28 [00:01<00:11, 2.16it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s] 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.08it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.07it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.06it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s] 50%|█████ | 14/28 [00:06<00:06, 2.06it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.06it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.05it/s] 61%|██████ | 17/28 [00:08<00:05, 2.05it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.05it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.05it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.05it/s] 75%|███████▌ | 21/28 [00:10<00:03, 2.05it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.05it/s] 82%|████████▏ | 23/28 [00:11<00:02, 2.05it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.05it/s] 89%|████████▉ | 25/28 [00:12<00:01, 2.05it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.05it/s] 96%|█████████▋| 27/28 [00:13<00:00, 2.05it/s] 100%|██████████| 28/28 [00:13<00:00, 2.05it/s] 100%|██████████| 28/28 [00:13<00:00, 2.07it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eefID92awzhzc75rj20cjrhbvbzw4v0StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- a lion, Futuristic bzonze-colored
- hf_lora
- https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored/resolve/main/SD35-lora-Futuristic-Bzonze-Colored.safetensors
- lora_scale
- 0.8
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "a lion, Futuristic bzonze-colored", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored/resolve/main/SD35-lora-Futuristic-Bzonze-Colored.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", { input: { prompt: "a lion, Futuristic bzonze-colored", hf_lora: "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored/resolve/main/SD35-lora-Futuristic-Bzonze-Colored.safetensors", lora_scale: 0.8, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", input={ "prompt": "a lion, Futuristic bzonze-colored", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored/resolve/main/SD35-lora-Futuristic-Bzonze-Colored.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", "input": { "prompt": "a lion, Futuristic bzonze-colored", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored/resolve/main/SD35-lora-Futuristic-Bzonze-Colored.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-25T15:42:43.536792Z", "created_at": "2024-10-25T15:42:29.433000Z", "data_removed": false, "error": null, "id": "92awzhzc75rj20cjrhbvbzw4v0", "input": { "prompt": "a lion, Futuristic bzonze-colored", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored/resolve/main/SD35-lora-Futuristic-Bzonze-Colored.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 14502\nPrompt: a lion, Futuristic bzonze-colored\ntxt2img mode\nLoading LoRA took: 0.00 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:13, 2.04it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.39it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.22it/s]\n 14%|█▍ | 4/28 [00:01<00:11, 2.15it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.09it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 2.08it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.07it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.06it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.06it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.05it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.05it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.05it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.05it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.05it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.05it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.05it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 2.05it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.05it/s]\n 82%|████████▏ | 23/28 [00:11<00:02, 2.05it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.05it/s]\n 89%|████████▉ | 25/28 [00:12<00:01, 2.05it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.05it/s]\n 96%|█████████▋| 27/28 [00:13<00:00, 2.05it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.05it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.07it/s]", "metrics": { "predict_time": 14.095897705, "total_time": 14.103792 }, "output": [ "https://replicate.delivery/yhqm/4ZfPfiG8JpmtG0x0pJNMGJh21uYlQWbAWdYFlBWfJpKnztUnA/out-0.webp" ], "started_at": "2024-10-25T15:42:29.440894Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-pf6bu55jhnh5urchuzxt5yvya3ka74wteamkgchse3xdal2yoy3a", "get": "https://api.replicate.com/v1/predictions/92awzhzc75rj20cjrhbvbzw4v0", "cancel": "https://api.replicate.com/v1/predictions/92awzhzc75rj20cjrhbvbzw4v0/cancel" }, "version": "e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef" }
Generated inUsing seed: 14502 Prompt: a lion, Futuristic bzonze-colored txt2img mode Loading LoRA took: 0.00 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:13, 2.04it/s] 7%|▋ | 2/28 [00:00<00:10, 2.39it/s] 11%|█ | 3/28 [00:01<00:11, 2.22it/s] 14%|█▍ | 4/28 [00:01<00:11, 2.15it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.09it/s] 25%|██▌ | 7/28 [00:03<00:10, 2.08it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.07it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.06it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.06it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s] 50%|█████ | 14/28 [00:06<00:06, 2.05it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.05it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.05it/s] 61%|██████ | 17/28 [00:08<00:05, 2.05it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.05it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.05it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.05it/s] 75%|███████▌ | 21/28 [00:10<00:03, 2.05it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.05it/s] 82%|████████▏ | 23/28 [00:11<00:02, 2.05it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.05it/s] 89%|████████▉ | 25/28 [00:12<00:01, 2.05it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.05it/s] 96%|█████████▋| 27/28 [00:13<00:00, 2.05it/s] 100%|██████████| 28/28 [00:13<00:00, 2.05it/s] 100%|██████████| 28/28 [00:13<00:00, 2.07it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eefIDwdygdbygzhrj40cjrhcafdmd3wStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves
- hf_lora
- https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors
- lora_scale
- 0.8
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves", "hf_lora": "https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", { input: { prompt: "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves", hf_lora: "https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors", lora_scale: 0.8, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", input={ "prompt": "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves", "hf_lora": "https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", "input": { "prompt": "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves", "hf_lora": "https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-25T15:43:43.496626Z", "created_at": "2024-10-25T15:43:27.996000Z", "data_removed": false, "error": null, "id": "wdygdbygzhrj40cjrhcafdmd3w", "input": { "prompt": "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves", "hf_lora": "https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 15563\nPrompt: Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves\ntxt2img mode\nfree=2961713098752\nDownloading weights\n2024-10-25T15:43:28Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/d4cfb898b8e03424 url=https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors\n2024-10-25T15:43:28Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/a9/ce/a9ced3332a6e93f1f2f46dc30d07829e2b9db8d2fac67435415c12e35e954118/f78fe0ab562ae0ef410d10a4250f777a50da3cdd02ee3b17509b2eb4d97fba00?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27pytorch_lora_weights.safetensors%3B+filename%3D%22pytorch_lora_weights.safetensors%22%3B&Expires=1730130208&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDEzMDIwOH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zL2E5L2NlL2E5Y2VkMzMzMmE2ZTkzZjFmMmY0NmRjMzBkMDc4MjllMmI5ZGI4ZDJmYWM2NzQzNTQxNWMxMmUzNWU5NTQxMTgvZjc4ZmUwYWI1NjJhZTBlZjQxMGQxMGE0MjUwZjc3N2E1MGRhM2NkZDAyZWUzYjE3NTA5YjJlYjRkOTdmYmEwMD9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=BMljJZm8Oax2aoHjeryGDoOL0LnwadImNh2EWgz68dO4PAikYbep%7Eves3DGtDxsBmi4kITon2Fd43gUY3h8ruDZL2JcWfM-%7Efz9AX1DklgGz5Amy97lhHuv%7EcXa8Q6uDcqExY47X3g-sXacZtDix56xikVBR7CRgpEZfEXwrHaBpCKm6HiE17QkxIfnSWt0kcyDERHBFooZHo6V1yBls865543lEc80g4pe4EJWc1hSx23MFSAOZvclWbrIfa7jgQViYnWtEH%7EH3ghNFCN%7EmgoN4Cz1juqd%7EiQN7iTzJbdNzO9%7Eo%7E06GOKa2kTdv2g4tl2nRZKnhtnHIAXfpTVGGnw__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors\n2024-10-25T15:43:28Z | INFO | [ Complete ] dest=/src/weights-cache/d4cfb898b8e03424 size=\"24 MB\" total_elapsed=0.885s url=https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors\nDownloaded weights in 0.91s\nLoading LoRA took: 1.43 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:13, 2.05it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.40it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.24it/s]\n 14%|█▍ | 4/28 [00:01<00:11, 