markbland82
/
mjbstyle1
- Public
- 117 runs
-
H100
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1ID5vdj1y725srm00chkbtspdcm2mStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 75757504940878
- model
- dev
- width
- 768
- height
- 1440
- prompt
- 1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance
- lora_scale
- 0.47
- num_outputs
- 1
- aspect_ratio
- custom
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "seed": 75757504940878, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", "lora_scale": 0.47, "num_outputs": 1, "aspect_ratio": "custom", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { seed: 75757504940878, model: "dev", width: 768, height: 1440, prompt: "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", lora_scale: 0.47, num_outputs: 1, aspect_ratio: "custom", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "seed": 75757504940878, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", "lora_scale": 0.47, "num_outputs": 1, "aspect_ratio": "custom", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "seed": 75757504940878, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", "lora_scale": 0.47, "num_outputs": 1, "aspect_ratio": "custom", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T21:48:29.896780Z", "created_at": "2024-08-28T21:48:11.182000Z", "data_removed": false, "error": null, "id": "5vdj1y725srm00chkbtspdcm2m", "input": { "seed": 75757504940878, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", "lora_scale": 0.47, "num_outputs": 1, "aspect_ratio": "custom", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 75757504940878\nPrompt: 1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 9.91s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.36it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.77it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.58it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.50it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.45it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.42it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.40it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.39it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.38it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.39it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.38it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.38it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.38it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.38it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.37it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.37it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.38it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.37it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.37it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.35it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.37it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.36it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.37it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.37it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.37it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.37it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.36it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.36it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.39it/s]", "metrics": { "predict_time": 18.7098564, "total_time": 18.71478 }, "output": [ "https://replicate.delivery/yhqm/he1mgreJFvulIELs607DoWutvzPOJZWrdGrWgQmbM4Qt0UXTA/out-0.webp" ], "started_at": "2024-08-28T21:48:11.186924Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5vdj1y725srm00chkbtspdcm2m", "cancel": "https://api.replicate.com/v1/predictions/5vdj1y725srm00chkbtspdcm2m/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 75757504940878 Prompt: 1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance txt2img mode Using dev model Loaded LoRAs in 9.91s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.36it/s] 7%|▋ | 2/28 [00:00<00:06, 3.77it/s] 11%|█ | 3/28 [00:00<00:06, 3.58it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.50it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.45it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.42it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.40it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.39it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.38it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.39it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.38it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.38it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.38it/s] 50%|█████ | 14/28 [00:04<00:04, 3.38it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.37it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.37it/s] 61%|██████ | 17/28 [00:04<00:03, 3.38it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.37it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.37it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.35it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.37it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.36it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.37it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.37it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.37it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.37it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.36it/s] 100%|██████████| 28/28 [00:08<00:00, 3.36it/s] 100%|██████████| 28/28 [00:08<00:00, 3.39it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1IDvvwecytq7srm20chkbwrvtg2xcStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 75757504940878
- model
- dev
- width
- 768
- height
- 1440
- prompt
- 1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance
- lora_scale
- 0.68
- num_outputs
- 1
- aspect_ratio
- custom
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "seed": 75757504940878, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", "lora_scale": 0.68, "num_outputs": 1, "aspect_ratio": "custom", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { seed: 75757504940878, model: "dev", width: 768, height: 1440, prompt: "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", lora_scale: 0.68, num_outputs: 1, aspect_ratio: "custom", output_format: "png", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "seed": 75757504940878, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", "lora_scale": 0.68, "num_outputs": 1, "aspect_ratio": "custom", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "seed": 75757504940878, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", "lora_scale": 0.68, "num_outputs": 1, "aspect_ratio": "custom", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T21:52:15.594177Z", "created_at": "2024-08-28T21:51:57.758000Z", "data_removed": false, "error": null, "id": "vvwecytq7srm20chkbwrvtg2xc", "input": { "seed": 75757504940878, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance ", "lora_scale": 0.68, "num_outputs": 1, "aspect_ratio": "custom", "output_format": "png", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 75757504940878\nPrompt: 1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 8.51s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:08, 3.34it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.73it/s]\n 11%|█ | 3/28 [00:00<00:07, 3.54it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.45it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.41it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.38it/s]\n 25%|██▌ | 7/28 [00:02<00:06, 3.37it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.35it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.35it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.34it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 