2.16it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.08it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.07it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.06it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.06it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.06it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.06it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.05it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.05it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.05it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.05it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 2.05it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.05it/s]\n 82%|████████▏ | 23/28 [00:11<00:02, 2.05it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.05it/s]\n 89%|████████▉ | 25/28 [00:12<00:01, 2.05it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.05it/s]\n 96%|█████████▋| 27/28 [00:13<00:00, 2.05it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.05it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.07it/s]", "metrics": { "predict_time": 15.492506328, "total_time": 15.500626 }, "output": [ "https://replicate.delivery/yhqm/ztK7xLgBbtZCMxfNnzpBAkkegtkZqhHfKcNId4dZeRt8qbpOB/out-0.webp" ], "started_at": "2024-10-25T15:43:28.004120Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-nmkbqxceyrnjoj5yipeailgxhogkwgzkxqbatsrkd7xvxkasdwhq", "get": "https://api.replicate.com/v1/predictions/wdygdbygzhrj40cjrhcafdmd3w", "cancel": "https://api.replicate.com/v1/predictions/wdygdbygzhrj40cjrhcafdmd3w/cancel" }, "version": "e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef" }
Generated inUsing seed: 15563 Prompt: Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves txt2img mode free=2961713098752 Downloading weights 2024-10-25T15:43:28Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/d4cfb898b8e03424 url=https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors 2024-10-25T15:43:28Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/a9/ce/a9ced3332a6e93f1f2f46dc30d07829e2b9db8d2fac67435415c12e35e954118/f78fe0ab562ae0ef410d10a4250f777a50da3cdd02ee3b17509b2eb4d97fba00?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27pytorch_lora_weights.safetensors%3B+filename%3D%22pytorch_lora_weights.safetensors%22%3B&Expires=1730130208&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDEzMDIwOH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zL2E5L2NlL2E5Y2VkMzMzMmE2ZTkzZjFmMmY0NmRjMzBkMDc4MjllMmI5ZGI4ZDJmYWM2NzQzNTQxNWMxMmUzNWU5NTQxMTgvZjc4ZmUwYWI1NjJhZTBlZjQxMGQxMGE0MjUwZjc3N2E1MGRhM2NkZDAyZWUzYjE3NTA5YjJlYjRkOTdmYmEwMD9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=BMljJZm8Oax2aoHjeryGDoOL0LnwadImNh2EWgz68dO4PAikYbep%7Eves3DGtDxsBmi4kITon2Fd43gUY3h8ruDZL2JcWfM-%7Efz9AX1DklgGz5Amy97lhHuv%7EcXa8Q6uDcqExY47X3g-sXacZtDix56xikVBR7CRgpEZfEXwrHaBpCKm6HiE17QkxIfnSWt0kcyDERHBFooZHo6V1yBls865543lEc80g4pe4EJWc1hSx23MFSAOZvclWbrIfa7jgQViYnWtEH%7EH3ghNFCN%7EmgoN4Cz1juqd%7EiQN7iTzJbdNzO9%7Eo%7E06GOKa2kTdv2g4tl2nRZKnhtnHIAXfpTVGGnw__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors 2024-10-25T15:43:28Z | INFO | [ Complete ] dest=/src/weights-cache/d4cfb898b8e03424 size="24 MB" total_elapsed=0.885s url=https://huggingface.co/alvarobartt/ghibli-characters-sd3.5-lora/resolve/main/pytorch_lora_weights.safetensors Downloaded weights in 0.91s Loading LoRA took: 1.43 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:13, 2.05it/s] 7%|▋ | 2/28 [00:00<00:10, 2.40it/s] 11%|█ | 3/28 [00:01<00:11, 2.24it/s] 14%|█▍ | 4/28 [00:01<00:11, 2.16it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s] 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.08it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.07it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.06it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s] 50%|█████ | 14/28 [00:06<00:06, 2.06it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.06it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.06it/s] 61%|██████ | 17/28 [00:08<00:05, 2.05it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.05it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.05it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.05it/s] 75%|███████▌ | 21/28 [00:10<00:03, 2.05it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.05it/s] 82%|████████▏ | 23/28 [00:11<00:02, 2.05it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.05it/s] 89%|████████▉ | 25/28 [00:12<00:01, 2.05it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.05it/s] 96%|█████████▋| 27/28 [00:13<00:00, 2.05it/s] 100%|██████████| 28/28 [00:13<00:00, 2.05it/s] 100%|██████████| 28/28 [00:13<00:00, 2.07it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eefIDh64p2rmf29rj20cjrhcthxk6c0StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- viet-art, painting of a man in ancient clothes
- hf_lora
- https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors
- lora_scale
- 0.8
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "viet-art, painting of a man in ancient clothes", "hf_lora": "https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", { input: { prompt: "viet-art, painting of a man in ancient clothes", hf_lora: "https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors", lora_scale: 0.8, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", input={ "prompt": "viet-art, painting of a man in ancient clothes", "hf_lora": "https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", "input": { "prompt": "viet-art, painting of a man in ancient clothes", "hf_lora": "https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-25T15:44:34.883015Z", "created_at": "2024-10-25T15:44:16.658000Z", "data_removed": false, "error": null, "id": "h64p2rmf29rj20cjrhcthxk6c0", "input": { "prompt": "viet-art, painting of a man in ancient clothes", "hf_lora": "https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 24132\nPrompt: viet-art, painting of a man in ancient clothes\ntxt2img mode\nfree=2960190955520\nDownloading weights\n2024-10-25T15:44:16Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/3ec8b9540c5260ad url=https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors\n2024-10-25T15:44:17Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/15/56/15569535d06bea551b352ef9a7627811cbd91d56b0c7f283c08ecd3cd91a2c22/623fe6b3a411bf1d5d825ffd0adb10b8abfe18e3852b229ea42da61566f6d1f7?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27vietnamese-painting-art.safetensors%3B+filename%3D%22vietnamese-painting-art.safetensors%22%3B&Expires=1730130256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDEzMDI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzE1LzU2LzE1NTY5NTM1ZDA2YmVhNTUxYjM1MmVmOWE3NjI3ODExY2JkOTFkNTZiMGM3ZjI4M2MwOGVjZDNjZDkxYTJjMjIvNjIzZmU2YjNhNDExYmYxZDVkODI1ZmZkMGFkYjEwYjhhYmZlMThlMzg1MmIyMjllYTQyZGE2MTU2NmY2ZDFmNz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=u6EPAE5aaUKxPcAYNNxOGIC8x8kk6o30z3PCpV9JUsyAMer-iomkaU%7Esfo5QQtQ1KTSKZKDjxSYMqqccwcZQCyp%7EUw8tgXpch0pR0-wtOBzudObXMXVrBsEd%7EHDpKH4onrWTMnMuA41QkDm8xyS8Tm895deJowRmcC6J8046sYIrWVpI1hN7Tf5xp0i3JNZOqUc0iVLEskGIzaK1-eUq2EN4VDFF-hLKu1tob2d8AcJC%7EeZPOVJRysI161gQ-OJxd3arep-DtHYpohwRs3iRuOb-W5D5WizzRs4J-fJyl-Yjqfk3GwN6rrII-KSDn1ASruz-5kTegy9qFHF%7E3LgB8Q__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors\n2024-10-25T15:44:19Z | INFO | [ Complete ] dest=/src/weights-cache/3ec8b9540c5260ad size=\"95 MB\" total_elapsed=3.254s url=https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors\nDownloaded weights in 3.28s\nLoading LoRA took: 4.11 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:13, 2.05it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.39it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.23it/s]\n 14%|█▍ | 4/28 [00:01<00:11, 2.16it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.08it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.06it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.05it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.05it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.05it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.05it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.05it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.05it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.05it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.05it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.05it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 2.05it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.05it/s]\n 82%|████████▏ | 23/28 [00:11<00:02, 2.05it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.05it/s]\n 89%|████████▉ | 25/28 [00:12<00:01, 2.05it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.05it/s]\n 96%|█████████▋| 27/28 [00:13<00:00, 2.05it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.05it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.07it/s]", "metrics": { "predict_time": 18.217147405, "total_time": 18.225015 }, "output": [ "https://replicate.delivery/yhqm/8yPKcG4Q6toBENvWx2KxmQM1hRcjBrfElv5ll4OdTpOxdL1JA/out-0.webp" ], "started_at": "2024-10-25T15:44:16.665868Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-d2a6uuz3aqgbvslltp27hylzynhan6uozdgo7fezdm4m4oxwddma", "get": "https://api.replicate.com/v1/predictions/h64p2rmf29rj20cjrhcthxk6c0", "cancel": "https://api.replicate.com/v1/predictions/h64p2rmf29rj20cjrhcthxk6c0/cancel" }, "version": "e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef" }