3.34it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.33it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.33it/s]\n 50%|█████ | 14/28 [00:04<00:04, 3.33it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.33it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.32it/s]\n 61%|██████ | 17/28 [00:05<00:03, 3.32it/s]\n 64%|██████▍ | 18/28 [00:05<00:03, 3.32it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.32it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.32it/s]\n 75%|███████▌ | 21/28 [00:06<00:02, 3.33it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.32it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.32it/s]\n 86%|████████▌ | 24/28 [00:07<00:01, 3.32it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.33it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.33it/s]\n 96%|█████████▋| 27/28 [00:08<00:00, 3.33it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.33it/s]\n100%|██████████| 28/28 [00:08<00:00, 3.35it/s]", "metrics": { "predict_time": 17.826356823, "total_time": 17.836177 }, "output": [ "https://replicate.delivery/yhqm/CECKAGmerekM00Ht7T1HyaWrxHHhnxBi74AXFSFgooRP4UXTA/out-0.png" ], "started_at": "2024-08-28T21:51:57.767820Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vvwecytq7srm20chkbwrvtg2xc", "cancel": "https://api.replicate.com/v1/predictions/vvwecytq7srm20chkbwrvtg2xc/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 75757504940878 Prompt: 1MARK1, a space ship car drivin by a massive megafauna creature in the open landscape, busy, full of action and nuance txt2img mode Using dev model Loaded LoRAs in 8.51s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:08, 3.34it/s] 7%|▋ | 2/28 [00:00<00:06, 3.73it/s] 11%|█ | 3/28 [00:00<00:07, 3.54it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.45it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.41it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.38it/s] 25%|██▌ | 7/28 [00:02<00:06, 3.37it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.35it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.35it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.34it/s] 39%|███▉ | 11/28 [00:03<00:05, 3.34it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.33it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.33it/s] 50%|█████ | 14/28 [00:04<00:04, 3.33it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.33it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.32it/s] 61%|██████ | 17/28 [00:05<00:03, 3.32it/s] 64%|██████▍ | 18/28 [00:05<00:03, 3.32it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.32it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.32it/s] 75%|███████▌ | 21/28 [00:06<00:02, 3.33it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.32it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.32it/s] 86%|████████▌ | 24/28 [00:07<00:01, 3.32it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.33it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.33it/s] 96%|█████████▋| 27/28 [00:08<00:00, 3.33it/s] 100%|██████████| 28/28 [00:08<00:00, 3.33it/s] 100%|██████████| 28/28 [00:08<00:00, 3.35it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1ID4ahbbtfbt1rm60chkcc881r0wcStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- width
- 1440
- height
- 398
- prompt
- 1MARK1, a mountain landscape, photorealistic
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 9:16
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 100
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a mountain landscape, photorealistic", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { model: "dev", width: 1440, height: 398, prompt: "1MARK1, a mountain landscape, photorealistic", lora_scale: 1, num_outputs: 1, aspect_ratio: "9:16", output_format: "png", guidance_scale: 3.5, output_quality: 100, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a mountain landscape, photorealistic", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a mountain landscape, photorealistic", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T22:26:54.214297Z", "created_at": "2024-08-28T22:26:27.408000Z", "data_removed": false, "error": null, "id": "4ahbbtfbt1rm60chkcc881r0wc", "input": { "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a mountain landscape, photorealistic", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 49376\nPrompt: 1MARK1, a mountain landscape, photorealistic\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 8.06s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.73it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.29it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.01it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.90it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.83it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.80it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.77it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.76it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.75it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.74it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.73it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.73it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.73it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.73it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.73it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.73it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.73it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.73it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.71it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.72it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.72it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.72it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.72it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.72it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.72it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.72it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.72it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.72it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.75it/s]", "metrics": { "predict_time": 16.541714836, "total_time": 26.806297 }, "output": [ "https://replicate.delivery/yhqm/qMpIfJIcgy1efoPdnlwSt0Oke1szFEEOv2NS1JCw6xfuFr6aC/out-0.png" ], "started_at": "2024-08-28T22:26:37.672582Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4ahbbtfbt1rm60chkcc881r0wc", "cancel": "https://api.replicate.com/v1/predictions/4ahbbtfbt1rm60chkcc881r0wc/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 49376 Prompt: 1MARK1, a mountain landscape, photorealistic txt2img mode Using dev model Loaded LoRAs in 8.06s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.73it/s] 7%|▋ | 2/28 [00:00<00:06, 4.29it/s] 11%|█ | 3/28 [00:00<00:06, 4.01it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.90it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.83it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.80it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.77it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.76it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.75it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.74it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.73it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.73it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.73it/s] 50%|█████ | 14/28 [00:03<00:03, 3.73it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.73it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.73it/s] 61%|██████ | 17/28 [00:04<00:02, 3.73it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.73it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.71it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.72it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.72it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.72it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.72it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.72it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.72it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.72it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.72it/s] 100%|██████████| 28/28 [00:07<00:00, 3.72it/s] 100%|██████████| 28/28 [00:07<00:00, 3.75it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1ID8yajpwmyrhrm40chkcctjddc4wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- width
- 1440
- height
- 398
- prompt
- 1MARK1, a mountain landscape, photorealistic, 1MARK1,
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 9:16
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 100
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a mountain landscape, photorealistic, 1MARK1, ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { model: "dev", width: 1440, height: 398, prompt: "1MARK1, a mountain landscape, photorealistic, 1MARK1, ", lora_scale: 1, num_outputs: 1, aspect_ratio: "9:16", output_format: "png", guidance_scale: 3.5, output_quality: 100, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a mountain landscape, photorealistic, 1MARK1, ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a mountain landscape, photorealistic, 1MARK1, ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T22:27:31.045505Z", "created_at": "2024-08-28T22:27:13.220000Z", "data_removed": false, "error": null, "id": "8yajpwmyrhrm40chkcctjddc4w", "input": { "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a mountain landscape, photorealistic, 1MARK1, ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 40565\nPrompt: 1MARK1, a mountain landscape, photorealistic, 1MARK1,\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 9.52s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.72it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.27it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.00it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.89it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.83it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.79it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.77it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.76it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.75it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.74it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.73it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.73it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.73it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.73it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.72it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.73it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.73it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.72it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.72it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.72it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.72it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.72it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.72it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.72it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.72it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.72it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.72it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.72it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.75it/s]", "metrics": { "predict_time": 17.816925145, "total_time": 17.825505 }, "output": [ "https://replicate.delivery/yhqm/bODtick7Hs6pMROft5OEWrmvLLOaRAo0qkfzYPigi2gSZVXTA/out-0.png" ], "started_at": "2024-08-28T22:27:13.228580Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/8yajpwmyrhrm40chkcctjddc4w", "cancel": "https://api.replicate.com/v1/predictions/8yajpwmyrhrm40chkcctjddc4w/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 40565 Prompt: 1MARK1, a mountain landscape, photorealistic, 1MARK1, txt2img mode Using dev model Loaded LoRAs in 9.52s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.72it/s] 7%|▋ | 2/28 [00:00<00:06, 4.27it/s] 11%|█ | 3/28 [00:00<00:06, 4.00it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.89it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.83it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.79it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.77it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.76it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.75it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.74it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.73it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.73it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.73it/s] 50%|█████ | 14/28 [00:03<00:03, 3.73it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.72it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.73it/s] 61%|██████ | 17/28 [00:04<00:02, 3.73it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.72it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.72it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.72it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.72it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.72it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.72it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.72it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.72it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.72it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.72it/s] 100%|██████████| 28/28 [00:07<00:00, 3.72it/s] 100%|██████████| 28/28 [00:07<00:00, 3.75it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1ID0gnm6dc8wsrm60chkch8qhs3f8StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- width
- 1440
- height
- 398
- prompt
- 1MARK1, a battle between man and machine
- lora_scale
- 0.83
- num_outputs
- 1
- aspect_ratio
- 9:16
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 100
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a battle between man and machine", "lora_scale": 0.83, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { model: "dev", width: 1440, height: 398, prompt: "1MARK1, a battle between man and machine", lora_scale: 0.83, num_outputs: 1, aspect_ratio: "9:16", output_format: "png", guidance_scale: 3.5, output_quality: 100, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a battle between man and machine", "lora_scale": 0.83, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a battle between man and machine", "lora_scale": 0.83, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T22:37:18.307505Z", "created_at": "2024-08-28T22:36:57.446000Z", "data_removed": false, "error": null, "id": "0gnm6dc8wsrm60chkch8qhs3f8", "input": { "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a battle between man and machine", "lora_scale": 0.83, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 25142\nPrompt: 1MARK1, a battle between man and machine\ntxt2img mode\nUsing dev model\nfree=9343880232960\nDownloading weights\n2024-08-28T22:36:57Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp03xec5gt/weights url=https://replicate.delivery/yhqm/gvS9aqomyPaYMRkDBf82VhArkonDGBfhkGGVXPFRNZP6dRXTA/trained_model.tar\n2024-08-28T22:37:00Z | INFO | [ Complete ] dest=/tmp/tmp03xec5gt/weights size=\"172 MB\" total_elapsed=2.164s url=https://replicate.delivery/yhqm/gvS9aqomyPaYMRkDBf82VhArkonDGBfhkGGVXPFRNZP6dRXTA/trained_model.tar\nDownloaded weights in 2.20s\nLoaded LoRAs in 