Generated inUsing seed: 24132 Prompt: viet-art, painting of a man in ancient clothes txt2img mode free=2960190955520 Downloading weights 2024-10-25T15:44:16Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/3ec8b9540c5260ad url=https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors 2024-10-25T15:44:17Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/15/56/15569535d06bea551b352ef9a7627811cbd91d56b0c7f283c08ecd3cd91a2c22/623fe6b3a411bf1d5d825ffd0adb10b8abfe18e3852b229ea42da61566f6d1f7?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27vietnamese-painting-art.safetensors%3B+filename%3D%22vietnamese-painting-art.safetensors%22%3B&Expires=1730130256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDEzMDI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzE1LzU2LzE1NTY5NTM1ZDA2YmVhNTUxYjM1MmVmOWE3NjI3ODExY2JkOTFkNTZiMGM3ZjI4M2MwOGVjZDNjZDkxYTJjMjIvNjIzZmU2YjNhNDExYmYxZDVkODI1ZmZkMGFkYjEwYjhhYmZlMThlMzg1MmIyMjllYTQyZGE2MTU2NmY2ZDFmNz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=u6EPAE5aaUKxPcAYNNxOGIC8x8kk6o30z3PCpV9JUsyAMer-iomkaU%7Esfo5QQtQ1KTSKZKDjxSYMqqccwcZQCyp%7EUw8tgXpch0pR0-wtOBzudObXMXVrBsEd%7EHDpKH4onrWTMnMuA41QkDm8xyS8Tm895deJowRmcC6J8046sYIrWVpI1hN7Tf5xp0i3JNZOqUc0iVLEskGIzaK1-eUq2EN4VDFF-hLKu1tob2d8AcJC%7EeZPOVJRysI161gQ-OJxd3arep-DtHYpohwRs3iRuOb-W5D5WizzRs4J-fJyl-Yjqfk3GwN6rrII-KSDn1ASruz-5kTegy9qFHF%7E3LgB8Q__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors 2024-10-25T15:44:19Z | INFO | [ Complete ] dest=/src/weights-cache/3ec8b9540c5260ad size="95 MB" total_elapsed=3.254s url=https://huggingface.co/TDN-M/vietnamese-paint-art/resolve/main/vietnamese-painting-art.safetensors Downloaded weights in 3.28s Loading LoRA took: 4.11 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:13, 2.05it/s] 7%|▋ | 2/28 [00:00<00:10, 2.39it/s] 11%|█ | 3/28 [00:01<00:11, 2.23it/s] 14%|█▍ | 4/28 [00:01<00:11, 2.16it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s] 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.08it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.06it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.05it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.05it/s] 50%|█████ | 14/28 [00:06<00:06, 2.05it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.05it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.05it/s] 61%|██████ | 17/28 [00:08<00:05, 2.05it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.05it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.05it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.05it/s] 75%|███████▌ | 21/28 [00:10<00:03, 2.05it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.05it/s] 82%|████████▏ | 23/28 [00:11<00:02, 2.05it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.05it/s] 89%|████████▉ | 25/28 [00:12<00:01, 2.05it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.05it/s] 96%|█████████▋| 27/28 [00:13<00:00, 2.05it/s] 100%|██████████| 28/28 [00:13<00:00, 2.05it/s] 100%|██████████| 28/28 [00:13<00:00, 2.07it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eefIDs0g2b4cajxrj40cjrqz9s77n1mStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedby @lucatacoInput
- prompt
- Frog, yarn art style
- hf_lora
- https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors
- lora_scale
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "Frog, yarn art style", "hf_lora": "https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", { input: { prompt: "Frog, yarn art style", hf_lora: "https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors", lora_scale: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", input={ "prompt": "Frog, yarn art style", "hf_lora": "https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef", "input": { "prompt": "Frog, yarn art style", "hf_lora": "https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-25T23:25:25.337002Z", "created_at": "2024-10-25T23:24:06.167000Z", "data_removed": false, "error": null, "id": "s0g2b4cajxrj40cjrqz9s77n1m", "input": { "prompt": "Frog, yarn art style", "hf_lora": "https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 23897\nPrompt: Frog, yarn art style\ntxt2img mode\nfree=2980330004480\nDownloading weights\n2024-10-25T23:25:08Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/b21c65ac69403a18 url=https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors\n2024-10-25T23:25:09Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/45/d7/45d7d2e1a93f1ce4839cc3dd8560db6a03db212609155ca4be733074ba55ad1f/a320b3fd93b8c83458a8cd5a4e07875fdcc1c5e862597f276e810a2341f9532e?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27pytorch_lora_weights.safetensors%3B+filename%3D%22pytorch_lora_weights.safetensors%22%3B&Expires=1730157909&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDE1NzkwOX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzQ1L2Q3LzQ1ZDdkMmUxYTkzZjFjZTQ4MzljYzNkZDg1NjBkYjZhMDNkYjIxMjYwOTE1NWNhNGJlNzMzMDc0YmE1NWFkMWYvYTMyMGIzZmQ5M2I4YzgzNDU4YThjZDVhNGUwNzg3NWZkY2MxYzVlODYyNTk3ZjI3NmU4MTBhMjM0MWY5NTMyZT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=FBsBQ6fAniJCee6QBEp1Sv6hJ0d8PDN%7Ek0Ku2R4GAuw8ordj6qa9nVhpjkthRGCGqWsyNJrx2SHjbrFPEsEiBfnMTTqy-AUNEWG8kkBPx3FuJ4WKpDO8zXnXCpxV6QQNQ1bCK24bPckef1EJfLplXd7V3tIGu1XZtMADga52oOwB8baFS7Dv3f3wCwIW8d80VdpUjoZ0LTQhZeA9T7cJ1RjCW%7EYmBvpj7Q4C4aVvLTVrcJDm%7E4GpPO7KKDSpX23UFjL92FcOVgSYzfwBz6eyZxqzuE88nKaRwR4x6Aft1D8VIIysyTC2ObVn-AEnRDY88PyS8Tkq6Pg4CnlgtbSf1A__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors\n2024-10-25T23:25:10Z | INFO | [ Complete ] dest=/src/weights-cache/b21c65ac69403a18 size=\"24 MB\" total_elapsed=1.288s url=https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors\nDownloaded weights in 1.36s\nLoading LoRA took: 1.70 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:15, 1.78it/s]\n 7%|▋ | 2/28 [00:00<00:11, 2.27it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.18it/s]\n 14%|█▍ | 4/28 [00:01<00:11, 2.14it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.09it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.08it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.08it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.07it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.07it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.07it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.07it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.07it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.07it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.07it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.07it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.07it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.07it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 2.07it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.07it/s]\n 82%|████████▏ | 23/28 [00:11<00:02, 2.07it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.07it/s]\n 89%|████████▉ | 25/28 [00:12<00:01, 2.07it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.07it/s]\n 96%|█████████▋| 27/28 [00:12<00:00, 2.07it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.07it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.08it/s]", "metrics": { "predict_time": 16.42523714, "total_time": 79.170002 }, "output": [ "https://replicate.delivery/yhqm/gkcqZGl72fTNQyiYTz6SJaymgppywLGq8YiIJ8eFiUxlrdqTA/out-0.webp" ], "started_at": "2024-10-25T23:25:08.911765Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-tm6prcbnnodjlhzxa3eccaxfbogy5afyp3b6h3am5dcivelxu3xq", "get": "https://api.replicate.com/v1/predictions/s0g2b4cajxrj40cjrqz9s77n1m", "cancel": "https://api.replicate.com/v1/predictions/s0g2b4cajxrj40cjrqz9s77n1m/cancel" }, "version": "e92d8a8795c03453bbbe197f795bc0fef4a21e6ad6a6ae319097038812c71eef" }
Generated inUsing seed: 23897 Prompt: Frog, yarn art style txt2img mode free=2980330004480 Downloading weights 2024-10-25T23:25:08Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/b21c65ac69403a18 url=https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors 2024-10-25T23:25:09Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/45/d7/45d7d2e1a93f1ce4839cc3dd8560db6a03db212609155ca4be733074ba55ad1f/a320b3fd93b8c83458a8cd5a4e07875fdcc1c5e862597f276e810a2341f9532e?