11.85s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.58it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.99it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.78it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.70it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.65it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.62it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.60it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.59it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.59it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.57it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.57it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.57it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.57it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.57it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.57it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.57it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.57it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.57it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.56it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.56it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.57it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.56it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.56it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.57it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.59it/s]", "metrics": { "predict_time": 20.536591537, "total_time": 20.861505 }, "output": [ "https://replicate.delivery/yhqm/YwEUykItMC5ebi6TIGWoG73LShWxboZWTe6xTDZTJbaeErumA/out-0.png" ], "started_at": "2024-08-28T22:36:57.770913Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/0gnm6dc8wsrm60chkch8qhs3f8", "cancel": "https://api.replicate.com/v1/predictions/0gnm6dc8wsrm60chkch8qhs3f8/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 25142 Prompt: 1MARK1, a battle between man and machine txt2img mode Using dev model free=9343880232960 Downloading weights 2024-08-28T22:36:57Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp03xec5gt/weights url=https://replicate.delivery/yhqm/gvS9aqomyPaYMRkDBf82VhArkonDGBfhkGGVXPFRNZP6dRXTA/trained_model.tar 2024-08-28T22:37:00Z | INFO | [ Complete ] dest=/tmp/tmp03xec5gt/weights size="172 MB" total_elapsed=2.164s url=https://replicate.delivery/yhqm/gvS9aqomyPaYMRkDBf82VhArkonDGBfhkGGVXPFRNZP6dRXTA/trained_model.tar Downloaded weights in 2.20s Loaded LoRAs in 11.85s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.58it/s] 7%|▋ | 2/28 [00:00<00:06, 3.99it/s] 11%|█ | 3/28 [00:00<00:06, 3.78it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.70it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.65it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.62it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.60it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.59it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.59it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.57it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.57it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.57it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s] 50%|█████ | 14/28 [00:03<00:03, 3.57it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.57it/s] 61%|██████ | 17/28 [00:04<00:03, 3.57it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.57it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.57it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.57it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.57it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.57it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.56it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.56it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.57it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.56it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.56it/s] 100%|██████████| 28/28 [00:07<00:00, 3.57it/s] 100%|██████████| 28/28 [00:07<00:00, 3.59it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1IDgchzcmdt15rm20chkcjrs4yph4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- width
- 1440
- height
- 398
- prompt
- 1MARK1, a battle between man and machine
- lora_scale
- 0.77
- num_outputs
- 1
- aspect_ratio
- 9:16
- output_format
- png
- guidance_scale
- 3.5
- output_quality
- 100
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a battle between man and machine", "lora_scale": 0.77, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { model: "dev", width: 1440, height: 398, prompt: "1MARK1, a battle between man and machine", lora_scale: 0.77, num_outputs: 1, aspect_ratio: "9:16", output_format: "png", guidance_scale: 3.5, output_quality: 100, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a battle between man and machine", "lora_scale": 0.77, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a battle between man and machine", "lora_scale": 0.77, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T22:40:44.137729Z", "created_at": "2024-08-28T22:40:26.633000Z", "data_removed": false, "error": null, "id": "gchzcmdt15rm20chkcjrs4yph4", "input": { "model": "dev", "width": 1440, "height": 398, "prompt": "1MARK1, a battle between man and machine", "lora_scale": 0.77, "num_outputs": 1, "aspect_ratio": "9:16", "output_format": "png", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 30781\nPrompt: 1MARK1, a battle between man and machine\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 8.80s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.60it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.02it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.81it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.72it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.66it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.63it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.61it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.61it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.59it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.58it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.58it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.57it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.57it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.58it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.57it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.56it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.56it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.57it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.58it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.58it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.57it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.58it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.58it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.58it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.58it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.58it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.58it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.60it/s]", "metrics": { "predict_time": 17.495422321, "total_time": 17.504729 }, "output": [ "https://replicate.delivery/yhqm/iPvtogCt7i5NN9LLpkMC0ekGeNvj8Q7tFmnyy7S3nYmrlVXTA/out-0.png" ], "started_at": "2024-08-28T22:40:26.642307Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gchzcmdt15rm20chkcjrs4yph4", "cancel": "https://api.replicate.com/v1/predictions/gchzcmdt15rm20chkcjrs4yph4/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 30781 Prompt: 1MARK1, a battle between man and machine txt2img mode Using dev model Loaded LoRAs in 8.80s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.60it/s] 7%|▋ | 2/28 [00:00<00:06, 4.02it/s] 11%|█ | 3/28 [00:00<00:06, 3.81it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.72it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.66it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.63it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.61it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.61it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.59it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.58it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.58it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.57it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.57it/s] 50%|█████ | 14/28 [00:03<00:03, 3.57it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.58it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.57it/s] 61%|██████ | 17/28 [00:04<00:03, 3.56it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.56it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.57it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.58it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.58it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.57it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.58it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.58it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.58it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.58it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.58it/s] 100%|██████████| 28/28 [00:07<00:00, 3.58it/s] 100%|██████████| 28/28 [00:07<00:00, 3.60it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1ID2vaxfwe6z1rm60chkbdad8pk48StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- 1MARK1, A close-up view of a butterfly wing captured through scanning electron microscopy, showcasing the intricate scales and their unique patterns. The image reveals the microscopic texture and the overlapping layers, resembling a detailed mosaic. The monochromatic tones enhance the fine structures, giving the scene an abstract, otherworldly feel. (Medium: digital micrograph) (Style: inspired by scientific photography and abstract art) (Lighting: high-contrast lighting to emphasize textures and depth) (Colors: monochrome, grayscale with high contrast) (Composition: extreme close-up shot using an FEI Quanta 250 SEM, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "1MARK1, A close-up view of a butterfly wing captured through scanning electron microscopy, showcasing the intricate scales and their unique patterns. The image reveals the microscopic texture and the overlapping layers, resembling a detailed mosaic. The monochromatic tones enhance the fine structures, giving the scene an abstract, otherworldly feel. (Medium: digital micrograph) (Style: inspired by scientific photography and abstract art) (Lighting: high-contrast lighting to emphasize textures and depth) (Colors: monochrome, grayscale with high contrast) (Composition: extreme close-up shot using an FEI Quanta 250 SEM, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { model: "dev", prompt: "1MARK1, A close-up view of a butterfly wing captured through scanning electron microscopy, showcasing the intricate scales and their unique patterns. The image reveals the microscopic texture and the overlapping layers, resembling a detailed mosaic. The monochromatic tones enhance the fine structures, giving the scene an abstract, otherworldly feel. (Medium: digital micrograph) (Style: inspired by scientific photography and abstract art) (Lighting: high-contrast lighting to emphasize textures and depth) (Colors: monochrome, grayscale with high contrast) (Composition: extreme close-up shot using an FEI Quanta 250 SEM, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "model": "dev", "prompt": "1MARK1, A close-up view of a butterfly wing captured through scanning electron microscopy, showcasing the intricate scales and their unique patterns. The image reveals the microscopic texture and the overlapping layers, resembling a detailed mosaic. The monochromatic tones enhance the fine structures, giving the scene an abstract, otherworldly feel. (Medium: digital micrograph) (Style: inspired by scientific photography and abstract art) (Lighting: high-contrast lighting to emphasize textures and depth) (Colors: monochrome, grayscale with high contrast) (Composition: extreme close-up shot using an FEI Quanta 250 SEM, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "model": "dev", "prompt": "1MARK1, A close-up view of a butterfly wing captured through scanning electron microscopy, showcasing the intricate scales and their unique patterns. The image reveals the microscopic texture and the overlapping layers, resembling a detailed mosaic. The monochromatic tones enhance the fine structures, giving the scene an abstract, otherworldly feel. (Medium: digital micrograph) (Style: inspired by scientific photography and abstract art) (Lighting: high-contrast lighting to emphasize textures and depth) (Colors: monochrome, grayscale with high contrast) (Composition: extreme close-up shot using an FEI Quanta 250 SEM, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T21:19:03.085118Z", "created_at": "2024-08-28T21:18:34.744000Z", "data_removed": false, "error": null, "id": "2vaxfwe6z1rm60chkbdad8pk48", "input": { "model": "dev", "prompt": "1MARK1, A close-up view of a butterfly wing captured through scanning electron microscopy, showcasing the intricate scales and their unique patterns. The image reveals the microscopic texture and the overlapping layers, resembling a detailed mosaic. The monochromatic tones enhance the fine structures, giving the scene an abstract, otherworldly feel. (Medium: digital micrograph) (Style: inspired by scientific photography and abstract art) (Lighting: high-contrast lighting to emphasize textures and depth) (Colors: monochrome, grayscale with high contrast) (Composition: extreme close-up shot using an FEI Quanta 250 SEM, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 14990\nPrompt: 1MARK1, A close-up view of a butterfly wing captured through scanning electron microscopy, showcasing the intricate scales and their unique patterns. The image reveals the microscopic texture and the overlapping layers, resembling a detailed mosaic. The monochromatic tones enhance the fine structures, giving the scene an abstract, otherworldly feel. (Medium: digital micrograph) (Style: inspired by scientific photography and abstract art) (Lighting: high-contrast lighting to emphasize textures and depth) (Colors: monochrome, grayscale with high contrast) (Composition: extreme close-up shot using an FEI Quanta 250 SEM, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 8.83s\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['( style : inspired by scientific photography and abstract art ) ( lighting : high - contrast lighting to emphasize textures and depth ) ( colors : monochrome, grayscale with high contrast ) ( composition : extreme close - up shot using an fei quanta 2 5 0 sem, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)']\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.70it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.26it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.98it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.86it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.80it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.76it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.74it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.72it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.72it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.71it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.70it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.70it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.70it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.70it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.69it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.69it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.69it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.69it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.69it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.69it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.69it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.69it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.69it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.69it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.69it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.69it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.69it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.69it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.72it/s]", "metrics": { "predict_time": 