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27pytorch_lora_weights.safetensors%3B+filename%3D%22pytorch_lora_weights.safetensors%22%3B&Expires=1730157909&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDE1NzkwOX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzQ1L2Q3LzQ1ZDdkMmUxYTkzZjFjZTQ4MzljYzNkZDg1NjBkYjZhMDNkYjIxMjYwOTE1NWNhNGJlNzMzMDc0YmE1NWFkMWYvYTMyMGIzZmQ5M2I4YzgzNDU4YThjZDVhNGUwNzg3NWZkY2MxYzVlODYyNTk3ZjI3NmU4MTBhMjM0MWY5NTMyZT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=FBsBQ6fAniJCee6QBEp1Sv6hJ0d8PDN%7Ek0Ku2R4GAuw8ordj6qa9nVhpjkthRGCGqWsyNJrx2SHjbrFPEsEiBfnMTTqy-AUNEWG8kkBPx3FuJ4WKpDO8zXnXCpxV6QQNQ1bCK24bPckef1EJfLplXd7V3tIGu1XZtMADga52oOwB8baFS7Dv3f3wCwIW8d80VdpUjoZ0LTQhZeA9T7cJ1RjCW%7EYmBvpj7Q4C4aVvLTVrcJDm%7E4GpPO7KKDSpX23UFjL92FcOVgSYzfwBz6eyZxqzuE88nKaRwR4x6Aft1D8VIIysyTC2ObVn-AEnRDY88PyS8Tkq6Pg4CnlgtbSf1A__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors 2024-10-25T23:25:10Z | INFO | [ Complete ] dest=/src/weights-cache/b21c65ac69403a18 size="24 MB" total_elapsed=1.288s url=https://huggingface.co/lucataco/sd3.5-large-yarn/resolve/main/pytorch_lora_weights.safetensors Downloaded weights in 1.36s Loading LoRA took: 1.70 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:15, 1.78it/s] 7%|▋ | 2/28 [00:00<00:11, 2.27it/s] 11%|█ | 3/28 [00:01<00:11, 2.18it/s] 14%|█▍ | 4/28 [00:01<00:11, 2.14it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.12it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s] 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.09it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.08it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.08it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.07it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.07it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.07it/s] 50%|█████ | 14/28 [00:06<00:06, 2.07it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.07it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.07it/s] 61%|██████ | 17/28 [00:08<00:05, 2.07it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.07it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.07it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.07it/s] 75%|███████▌ | 21/28 [00:10<00:03, 2.07it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.07it/s] 82%|████████▏ | 23/28 [00:11<00:02, 2.07it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.07it/s] 89%|████████▉ | 25/28 [00:12<00:01, 2.07it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.07it/s] 96%|█████████▋| 27/28 [00:12<00:00, 2.07it/s] 100%|██████████| 28/28 [00:13<00:00, 2.07it/s] 100%|██████████| 28/28 [00:13<00:00, 2.08it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23ID9dfw8amwzdrj40cjrwptbqmq4cStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography
- hf_lora
- https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors
- lora_scale
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography", "hf_lora": "https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", { input: { prompt: "Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography", hf_lora: "https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors", lora_scale: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", input={ "prompt": "Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography", "hf_lora": "https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", "input": { "prompt": "Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography", "hf_lora": "https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-26T04:55:26.722715Z", "created_at": "2024-10-26T04:55:08.283000Z", "data_removed": false, "error": null, "id": "9dfw8amwzdrj40cjrwptbqmq4c", "input": { "prompt": "Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography", "hf_lora": "https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 31597\nPrompt: Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography\ntxt2img mode\nfree=3619365642240\nDownloading weights\n2024-10-26T04:55:08Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/9c69a6e24ad7492f url=https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors\n2024-10-26T04:55:08Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/12/84/1284a3bfc8d4c72d20254828cac92b1733d875e5c6772a4934ed9dfbcd732544/3415436681766a0e9655443339990bdbd0028cbc035ccc854c0c78086c6fac89?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27Photorealistic-SD3.5-Large-LoRA.safetensors%3B+filename%3D%22Photorealistic-SD3.5-Large-LoRA.safetensors%22%3B&Expires=1730177708&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDE3NzcwOH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzEyLzg0LzEyODRhM2JmYzhkNGM3MmQyMDI1NDgyOGNhYzkyYjE3MzNkODc1ZTVjNjc3MmE0OTM0ZWQ5ZGZiY2Q3MzI1NDQvMzQxNTQzNjY4MTc2NmEwZTk2NTU0NDMzMzk5OTBiZGJkMDAyOGNiYzAzNWNjYzg1NGMwYzc4MDg2YzZmYWM4OT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=tujN4hkmIiB7UNHswUgfSKJCE2FFcjCGClddxQE94mt%7EZ93rvYRchawiJgo43YdwIMhWlv8Gw9ZzpHS7j9CiGZU1DAJu4Dg9Vh1kLmLoyxFXYVLlppZzksFoGNuVRciC2SxRAN3kSK0h9px6pb5DbNvqAzF5O00p8bMHxbPrzh7OlDQxzu%7EZ%7EfCao9CfRQATD4BMogXOv%7EEznT3F8sMYDnjqJrNVQpX0heUzFMLvBHdbGikmZewMKZSA2gHeJPsW7hZQGqTytgRhc1JqQmPtzb7cFwRe2SYJr9DGkyMYdYi1q4MO4fiPBX2C-Aq933ujNOl-TClMtQrDIX93oBC8WQ__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors\n2024-10-26T04:55:12Z | INFO | [ Complete ] dest=/src/weights-cache/9c69a6e24ad7492f size=\"270 MB\" total_elapsed=4.324s url=https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors\nDownloaded weights in 4.36s\nLoading LoRA took: 4.39 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:14, 1.84it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.40it/s]\n 11%|█ | 3/28 [00:01<00:10, 2.29it/s]\n 14%|█▍ | 4/28 [00:01<00:10, 2.24it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.21it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.20it/s]\n 25%|██▌ | 7/28 [00:03<00:09, 2.19it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.18it/s]\n 32%|███▏ | 9/28 [00:04<00:08, 2.18it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.17it/s]\n 39%|███▉ | 11/28 [00:05<00:07, 2.17it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.17it/s]\n 46%|████▋ | 13/28 [00:05<00:06, 2.17it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.17it/s]\n 54%|█████▎ | 15/28 [00:06<00:06, 2.17it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.17it/s]\n 61%|██████ | 17/28 [00:07<00:05, 2.17it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.17it/s]\n 68%|██████▊ | 19/28 [00:08<00:04, 2.16it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.16it/s]\n 75%|███████▌ | 21/28 [00:09<00:03, 2.16it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.16it/s]\n 82%|████████▏ | 23/28 [00:10<00:02, 2.16it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.16it/s]\n 89%|████████▉ | 25/28 [00:11<00:01, 2.16it/s]\n 93%|█████████▎| 26/28 [00:11<00:00, 2.16it/s]\n 96%|█████████▋| 27/28 [00:12<00:00, 2.16it/s]\n100%|██████████| 28/28 [00:12<00:00, 2.16it/s]\n100%|██████████| 28/28 [00:12<00:00, 2.17it/s]", "metrics": { "predict_time": 18.430794231, "total_time": 18.439715 }, "output": [ "https://replicate.delivery/yhqm/9lH2c3ZO3DaDKlXm22MNMWcUX9F23b2DQIjgEHIxvlnPoo6E/out-0.webp" ], "started_at": "2024-10-26T04:55:08.291921Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-golaw5gdums5yy2ojz5uk4sjrkjxz4b7m5qko6tyb6dgvgpdidqq", "get": "https://api.replicate.com/v1/predictions/9dfw8amwzdrj40cjrwptbqmq4c", "cancel": "https://api.replicate.com/v1/predictions/9dfw8amwzdrj40cjrwptbqmq4c/cancel" }, "version": "ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23" }
Generated inUsing seed: 31597 Prompt: Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography txt2img mode free=3619365642240 Downloading weights 2024-10-26T04:55:08Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/9c69a6e24ad7492f url=https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors 2024-10-26T04:55:08Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/12/84/1284a3bfc8d4c72d20254828cac92b1733d875e5c6772a4934ed9dfbcd732544/3415436681766a0e9655443339990bdbd0028cbc035ccc854c0c78086c6fac89?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27Photorealistic-SD3.5-Large-LoRA.safetensors%3B+filename%3D%22Photorealistic-SD3.5-Large-LoRA.safetensors%22%3B&Expires=1730177708&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDE3NzcwOH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzEyLzg0LzEyODRhM2JmYzhkNGM3MmQyMDI1NDgyOGNhYzkyYjE3MzNkODc1ZTVjNjc3MmE0OTM0ZWQ5ZGZiY2Q3MzI1NDQvMzQxNTQzNjY4MTc2NmEwZTk2NTU0NDMzMzk5OTBiZGJkMDAyOGNiYzAzNWNjYzg1NGMwYzc4MDg2YzZmYWM4OT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=tujN4hkmIiB7UNHswUgfSKJCE2FFcjCGClddxQE94mt%7EZ93rvYRchawiJgo43YdwIMhWlv8Gw9ZzpHS7j9CiGZU1DAJu4Dg9Vh1kLmLoyxFXYVLlppZzksFoGNuVRciC2SxRAN3kSK0h9px6pb5DbNvqAzF5O00p8bMHxbPrzh7OlDQxzu%7EZ%7EfCao9CfRQATD4BMogXOv%7EEznT3F8sMYDnjqJrNVQpX0heUzFMLvBHdbGikmZewMKZSA2gHeJPsW7hZQGqTytgRhc1JqQmPtzb7cFwRe2SYJr9DGkyMYdYi1q4MO4fiPBX2C-Aq933ujNOl-TClMtQrDIX93oBC8WQ__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors 2024-10-26T04:55:12Z | INFO | [ Complete ] dest=/src/weights-cache/9c69a6e24ad7492f size="270 MB" total_elapsed=4.324s url=https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA/resolve/main/Photorealistic-SD3.5-Large-LoRA.safetensors Downloaded weights in 4.36s Loading LoRA took: 4.39 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:14, 1.84it/s] 7%|▋ | 2/28 [00:00<00:10, 2.40it/s] 11%|█ | 3/28 [00:01<00:10, 2.29it/s] 14%|█▍ | 4/28 [00:01<00:10, 2.24it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.21it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.20it/s] 25%|██▌ | 7/28 [00:03<00:09, 2.19it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.18it/s] 32%|███▏ | 9/28 [00:04<00:08, 2.18it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.17it/s] 39%|███▉ | 11/28 [00:05<00:07, 2.17it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.17it/s] 46%|████▋ | 13/28 [00:05<00:06, 2.17it/s] 50%|█████ | 14/28 [00:06<00:06, 2.17it/s] 54%|█████▎ | 15/28 [00:06<00:06, 2.17it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.17it/s] 61%|██████ | 17/28 [00:07<00:05, 2.17it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.17it/s] 68%|██████▊ | 19/28 [00:08<00:04, 2.16it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.16it/s] 75%|███████▌ | 21/28 [00:09<00:03, 2.16it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.16it/s] 82%|████████▏ | 23/28 [00:10<00:02, 2.16it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.16it/s] 89%|████████▉ | 25/28 [00:11<00:01, 2.16it/s] 93%|█████████▎| 26/28 [00:11<00:00, 2.16it/s] 96%|█████████▋| 27/28 [00:12<00:00, 2.16it/s] 100%|██████████| 28/28 [00:12<00:00, 2.16it/s] 100%|██████████| 28/28 [00:12<00:00, 2.17it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23IDvxtp2xt9mnrj00cjs9avsc04rrStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedby @lucatacoInput