16.94351611, "total_time": 28.341118 }, "output": [ "https://replicate.delivery/yhqm/z6a8TgvxvRr3LliS6RkAG8lwDJSDi5OyK8K0EerIa7NjMqrJA/out-0.webp" ], "started_at": "2024-08-28T21:18:46.141602Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2vaxfwe6z1rm60chkbdad8pk48", "cancel": "https://api.replicate.com/v1/predictions/2vaxfwe6z1rm60chkbdad8pk48/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 14990 Prompt: 1MARK1, A close-up view of a butterfly wing captured through scanning electron microscopy, showcasing the intricate scales and their unique patterns. The image reveals the microscopic texture and the overlapping layers, resembling a detailed mosaic. The monochromatic tones enhance the fine structures, giving the scene an abstract, otherworldly feel. (Medium: digital micrograph) (Style: inspired by scientific photography and abstract art) (Lighting: high-contrast lighting to emphasize textures and depth) (Colors: monochrome, grayscale with high contrast) (Composition: extreme close-up shot using an FEI Quanta 250 SEM, focusing on a specific area of the wing to highlight the repetitive patterns and textures.) txt2img mode Using dev model Loaded LoRAs in 8.83s The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['( style : inspired by scientific photography and abstract art ) ( lighting : high - contrast lighting to emphasize textures and depth ) ( colors : monochrome, grayscale with high contrast ) ( composition : extreme close - up shot using an fei quanta 2 5 0 sem, focusing on a specific area of the wing to highlight the repetitive patterns and textures.)'] 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.70it/s] 7%|▋ | 2/28 [00:00<00:06, 4.26it/s] 11%|█ | 3/28 [00:00<00:06, 3.98it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.86it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.80it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.76it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.74it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.72it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.72it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.71it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.70it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.70it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.70it/s] 50%|█████ | 14/28 [00:03<00:03, 3.70it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.69it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.69it/s] 61%|██████ | 17/28 [00:04<00:02, 3.69it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.69it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.69it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.69it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.69it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.69it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.69it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.69it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.69it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.69it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.69it/s] 100%|██████████| 28/28 [00:07<00:00, 3.69it/s] 100%|██████████| 28/28 [00:07<00:00, 3.72it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1ID2e71jjepqnrm00chkbds00rgn4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- 1MARK1, A high-definition profile shot of a colossal homunculi machine in motion, set within a dramatic action scene. Focus on the machine's eye and face, revealing its elaborate construction in ultra-detailed clarity. The scene should be rendered in a matte photographic style, similar to a giclee print, to emphasize the texture and detail of the machine. The interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "1MARK1, A high-definition profile shot of a colossal homunculi machine in motion, set within a dramatic action scene. Focus on the machine's eye and face, revealing its elaborate construction in ultra-detailed clarity. The scene should be rendered in a matte photographic style, similar to a giclee print, to emphasize the texture and detail of the machine. The interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { model: "dev", prompt: "1MARK1, A high-definition profile shot of a colossal homunculi machine in motion, set within a dramatic action scene. Focus on the machine's eye and face, revealing its elaborate construction in ultra-detailed clarity. The scene should be rendered in a matte photographic style, similar to a giclee print, to emphasize the texture and detail of the machine. The interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "model": "dev", "prompt": "1MARK1, A high-definition profile shot of a colossal homunculi machine in motion, set within a dramatic action scene. Focus on the machine's eye and face, revealing its elaborate construction in ultra-detailed clarity. The scene should be rendered in a matte photographic style, similar to a giclee print, to emphasize the texture and detail of the machine. The interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "model": "dev", "prompt": "1MARK1, A high-definition profile shot of a colossal homunculi machine in motion, set within a dramatic action scene. Focus on the machine\'s eye and face, revealing its elaborate construction in ultra-detailed clarity. The scene should be rendered in a matte photographic style, similar to a giclee print, to emphasize the texture and detail of the machine. The interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T21:20:17.507260Z", "created_at": "2024-08-28T21:19:44.317000Z", "data_removed": false, "error": null, "id": "2e71jjepqnrm00chkbds00rgn4", "input": { "model": "dev", "prompt": "1MARK1, A high-definition profile shot of a colossal homunculi machine in motion, set within a dramatic action scene. Focus on the machine's eye and face, revealing its elaborate construction in ultra-detailed clarity. The scene should be rendered in a matte photographic style, similar to a giclee print, to emphasize the texture and detail of the machine. The interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 37950\nPrompt: 1MARK1, A high-definition profile shot of a colossal homunculi machine in motion, set within a dramatic action scene. Focus on the machine's eye and face, revealing its elaborate construction in ultra-detailed clarity. The scene should be rendered in a matte photographic style, similar to a giclee print, to emphasize the texture and detail of the machine. The interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.\ntxt2img mode\nUsing dev model\nfree=9694836862976\nDownloading weights\n2024-08-28T21:19:58Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp60it78_f/weights url=https://replicate.delivery/yhqm/gvS9aqomyPaYMRkDBf82VhArkonDGBfhkGGVXPFRNZP6dRXTA/trained_model.tar\n2024-08-28T21:20:00Z | INFO | [ Complete ] dest=/tmp/tmp60it78_f/weights size=\"172 MB\" total_elapsed=2.339s url=https://replicate.delivery/yhqm/gvS9aqomyPaYMRkDBf82VhArkonDGBfhkGGVXPFRNZP6dRXTA/trained_model.tar\nDownloaded weights in 2.37s\nLoaded LoRAs in 11.37s\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['. the interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.']