- prompt
- a photo of QSO dog
- hf_lora
- https://huggingface.co/lucataco/SD3.5-Large-queso/resolve/main/pytorch_lora_weights.safetensors
- lora_scale
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "a photo of QSO dog", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-queso/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", { input: { prompt: "a photo of QSO dog", hf_lora: "https://huggingface.co/lucataco/SD3.5-Large-queso/resolve/main/pytorch_lora_weights.safetensors", lora_scale: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", input={ "prompt": "a photo of QSO dog", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-queso/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", "input": { "prompt": "a photo of QSO dog", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-queso/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-26T19:37:34.081592Z", "created_at": "2024-10-26T19:37:20.037000Z", "data_removed": false, "error": null, "id": "vxtp2xt9mnrj00cjs9avsc04rr", "input": { "prompt": "a photo of QSO dog", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-queso/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 57098\nPrompt: a photo of QSO dog\ntxt2img mode\nLoading LoRA took: 0.00 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:13, 2.07it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.43it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.25it/s]\n 14%|█▍ | 4/28 [00:01<00:11, 2.17it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.13it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.08it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.07it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.06it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.06it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.06it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.06it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.06it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.06it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.06it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.06it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 2.06it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.06it/s]\n 82%|████████▏ | 23/28 [00:11<00:02, 2.06it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.06it/s]\n 89%|████████▉ | 25/28 [00:12<00:01, 2.06it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.06it/s]\n 96%|█████████▋| 27/28 [00:12<00:00, 2.06it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.06it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.08it/s]", "metrics": { "predict_time": 14.037308792, "total_time": 14.044592 }, "output": [ "https://replicate.delivery/yhqm/w7EG9497eORibC1SfdYQpgofUE0M2NkQ4d8oV9JZ6rS83eqOB/out-0.webp" ], "started_at": "2024-10-26T19:37:20.044283Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-or6wsvuhcmbb73gyjwzp4vdncmfthcb4ewkrek4rfwxodqawdtfa", "get": "https://api.replicate.com/v1/predictions/vxtp2xt9mnrj00cjs9avsc04rr", "cancel": "https://api.replicate.com/v1/predictions/vxtp2xt9mnrj00cjs9avsc04rr/cancel" }, "version": "ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23" }
Generated inUsing seed: 57098 Prompt: a photo of QSO dog txt2img mode Loading LoRA took: 0.00 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:13, 2.07it/s] 7%|▋ | 2/28 [00:00<00:10, 2.43it/s] 11%|█ | 3/28 [00:01<00:11, 2.25it/s] 14%|█▍ | 4/28 [00:01<00:11, 2.17it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.13it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.10it/s] 25%|██▌ | 7/28 [00:03<00:10, 2.09it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.08it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.07it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.06it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.06it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s] 50%|█████ | 14/28 [00:06<00:06, 2.06it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.06it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.06it/s] 61%|██████ | 17/28 [00:08<00:05, 2.06it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.06it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.06it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.06it/s] 75%|███████▌ | 21/28 [00:10<00:03, 2.06it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.06it/s] 82%|████████▏ | 23/28 [00:11<00:02, 2.06it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.06it/s] 89%|████████▉ | 25/28 [00:12<00:01, 2.06it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.06it/s] 96%|█████████▋| 27/28 [00:12<00:00, 2.06it/s] 100%|██████████| 28/28 [00:13<00:00, 2.06it/s] 100%|██████████| 28/28 [00:13<00:00, 2.08it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23IDc2gqhv418srj40cjtchasq5544StatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- a Witch, Linear red light
- hf_lora
- https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors
- lora_scale
- 0.8
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "a Witch, Linear red light", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", { input: { prompt: "a Witch, Linear red light", hf_lora: "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors", lora_scale: 0.8, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", input={ "prompt": "a Witch, Linear red light", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", "input": { "prompt": "a Witch, Linear red light", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-28T12:40:11.331821Z", "created_at": "2024-10-28T12:38:26.886000Z", "data_removed": false, "error": null, "id": "c2gqhv418srj40cjtchasq5544", "input": { "prompt": "a Witch, Linear red light", "hf_lora": "https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors", "lora_scale": 0.8, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 38423\nPrompt: a Witch, Linear red light\ntxt2img mode\nfree=2901265186816\nDownloading weights\n2024-10-28T12:39:55Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/f3c1664c06678f0b url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors\n2024-10-28T12:39:55Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/2d/17/2d17013e15a4a557913b20317b832e9a4a6505707455b6b1c89b71d3507e3d97/82bcf2f0774e68b0d27498aa4cfbeca4416474f9ad88d24b8d69c997695f93d1?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27SD35-lora-Linear-Red-Light.safetensors%3B+filename%3D%22SD35-lora-Linear-Red-Light.safetensors%22%3B&Expires=1730378395&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDM3ODM5NX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzJkLzE3LzJkMTcwMTNlMTVhNGE1NTc5MTNiMjAzMTdiODMyZTlhNGE2NTA1NzA3NDU1YjZiMWM4OWI3MWQzNTA3ZTNkOTcvODJiY2YyZjA3NzRlNjhiMGQyNzQ5OGFhNGNmYmVjYTQ0MTY0NzRmOWFkODhkMjRiOGQ2OWM5OTc2OTVmOTNkMT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=gzNHStaebCOEnI9nqSWodeiqHeX6AdYS-7LTaH2oaReSG7z7m6MkAR1coEvPB52lhwIYFdwoDsKeiCZlvUrdZjlADj27SitbAlID7xai3gMiULOtYzZvi%7Er4qZKf73xa3jnh7y%7Eo95ONeX6h%7EutNYVPYgg10%7Ep4zg31AiCY4JnHylaXCLmFrhKoHt8jYkGtj9s-wjO%7ETKwqctoNxS4f8mm5%7EhDxd12FPcQ0tzx023kNOwxHkKfKe0wfcTlhMBzJpJJp8-wJMAgO5ndQIbP0K2a1ozguRfyyXiBVIlR-nBYf9XiV9f87PXgm5UpRxi9yfYVvpBiBKBJBGMZR7-19Ukw__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors\n2024-10-28T12:39:56Z | INFO | [ Complete ] dest=/src/weights-cache/f3c1664c06678f0b size=\"24 MB\" total_elapsed=0.987s url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors\nDownloaded weights in 1.01s\nLoading LoRA took: 1.35 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:15, 1.75it/s]\n 7%|▋ | 2/28 [00:00<00:11, 2.22it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.15it/s]\n 14%|█▍ | 4/28 [00:01<00:11, 2.11it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.10it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.09it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 2.08it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.07it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.07it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.07it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.07it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.06it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.06it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.06it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.06it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.06it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.06it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.06it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 2.06it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.06it/s]\n 82%|████████▏ | 23/28 [00:11<00:02, 2.06it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.06it/s]\n 89%|████████▉ | 25/28 [00:12<00:01, 2.06it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.06it/s]\n 96%|█████████▋| 27/28 [00:13<00:00, 2.06it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.06it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.07it/s]", "metrics": { "predict_time": 16.157495402, "total_time": 104.445821 }, "output": [ "https://replicate.delivery/yhqm/FMUOJoAMP75aO5ZN1jb7XMI510lcYjT3d5bx5vVhdK3K406E/out-0.webp" ], "started_at": "2024-10-28T12:39:55.174325Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-vsymgllx6et5uowytunyf6swtxmdbzzhk3amequovemun2ilgpsq", "get": "https://api.replicate.com/v1/predictions/c2gqhv418srj40cjtchasq5544", "cancel": "https://api.replicate.com/v1/predictions/c2gqhv418srj40cjtchasq5544/cancel" }, "version": "ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23" }
Generated inUsing seed: 38423 Prompt: a Witch, Linear red light txt2img mode free=2901265186816 Downloading weights 2024-10-28T12:39:55Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/f3c1664c06678f0b url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors 2024-10-28T12:39:55Z | INFO | [ Redirect ] redirect_url=https://cdn-lfs-us-1.hf.co/repos/2d/17/2d17013e15a4a557913b20317b832e9a4a6505707455b6b1c89b71d3507e3d97/82bcf2f0774e68b0d27498aa4cfbeca4416474f9ad88d24b8d69c997695f93d1?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27SD35-lora-Linear-Red-Light.safetensors%3B+filename%3D%22SD35-lora-Linear-Red-Light.safetensors%22%3B&Expires=1730378395&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczMDM3ODM5NX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzJkLzE3LzJkMTcwMTNlMTVhNGE1NTc5MTNiMjAzMTdiODMyZTlhNGE2NTA1NzA3NDU1YjZiMWM4OWI3MWQzNTA3ZTNkOTcvODJiY2YyZjA3NzRlNjhiMGQyNzQ5OGFhNGNmYmVjYTQ0MTY0NzRmOWFkODhkMjRiOGQ2OWM5OTc2OTVmOTNkMT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=gzNHStaebCOEnI9nqSWodeiqHeX6AdYS-7LTaH2oaReSG7z7m6MkAR1coEvPB52lhwIYFdwoDsKeiCZlvUrdZjlADj27SitbAlID7xai3gMiULOtYzZvi%7Er4qZKf73xa3jnh7y%7Eo95ONeX6h%7EutNYVPYgg10%7Ep4zg31AiCY4JnHylaXCLmFrhKoHt8jYkGtj9s-wjO%7ETKwqctoNxS4f8mm5%7EhDxd12FPcQ0tzx023kNOwxHkKfKe0wfcTlhMBzJpJJp8-wJMAgO5ndQIbP0K2a1ozguRfyyXiBVIlR-nBYf9XiV9f87PXgm5UpRxi9yfYVvpBiBKBJBGMZR7-19Ukw__&Key-Pair-Id=K24J24Z295AEI9 url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors 2024-10-28T12:39:56Z | INFO | [ Complete ] dest=/src/weights-cache/f3c1664c06678f0b size="24 MB" total_elapsed=0.987s url=https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light/resolve/main/SD35-lora-Linear-Red-Light.safetensors Downloaded weights in 1.01s Loading LoRA took: 1.35 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:15, 1.75it/s] 7%|▋ | 2/28 [00:00<00:11, 2.22it/s] 11%|█ | 3/28 [00:01<00:11, 2.15it/s] 14%|█▍ | 4/28 [00:01<00:11, 2.11it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.10it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.09it/s] 25%|██▌ | 7/28 [00:03<00:10, 2.08it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.07it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.07it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.07it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.07it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.07it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.06it/s] 50%|█████ | 14/28 [00:06<00:06, 2.06it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.06it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.06it/s] 61%|██████ | 17/28 [00:08<00:05, 2.06it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.06it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.06it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.06it/s] 75%|███████▌ | 21/28 [00:10<00:03, 2.06it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.06it/s] 82%|████████▏ | 23/28 [00:11<00:02, 2.06it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.06it/s] 89%|████████▉ | 25/28 [00:12<00:01, 2.06it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.06it/s] 96%|█████████▋| 27/28 [00:13<00:00, 2.06it/s] 100%|██████████| 28/28 [00:13<00:00, 2.06it/s] 100%|██████████| 28/28 [00:13<00:00, 2.07it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23IDq5nvrntxx5rj20cjtdf93fbwsgStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedby @lucatacoInput
- prompt
- a photo of VLTA woman with purple hair
- hf_lora
- https://huggingface.co/lucataco/SD3.5-Large-Violeta/resolve/main/pytorch_lora_weights.safetensors
- lora_scale
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "a photo of VLTA woman with purple hair", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-Violeta/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", { input: { prompt: "a photo of VLTA woman with purple hair", hf_lora: "https://huggingface.co/lucataco/SD3.5-Large-Violeta/resolve/main/pytorch_lora_weights.safetensors", lora_scale: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", input={ "prompt": "a photo of VLTA woman with purple hair", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-Violeta/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", "input": { "prompt": "a photo of VLTA woman with purple hair", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-Violeta/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-28T13:44:03.871571Z", "created_at": "2024-10-28T13:43:49.993000Z", "data_removed": false, "error": null, "id": "q5nvrntxx5rj20cjtdf93fbwsg", "input": { "prompt": "a photo of VLTA woman with purple hair", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-Violeta/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 22640\nPrompt: a photo of VLTA woman with purple hair\ntxt2img mode\nLoading LoRA took: 0.00 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:12, 2.09it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.46it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.27it/s]\n 14%|█▍ | 4/28 [00:01<00:10, 2.19it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.15it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.13it/s]\n 25%|██▌ | 7/28 [00:03<00:09, 2.12it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.10it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.10it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.09it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.09it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.09it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.09it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.09it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.08it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.08it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.08it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.08it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.08it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.08it/s]\n 75%|███████▌ | 21/28 [00:09<00:03, 2.08it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.08it/s]\n 82%|████████▏ | 23/28 [00:10<00:02, 2.08it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.08it/s]\n 89%|████████▉ | 25/28 [00:11<00:01, 2.08it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.08it/s]\n 96%|█████████▋| 27/28 [00:12<00:00, 2.08it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.08it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.10it/s]", "metrics": { "predict_time": 13.868740613, "total_time": 13.878571 }, "output": [ "https://replicate.delivery/yhqm/LBeAfMlI0MsleIVYOn6fsnCFiorrwT9yeuWlYm2qXOZZkjadC/out-0.webp" ], "started_at": "2024-10-28T13:43:50.002830Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-7lwxadnbygfvj22y6t7gbvkbvudml2jzs63qdck2cxvthwgvu5pq", "get": "https://api.replicate.com/v1/predictions/q5nvrntxx5rj20cjtdf93fbwsg", "cancel": "https://api.replicate.com/v1/predictions/q5nvrntxx5rj20cjtdf93fbwsg/cancel" }, "version": "ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23" }
Generated inUsing seed: 22640 Prompt: a photo of VLTA woman with purple hair txt2img mode Loading LoRA took: 0.00 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:12, 2.09it/s] 7%|▋ | 2/28 [00:00<00:10, 2.46it/s] 11%|█ | 3/28 [00:01<00:11, 2.27it/s] 14%|█▍ | 4/28 [00:01<00:10, 2.19it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.15it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.13it/s] 25%|██▌ | 7/28 [00:03<00:09, 2.12it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.10it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.10it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.09it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.09it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.09it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.09it/s] 50%|█████ | 14/28 [00:06<00:06, 2.09it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.08it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.08it/s] 61%|██████ | 17/28 [00:08<00:05, 2.08it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.08it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.08it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.08it/s] 75%|███████▌ | 21/28 [00:09<00:03, 2.08it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.08it/s] 82%|████████▏ | 23/28 [00:10<00:02, 2.08it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.08it/s] 89%|████████▉ | 25/28 [00:11<00:01, 2.08it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.08it/s] 96%|█████████▋| 27/28 [00:12<00:00, 2.08it/s] 100%|██████████| 28/28 [00:13<00:00, 2.08it/s] 100%|██████████| 28/28 [00:13<00:00, 2.10it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23ID786k4ykdzhrj40cjv6z9rbsqyrStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedby @lucatacoInput
- prompt
- pixel art a cheerful corgi, wearing a vibrant party hat with colorful streamers, and a pair of oversized, reflective sunglasses. The corgi's tongue is playfully sticking out, and its ears are perked up with excitement. The background is filled with festive decorations, including balloons and confetti in a variety of bright colors. The overall scene captures a lively and joyful celebration, with the corgi at the center, radiating energy and fun.