\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.68it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.22it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.95it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.68it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.67it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.66it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.65it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.66it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.65it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.65it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.69it/s]", "metrics": { "predict_time": 19.505964364, "total_time": 33.19026 }, "output": [ "https://replicate.delivery/yhqm/0NukmDWR5mLGNpuglrf7itAfifsSANHHfk8WMGuZNsUGpRdNB/out-0.webp" ], "started_at": "2024-08-28T21:19:58.001296Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2e71jjepqnrm00chkbds00rgn4", "cancel": "https://api.replicate.com/v1/predictions/2e71jjepqnrm00chkbds00rgn4/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 37950 Prompt: 1MARK1, A high-definition profile shot of a colossal homunculi machine in motion, set within a dramatic action scene. Focus on the machine's eye and face, revealing its elaborate construction in ultra-detailed clarity. The scene should be rendered in a matte photographic style, similar to a giclee print, to emphasize the texture and detail of the machine. The interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment. txt2img mode Using dev model free=9694836862976 Downloading weights 2024-08-28T21:19:58Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp60it78_f/weights url=https://replicate.delivery/yhqm/gvS9aqomyPaYMRkDBf82VhArkonDGBfhkGGVXPFRNZP6dRXTA/trained_model.tar 2024-08-28T21:20:00Z | INFO | [ Complete ] dest=/tmp/tmp60it78_f/weights size="172 MB" total_elapsed=2.339s url=https://replicate.delivery/yhqm/gvS9aqomyPaYMRkDBf82VhArkonDGBfhkGGVXPFRNZP6dRXTA/trained_model.tar Downloaded weights in 2.37s Loaded LoRAs in 11.37s The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['. the interaction with an adjacent machine should be depicted with fine accuracy, showcasing the complex mechanics and intense action of the moment.'] 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.68it/s] 7%|▋ | 2/28 [00:00<00:06, 4.22it/s] 11%|█ | 3/28 [00:00<00:06, 3.95it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.70it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.68it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.67it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s] 50%|█████ | 14/28 [00:03<00:03, 3.66it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.65it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s] 61%|██████ | 17/28 [00:04<00:03, 3.66it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.65it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.65it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s] 100%|██████████| 28/28 [00:07<00:00, 3.65it/s] 100%|██████████| 28/28 [00:07<00:00, 3.69it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1IDdar0b8tnksrm00chkbmsz9z9amStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 1984
- model
- dev
- width
- 768
- height
- 1440
- prompt
- 1MARK1, Megafauna walking through the landscape, ultra detailed, unique characteristics, symmetrical, compound microscopic, intensely vivid, soft tones, dynamic distance and ultra macro photography
- lora_scale
- 0.45
- num_outputs
- 1
- aspect_ratio
- 2:3
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "seed": 1984, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, Megafauna walking through the landscape, ultra detailed, unique characteristics, symmetrical, compound microscopic, intensely vivid, soft tones, dynamic distance and ultra macro photography", "lora_scale": 0.45, "num_outputs": 1, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { seed: 1984, model: "dev", width: 768, height: 1440, prompt: "1MARK1, Megafauna walking through the landscape, ultra detailed, unique characteristics, symmetrical, compound microscopic, intensely vivid, soft tones, dynamic distance and ultra macro photography", lora_scale: 0.45, num_outputs: 1, aspect_ratio: "2:3", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "seed": 1984, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, Megafauna walking through the landscape, ultra detailed, unique characteristics, symmetrical, compound microscopic, intensely vivid, soft tones, dynamic distance and ultra macro photography", "lora_scale": 0.45, "num_outputs": 1, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "seed": 1984, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, Megafauna walking through the landscape, ultra detailed, unique characteristics, symmetrical, compound microscopic, intensely vivid, soft tones, dynamic distance and ultra macro photography", "lora_scale": 0.45, "num_outputs": 1, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T21:35:03.084177Z", "created_at": "2024-08-28T21:34:28.766000Z", "data_removed": false, "error": null, "id": "dar0b8tnksrm00chkbmsz9z9am", "input": { "seed": 1984, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, Megafauna walking through the landscape, ultra detailed, unique characteristics, symmetrical, compound microscopic, intensely vivid, soft tones, dynamic distance and ultra macro photography", "lora_scale": 0.45, "num_outputs": 1, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 1984\nPrompt: 1MARK1, Megafauna walking through the landscape, ultra detailed, unique characteristics, symmetrical, compound microscopic, intensely vivid, soft tones, dynamic distance and ultra macro photography\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 9.30s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.64it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.06it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.84it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.76it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.71it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.68it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.66it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.65it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.63it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.63it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.63it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.63it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.63it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.63it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.62it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.62it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.63it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.63it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.63it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.63it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.63it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.63it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.62it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.63it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.63it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.63it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.63it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.63it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.65it/s]", "metrics": { "predict_time": 17.499290013, "total_time": 34.318177 }, "output": [ "https://replicate.delivery/yhqm/gywb0aSfvnToaaPDUqyQcYiAl668BUtR0D792aIeuJYGoUXTA/out-0.webp" ], "started_at": "2024-08-28T21:34:45.584887Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/dar0b8tnksrm00chkbmsz9z9am", "cancel": "https://api.replicate.com/v1/predictions/dar0b8tnksrm00chkbmsz9z9am/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 1984 Prompt: 1MARK1, Megafauna walking through the landscape, ultra detailed, unique characteristics, symmetrical, compound microscopic, intensely vivid, soft tones, dynamic distance and ultra macro photography txt2img mode Using dev model Loaded LoRAs in 9.30s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.64it/s] 7%|▋ | 2/28 [00:00<00:06, 4.06it/s] 11%|█ | 3/28 [00:00<00:06, 3.84it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.76it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.71it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.68it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.66it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.65it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.63it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.63it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.63it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.63it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.63it/s] 50%|█████ | 14/28 [00:03<00:03, 3.63it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.62it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.62it/s] 61%|██████ | 17/28 [00:04<00:03, 3.63it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.63it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.63it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.63it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.63it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.63it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.62it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.63it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.63it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.63it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.63it/s] 100%|██████████| 28/28 [00:07<00:00, 3.63it/s] 100%|██████████| 28/28 [00:07<00:00, 3.65it/s]
Prediction
markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1ID8pr29er2hxrm00chkbptp40t6cStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- seed
- 1984
- model
- dev
- width
- 768
- height
- 1440
- prompt
- 1MARK1, Megafauna in its natural habitat
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 2:3
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "seed": 1984, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, Megafauna in its natural habitat", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", { input: { seed: 1984, model: "dev", width: 768, height: 1440, prompt: "1MARK1, Megafauna in its natural habitat", lora_scale: 1, num_outputs: 1, aspect_ratio: "2:3", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "markbland82/mjbstyle1:d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", input={ "seed": 1984, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, Megafauna in its natural habitat", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run markbland82/mjbstyle1 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1", "input": { "seed": 1984, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, Megafauna in its natural habitat", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-28T21:39:20.239329Z", "created_at": "2024-08-28T21:38:29.647000Z", "data_removed": false, "error": null, "id": "8pr29er2hxrm00chkbptp40t6c", "input": { "seed": 1984, "model": "dev", "width": 768, "height": 1440, "prompt": "1MARK1, Megafauna in its natural habitat", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "2:3", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 1984\nPrompt: 1MARK1, Megafauna in its natural habitat\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 38.96s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.78it/s]\n 7%|▋ | 2/28 [00:00<00:05, 4.33it/s]\n 11%|█ | 3/28 [00:00<00:06, 4.05it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.93it/s]\n 18%|█▊ | 5/28 [00:01<00:05, 3.87it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.83it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.81it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.79it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.78it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.77it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.77it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.77it/s]\n 46%|████▋ | 13/28 [00:03<00:03, 3.77it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.77it/s]\n 54%|█████▎ | 15/28 [00:03<00:03, 3.76it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.76it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.76it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.76it/s]\n 68%|██████▊ | 19/28 [00:04<00:02, 3.75it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.76it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.76it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.76it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.76it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.76it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.76it/s]\n 93%|█████████▎| 26/28 [00:06<00:00, 3.76it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.76it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.76it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.79it/s]", "metrics": { "predict_time": 46.924611821, "total_time": 50.592329 }, "output": [ "https://replicate.delivery/yhqm/zAQHgcMjqPIZP11secRJ4FpTvuzQWh34wwekK6l85mgIsUXTA/out-0.webp" ], "started_at": "2024-08-28T21:38:33.314717Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/8pr29er2hxrm00chkbptp40t6c", "cancel": "https://api.replicate.com/v1/predictions/8pr29er2hxrm00chkbptp40t6c/cancel" }, "version": "d39163e7f7af729dd71b02b59d15ad199a2b00843c3c94ad7ed2983a7e8932e1" }
Generated inUsing seed: 1984 Prompt: 1MARK1, Megafauna in its natural habitat txt2img mode Using dev model Loaded LoRAs in 38.96s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.78it/s] 7%|▋ | 2/28 [00:00<00:05, 4.33it/s] 11%|█ | 3/28 [00:00<00:06, 4.05it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.93it/s] 18%|█▊ | 5/28 [00:01<00:05, 3.87it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.83it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.81it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.79it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.78it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.77it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.77it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.77it/s] 46%|████▋ | 13/28 [00:03<00:03, 3.77it/s] 50%|█████ | 14/28 [00:03<00:03, 3.77it/s] 54%|█████▎ | 15/28 [00:03<00:03, 3.76it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.76it/s] 61%|██████ | 17/28 [00:04<00:02, 3.76it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.76it/s] 68%|██████▊ | 19/28 [00:04<00:02, 3.75it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.76it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.76it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.76it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.76it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.76it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.76it/s] 93%|█████████▎| 26/28 [00:06<00:00, 3.76it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.76it/s] 100%|██████████| 28/28 [00:07<00:00, 3.76it/s] 100%|██████████| 28/28 [00:07<00:00, 3.79it/s]
Want to make some of these yourself?
Run this model