- hf_lora
- https://huggingface.co/nerijs/pixel-art-3.5L/resolve/main/pixel-art-3.5L-v2_000000300.safetensors
- lora_scale
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "pixel art a cheerful corgi, wearing a vibrant party hat with colorful streamers, and a pair of oversized, reflective sunglasses. The corgi's tongue is playfully sticking out, and its ears are perked up with excitement. The background is filled with festive decorations, including balloons and confetti in a variety of bright colors. The overall scene captures a lively and joyful celebration, with the corgi at the center, radiating energy and fun.", "hf_lora": "https://huggingface.co/nerijs/pixel-art-3.5L/resolve/main/pixel-art-3.5L-v2_000000300.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", { input: { prompt: "pixel art a cheerful corgi, wearing a vibrant party hat with colorful streamers, and a pair of oversized, reflective sunglasses. The corgi's tongue is playfully sticking out, and its ears are perked up with excitement. The background is filled with festive decorations, including balloons and confetti in a variety of bright colors. The overall scene captures a lively and joyful celebration, with the corgi at the center, radiating energy and fun.", hf_lora: "https://huggingface.co/nerijs/pixel-art-3.5L/resolve/main/pixel-art-3.5L-v2_000000300.safetensors", lora_scale: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", input={ "prompt": "pixel art a cheerful corgi, wearing a vibrant party hat with colorful streamers, and a pair of oversized, reflective sunglasses. The corgi's tongue is playfully sticking out, and its ears are perked up with excitement. The background is filled with festive decorations, including balloons and confetti in a variety of bright colors. The overall scene captures a lively and joyful celebration, with the corgi at the center, radiating energy and fun.", "hf_lora": "https://huggingface.co/nerijs/pixel-art-3.5L/resolve/main/pixel-art-3.5L-v2_000000300.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", "input": { "prompt": "pixel art a cheerful corgi, wearing a vibrant party hat with colorful streamers, and a pair of oversized, reflective sunglasses. The corgi\'s tongue is playfully sticking out, and its ears are perked up with excitement. The background is filled with festive decorations, including balloons and confetti in a variety of bright colors. The overall scene captures a lively and joyful celebration, with the corgi at the center, radiating energy and fun.", "hf_lora": "https://huggingface.co/nerijs/pixel-art-3.5L/resolve/main/pixel-art-3.5L-v2_000000300.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-29T19:26:44.034860Z", "created_at": "2024-10-29T19:26:28.860000Z", "data_removed": false, "error": null, "id": "786k4ykdzhrj40cjv6z9rbsqyr", "input": { "prompt": "pixel art a cheerful corgi, wearing a vibrant party hat with colorful streamers, and a pair of oversized, reflective sunglasses. The corgi's tongue is playfully sticking out, and its ears are perked up with excitement. The background is filled with festive decorations, including balloons and confetti in a variety of bright colors. The overall scene captures a lively and joyful celebration, with the corgi at the center, radiating energy and fun.", "hf_lora": "https://huggingface.co/nerijs/pixel-art-3.5L/resolve/main/pixel-art-3.5L-v2_000000300.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 23343\nPrompt: pixel art a cheerful corgi, wearing a vibrant party hat with colorful streamers, and a pair of oversized, reflective sunglasses. The corgi's tongue is playfully sticking out, and its ears are perked up with excitement. The background is filled with festive decorations, including balloons and confetti in a variety of bright colors. The overall scene captures a lively and joyful celebration, with the corgi at the center, radiating energy and fun.\ntxt2img mode\nLoading LoRA took: 0.00 seconds\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['corgi at the center, radiating energy and fun.']\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['corgi at the center, radiating energy and fun.']\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:14, 1.91it/s]\n 7%|▋ | 2/28 [00:00<00:12, 2.13it/s]\n 11%|█ | 3/28 [00:01<00:12, 2.02it/s]\n 14%|█▍ | 4/28 [00:02<00:12, 1.97it/s]\n 18%|█▊ | 5/28 [00:02<00:11, 1.94it/s]\n 21%|██▏ | 6/28 [00:03<00:11, 1.93it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 1.92it/s]\n 29%|██▊ | 8/28 [00:04<00:10, 1.91it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 1.91it/s]\n 36%|███▌ | 10/28 [00:05<00:09, 1.90it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 1.90it/s]\n 43%|████▎ | 12/28 [00:06<00:08, 1.90it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 1.90it/s]\n 50%|█████ | 14/28 [00:07<00:07, 1.90it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 1.90it/s]\n 57%|█████▋ | 16/28 [00:08<00:06, 1.90it/s]\n 61%|██████ | 17/28 [00:08<00:05, 1.90it/s]\n 64%|██████▍ | 18/28 [00:09<00:05, 1.90it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 1.90it/s]\n 71%|███████▏ | 20/28 [00:10<00:04, 1.90it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 1.90it/s]\n 79%|███████▊ | 22/28 [00:11<00:03, 1.90it/s]\n 82%|████████▏ | 23/28 [00:12<00:02, 1.90it/s]\n 86%|████████▌ | 24/28 [00:12<00:02, 1.90it/s]\n 89%|████████▉ | 25/28 [00:13<00:01, 1.90it/s]\n 93%|█████████▎| 26/28 [00:13<00:01, 1.90it/s]\n 96%|█████████▋| 27/28 [00:14<00:00, 1.90it/s]\n100%|██████████| 28/28 [00:14<00:00, 1.90it/s]\n100%|██████████| 28/28 [00:14<00:00, 1.91it/s]", "metrics": { "predict_time": 15.165394152, "total_time": 15.17486 }, "output": [ "https://replicate.delivery/yhqm/0zeWnulgXLTVJqiVyeP0hPUWDpYqnyoSycPf7VdrgHFoHdXnA/out-0.webp" ], "started_at": "2024-10-29T19:26:28.869466Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-4kdjxuailr7p6tpgiz7eeuy3b3ocnh6ss2h3jsjqiiaeptzt7anq", "get": "https://api.replicate.com/v1/predictions/786k4ykdzhrj40cjv6z9rbsqyr", "cancel": "https://api.replicate.com/v1/predictions/786k4ykdzhrj40cjv6z9rbsqyr/cancel" }, "version": "ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23" }
Generated inUsing seed: 23343 Prompt: pixel art a cheerful corgi, wearing a vibrant party hat with colorful streamers, and a pair of oversized, reflective sunglasses. The corgi's tongue is playfully sticking out, and its ears are perked up with excitement. The background is filled with festive decorations, including balloons and confetti in a variety of bright colors. The overall scene captures a lively and joyful celebration, with the corgi at the center, radiating energy and fun. txt2img mode Loading LoRA took: 0.00 seconds The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['corgi at the center, radiating energy and fun.'] The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['corgi at the center, radiating energy and fun.'] 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:14, 1.91it/s] 7%|▋ | 2/28 [00:00<00:12, 2.13it/s] 11%|█ | 3/28 [00:01<00:12, 2.02it/s] 14%|█▍ | 4/28 [00:02<00:12, 1.97it/s] 18%|█▊ | 5/28 [00:02<00:11, 1.94it/s] 21%|██▏ | 6/28 [00:03<00:11, 1.93it/s] 25%|██▌ | 7/28 [00:03<00:10, 1.92it/s] 29%|██▊ | 8/28 [00:04<00:10, 1.91it/s] 32%|███▏ | 9/28 [00:04<00:09, 1.91it/s] 36%|███▌ | 10/28 [00:05<00:09, 1.90it/s] 39%|███▉ | 11/28 [00:05<00:08, 1.90it/s] 43%|████▎ | 12/28 [00:06<00:08, 1.90it/s] 46%|████▋ | 13/28 [00:06<00:07, 1.90it/s] 50%|█████ | 14/28 [00:07<00:07, 1.90it/s] 54%|█████▎ | 15/28 [00:07<00:06, 1.90it/s] 57%|█████▋ | 16/28 [00:08<00:06, 1.90it/s] 61%|██████ | 17/28 [00:08<00:05, 1.90it/s] 64%|██████▍ | 18/28 [00:09<00:05, 1.90it/s] 68%|██████▊ | 19/28 [00:09<00:04, 1.90it/s] 71%|███████▏ | 20/28 [00:10<00:04, 1.90it/s] 75%|███████▌ | 21/28 [00:10<00:03, 1.90it/s] 79%|███████▊ | 22/28 [00:11<00:03, 1.90it/s] 82%|████████▏ | 23/28 [00:12<00:02, 1.90it/s] 86%|████████▌ | 24/28 [00:12<00:02, 1.90it/s] 89%|████████▉ | 25/28 [00:13<00:01, 1.90it/s] 93%|█████████▎| 26/28 [00:13<00:01, 1.90it/s] 96%|█████████▋| 27/28 [00:14<00:00, 1.90it/s] 100%|██████████| 28/28 [00:14<00:00, 1.90it/s] 100%|██████████| 28/28 [00:14<00:00, 1.91it/s]
Prediction
lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23IDarhvz2w3d9rj00cjx4zvv42b78StatusSucceededSourceAPIHardwareA100 (80GB)Total durationCreatedby @lucatacoInput
- prompt
- Frog, yarn art style
- hf_lora
- https://huggingface.co/lucataco/SD3.5-Large-yarn-2/resolve/main/pytorch_lora_weights.safetensors
- lora_scale
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 4.5
- output_quality
- 80
- prompt_strength
- 0.7
- num_inference_steps
- 28
{ "prompt": "Frog, yarn art style", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-yarn-2/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", { input: { prompt: "Frog, yarn art style", hf_lora: "https://huggingface.co/lucataco/SD3.5-Large-yarn-2/resolve/main/pytorch_lora_weights.safetensors", lora_scale: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 4.5, output_quality: 80, prompt_strength: 0.7, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", input={ "prompt": "Frog, yarn art style", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-yarn-2/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lucataco/stable-diffusion-3.5-large-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/stable-diffusion-3.5-large-lora:ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23", "input": { "prompt": "Frog, yarn art style", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-yarn-2/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-11-01T19:42:00.762609Z", "created_at": "2024-11-01T19:41:46.730000Z", "data_removed": false, "error": null, "id": "arhvz2w3d9rj00cjx4zvv42b78", "input": { "prompt": "Frog, yarn art style", "hf_lora": "https://huggingface.co/lucataco/SD3.5-Large-yarn-2/resolve/main/pytorch_lora_weights.safetensors", "lora_scale": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 4.5, "output_quality": 80, "prompt_strength": 0.7, "num_inference_steps": 28 }, "logs": "Using seed: 52957\nPrompt: Frog, yarn art style\ntxt2img mode\nLoading LoRA took: 0.00 seconds\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:13, 2.08it/s]\n 7%|▋ | 2/28 [00:00<00:10, 2.44it/s]\n 11%|█ | 3/28 [00:01<00:11, 2.26it/s]\n 14%|█▍ | 4/28 [00:01<00:11, 2.18it/s]\n 18%|█▊ | 5/28 [00:02<00:10, 2.14it/s]\n 21%|██▏ | 6/28 [00:02<00:10, 2.11it/s]\n 25%|██▌ | 7/28 [00:03<00:10, 2.10it/s]\n 29%|██▊ | 8/28 [00:03<00:09, 2.09it/s]\n 32%|███▏ | 9/28 [00:04<00:09, 2.08it/s]\n 36%|███▌ | 10/28 [00:04<00:08, 2.08it/s]\n 39%|███▉ | 11/28 [00:05<00:08, 2.07it/s]\n 43%|████▎ | 12/28 [00:05<00:07, 2.07it/s]\n 46%|████▋ | 13/28 [00:06<00:07, 2.07it/s]\n 50%|█████ | 14/28 [00:06<00:06, 2.07it/s]\n 54%|█████▎ | 15/28 [00:07<00:06, 2.07it/s]\n 57%|█████▋ | 16/28 [00:07<00:05, 2.07it/s]\n 61%|██████ | 17/28 [00:08<00:05, 2.06it/s]\n 64%|██████▍ | 18/28 [00:08<00:04, 2.06it/s]\n 68%|██████▊ | 19/28 [00:09<00:04, 2.06it/s]\n 71%|███████▏ | 20/28 [00:09<00:03, 2.06it/s]\n 75%|███████▌ | 21/28 [00:10<00:03, 2.06it/s]\n 79%|███████▊ | 22/28 [00:10<00:02, 2.06it/s]\n 82%|████████▏ | 23/28 [00:11<00:02, 2.06it/s]\n 86%|████████▌ | 24/28 [00:11<00:01, 2.06it/s]\n 89%|████████▉ | 25/28 [00:11<00:01, 2.06it/s]\n 93%|█████████▎| 26/28 [00:12<00:00, 2.06it/s]\n 96%|█████████▋| 27/28 [00:12<00:00, 2.06it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.06it/s]\n100%|██████████| 28/28 [00:13<00:00, 2.08it/s]", "metrics": { "predict_time": 14.022834929, "total_time": 14.032609 }, "output": [ "https://replicate.delivery/yhqm/WKTZ1ZnQRYZ4H9nYCfNwL34ZfGeTLkg7iBemxmIAeoXDhwldC/out-0.webp" ], "started_at": "2024-11-01T19:41:46.739774Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/qoxq-forjqxshlyxo5w4dt65casntzgirel5pym6b5kl3vasfgbanbh3q", "get": "https://api.replicate.com/v1/predictions/arhvz2w3d9rj00cjx4zvv42b78", "cancel": "https://api.replicate.com/v1/predictions/arhvz2w3d9rj00cjx4zvv42b78/cancel" }, "version": "ad0f061aaf2813ff8dbdba3613a952fca0bf443ef0ddd3ef500d66046ce97c23" }
Generated inUsing seed: 52957 Prompt: Frog, yarn art style txt2img mode Loading LoRA took: 0.00 seconds 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:13, 2.08it/s] 7%|▋ | 2/28 [00:00<00:10, 2.44it/s] 11%|█ | 3/28 [00:01<00:11, 2.26it/s] 14%|█▍ | 4/28 [00:01<00:11, 2.18it/s] 18%|█▊ | 5/28 [00:02<00:10, 2.14it/s] 21%|██▏ | 6/28 [00:02<00:10, 2.11it/s] 25%|██▌ | 7/28 [00:03<00:10, 2.10it/s] 29%|██▊ | 8/28 [00:03<00:09, 2.09it/s] 32%|███▏ | 9/28 [00:04<00:09, 2.08it/s] 36%|███▌ | 10/28 [00:04<00:08, 2.08it/s] 39%|███▉ | 11/28 [00:05<00:08, 2.07it/s] 43%|████▎ | 12/28 [00:05<00:07, 2.07it/s] 46%|████▋ | 13/28 [00:06<00:07, 2.07it/s] 50%|█████ | 14/28 [00:06<00:06, 2.07it/s] 54%|█████▎ | 15/28 [00:07<00:06, 2.07it/s] 57%|█████▋ | 16/28 [00:07<00:05, 2.07it/s] 61%|██████ | 17/28 [00:08<00:05, 2.06it/s] 64%|██████▍ | 18/28 [00:08<00:04, 2.06it/s] 68%|██████▊ | 19/28 [00:09<00:04, 2.06it/s] 71%|███████▏ | 20/28 [00:09<00:03, 2.06it/s] 75%|███████▌ | 21/28 [00:10<00:03, 2.06it/s] 79%|███████▊ | 22/28 [00:10<00:02, 2.06it/s] 82%|████████▏ | 23/28 [00:11<00:02, 2.06it/s] 86%|████████▌ | 24/28 [00:11<00:01, 2.06it/s] 89%|████████▉ | 25/28 [00:11<00:01, 2.06it/s] 93%|█████████▎| 26/28 [00:12<00:00, 2.06it/s] 96%|█████████▋| 27/28 [00:12<00:00, 2.06it/s] 100%|██████████| 28/28 [00:13<00:00, 2.06it/s] 100%|██████████| 28/28 [00:13<00:00, 2.08it/s]
Want to make some of these yourself?
Run this model